
Comment.Math.Univ.Carolin. 34,2 (1993)199–201 199

On a class of commutative groupoids

determined by their associativity triples

Aleš Drápal

Abstract. Let G = G(·) be a commutative groupoid such that {(a, b, c) ∈ G3; a · bc 6=
ab · c} = {(a, b, c) ∈ G3; a = b 6= c or a 6= b = c}. Then G is determined uniquely up to
isomorphism and if it is finite, then card(G) = 2i for an integer i ≥ 0.
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For a groupoid G = G(·) denote by Ns(G) the set of its non-associative triples,
i.e. Ns(G) = {(a, b, c) ∈ G3; a · bc 6= ab · c}. If V is a variety of groupoids and S
a non-empty set, then it can be a non-trivial problem to determine all such N ⊆ S3

that N = Ns(G) for a groupoid G = S(·) ∈ V . For example, it is known [1], [2]
that Ns(G) 6= {(a, a, a); a ∈ G} for any non-empty groupoid G.

In the present short note we investigate the case when V is the variety of the
commutative groupoids and Ns(G) = {(a, b, c) ∈ G3; a = b 6= c or a 6= b = c}. We
shall show that all such non-trivial groupoids can be obtained by a slight modifica-
tion of a 2-elementary Abelian group and that these groupoids are determined up
to isomorphism by card(G). Moreover, whenever G is finite and non-trivial, then
card(G) = 2i for an integer i ≥ 1.

Note that a · ba = ab · a for any a,b ∈ G whenever G is a commutative groupoid.
The set {(a, b, c) ∈ G3; a = b 6= c or a 6= b = c} thus covers all (a, b, c) ∈ G3 such
that card{a, b, c} ≤ 2 and a · bc 6= ab · c can occur.

Theorem 1. For an Abelian group G(+) and each 0 6= e ∈ G define on the set G
a commutative groupoid Ge by 0 · 0 = e, a · b = a+ b and a · 0 = 0 · a = 0 for any
a,b ∈ G\{0}. If G(+) is 2-elementary, then Ns(Ge) = {(a, b, c) ∈ G3; a = b 6= c or
a 6= b = c}. Conversely, if G(·) is a commutative groupoid where a · bc 6= ab · c if and
only if a = b 6= c or a 6= b = c, and card(G) > 1, then there exist a 2-elementary
Abelian group G(+) and an element 0 6= e ∈ G such that G(·) = Ge. Moreover, Ge

is isomorphic to Gf for any choice of e,f ∈ G, e 6= 0 6= f .

Proof: Only the converse part of the theorem requires a proof. Let us hence as-
sume that G(·) is a commutative groupoid, card(G) > 1 and Ns(G(·)) = {(a, b, c) ∈
G3; a = b 6= c or a 6= b = c}. As G is commutative, we have

(1) a · ba = ab · a for any a, b ∈ G.
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Let a = bc, where a, b, c ∈ G are pair-wise distinct. If c 6= ab, then aa · b =
(bc · a) · b = (b · ca) · b = b(ca · b) = b(c · ab) = bc · ab = a · ab. Hence c = ab and we
have

(2) If a = bc, b 6= a 6= c and b 6= c, then b = ac and c = ab.

Further, we shall prove

(3) If a = bc, b 6= a 6= c and b 6= c, then a2 = b2 = c2 and a2 /∈ {a, b, c}.

To see this, observe that c2 = ab · c = a · bc = a2 by (2) and that a2 = a implies
a · bb = a · aa = a = cb = ab.b.
If a ∈ G is such that a, a2, a3 are pair-wise distinct, we obtain from (3) a2 /∈

{a3, a2, a}, a contradiction. Therefore it holds

(4) a = a2 or a2 = a3 or a = a3 for any a ∈ G.

Let a, b, c ∈ G be again pair-wise distinct and a = bc. Then a 6= a2 by (3), and
a3 = a implies a · bb = a · aa = a3 = a = c · b = ab · b. Hence we have

(5) If a = bc, b 6= a 6= c and b 6= c, then a · a2 = b · a2 = c · a2 = a2 = b2 = c2.

We shall now order the set G by a < b iff ab = b and a 6= b. From a < b and b < a
it follows b = ab = ba = a and from a < b < c we obtain ac = a · bc = ab · c = bc = c.
Therefore < really is a (sharp) ordering of G.
Let again a, b, c ∈ G be pair-wise distinct and with a = bc. If e < a, then

ec = e · ab = ea · b = ab = c. Consequently, we have

(6) Let a = bc, b 6= a 6= c and b 6= c. If e < a, then e < b and e < c.

Conversely, suppose that a < e. Then b 6= e 6= c, eb = ea · b = e · ab = ec and
eb · c = e · bc = ea = e. From eb = c it follows ec = c, e < c and by (2) and (6)
e < a. Therefore eb 6= c. If eb, c, e are pair-wise distinct, then a < e implies by (6)
that a < c, a contradiction. It follows eb = e and we obtain

(7) Let a = bc, b 6= a 6= c and b 6= c. If a < e, then b < e and c < e.

For a, b ∈ G put (a, b) ∈ r iff a 6= b and a 6= ab 6= b, and denote by ∼ the
least equivalence containing the relation r. From (6) and (7) we get by induction
immediately

(8) Let a, b, e ∈ G and let a ∼ b. Then a < e iff b < e, and e < a iff e < b.

Denote by E the set of equivalence classes of ∼. By the definitions of ∼ and < we
have either a ∼ b, or a < b, or b < a for any a, b ∈ G. Hence it follows from (8) that
< induces a linear ordering of E . Suppose that (E , <) has no maximum element.
Then for a ∈ G we can choose b ∈ G with a < b, a2 < b. Then b · aa = b · a2 = b =
ba = ba · a, a contradiction.
Let U ∈ E be the maximum element of (E , <) and suppose that a, b ∈ U , a 6= b.

Then a 6= ab 6= b, and we obtain a2 > a by (3) and (5). This is a contradiction, and
hence U contains exactly one element, say u.
For u 6= a ∈ G we have ua = u, and thus u = ua · a 6= u · a2 provides a2 = u.

Therefore a < b < u would imply a · bb = au = u = bb = ab · b, which contradicts
our hypothesis. It follows that the equivalence ∼ has exactly two classes and by (7)
we have ab /∈ {a, b, u} for any a, b ∈ G, a 6= b, a 6= u 6= b. Moreover, u2 = aa · u 6=
a · au = u.
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Put now u = 0 and define G(+) by a+0 = 0+a = a for any a ∈ G and a+b = ab
for a, b ∈ G, a 6= 0 6= b. Clearly, a+ (b+ c) = (a+ b) + c whenever 0 ∈ {a, b, c}, and
by (2) also when a = b or b = c. Similarly, a+(b+ab) = a+a = ab+ab = ab+(a+b)
for a, b ∈ G, a 6= b, a 6= 0 6= b. Finally, a+(b+ c) = a+ bc = a · bc = ab · c = ab+ c =
(a+ b) + c when a, b, c ∈ G are pair-wise distinct and c 6= ab. It follows that G(+)
is a 2-elementary Abelian group and we see that G(·) = Gu2 . �
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