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On p-sequential p-compact spaces

SALVADOR GARCIA-FERREIRA, ANGEL TAMARIZ-MASCARUA

Abstract. It is shown that a space X is L(#p)-Weakly Fréchet-Urysohn for p € w* iff it
is L(¥p)-Weakly Fréchet-Urysohn for arbitrary p, v < wi, where #p is the u-th left power
of pand L(q) = {Fq : p < w1} for ¢ € w*. We also prove that for p-compact spaces,
p-sequentiality and the property of being a L(¥p)-Weakly Fréchet-Urysohn space with
v < w1, are equivalent; consequently if X is p-compact and v < wi, then X is p-sequential
iff X is Yp-sequential (Boldjiev and Malyhin gave, for each P-point p € w*, an example
of a compact space X, which is 2p-Fréchet-Urysohn and it is not p-Fréchet-Urysohn. The
question whether such an example exists in ZFC remains unsolved).
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0. Introduction.

In [BM], Boldjiev and Malyhin gave an example of a compact Franklin space
X, which is a FU(p?)-space but not a FU(p)-space, for each P-point p € w*. We
prove in this article that this is not the case when we consider p-sequentiality; that
is, every compact 2p-sequential space is p-sequential for every p € w* (3.9). In
order to obtain this result we introduce, in the first section, the left exponentiation
Vp of p € w* for each v < wy, and we study its basic properties and its relation
with the power p” defined by Booth in [Bo]. In Section 2, we analyze the concepts
of M-Weakly Fréchet-Urysohn space (WFU(M)-space) and M-Strongly Fréchet-
Urysohn space (SFU(M)-space) for M C w*. In the last section, we prove that if
X is a p-compact space, then X is p-sequential iff X is a WFU(L(Yp))-space, where
L(q) = {*q : p < w1} with ¢ € w* (3.7 and 3.8). As a consequence, in the class of
p-compact spaces we have that p-sequentiality and ¥p-sequentiality coincide.

1. Preliminaries.

We restrict our attention throughout this paper to Tychonoff spaces. For A C X,
the closure and interior of A in X are denoted by Clx(A) (or simply Cl(A)) and
Iny (A), respectively. For z € X, N(z) will be the set of all neighborhoods of .
The Stone-Cech compactification 3(w) of the natural numbers is identified with the
set of all ultrafilters on w, where a basic clopen subset of 8(w) is A = Clg)(4) =
{p € B(w) : A € p} for A C w. The remainder of f(w) is w* = f(w) \ w and, for
A Cw, welet A* = ANw*. If f : w — w is a function, then f : B(w) — B(w) denotes
the Stone-Cech extension of f. The Rudin-Keisler (pre-)order on w* is defined by
p < gk ¢ if there is a surjection f : w — w such that f(q) = p, for p,q € w*. If
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p,q € w* satisfy p < gk ¢ and g < g p, then we say that p and ¢ are RK-equivalent
and write p ~ gk ¢. It is not difficult to verify that p ~ rx g iff there is a permutation
o of w such that 7(p) = q. The type of p € w* is T(p) = {q € W* : p ~ rx q}-

Now we recall the definition of p-limit, for p € w*, introduced and studied by
Bernstein in [Be].

Definition 1.1. Let (zp)n<w be a sequence in a space X and p € w*. An element
x of X is a p-limit point of (zy)n<w (in symbols, = p-limy, o zp) if for each
VeN@),{n<w:z,eV}enp.

If p < gk ¢, then every p-limit point is also a g-limit point as stated in the next
lemma, the proof of which is easy.

Lemma 1.2. Let (zn)n<w be a sequence in a space X such that p-limy—co xp =
x € X. If f:w — w is a function such that f(q) = p, then z = ¢-lim, . Tf(n)-

In [Be] the author also considered the following notion.

Definition 1.3. Let p € w*. A space X is p-compact if every sequence (zy,)n<q of
points of X has a p-limit point in X.

The sum of a countable set of ultrafilters on w with respect to an ultrafilter on
w has been studied by Frolik [F]; for the general case, arbitrary filters on arbitrary
sets, by Vopénka [V] and Katétov [K].

Definition 1.4. Let p € w* and {p, : n < w} C w*. The sum of {p, : n < w} with
respect to p, denoted Xppy, is the set

{ACwxw:{n<w:{m<w:(n,m)e A} €pn} € p}.

It is evident that ¥,ps, is an ultrafilter on w xw and can be viewed as an ultrafilter
on w via a bijection between w X w and w. If p,q € w* and p, = q for each n < w
then Xy,py, is the usual tensor product p® ¢ of p and ¢. It is not hard to see that ®
is not a commutative operation on w*. However, Booth [Bo] showed that ® induces
a semigroup structure on the set of types of w*.

We also have that the sum and tensor product satisfy:

Lemma 1.5. Let (pn)n<w, (qn)n<w be two sequences in w* and p,s,q,r € w*.
Then
(1) (Blass Bl]) if {n < w : pn < rxqn} € p, then Xppn < rx Lpgn; and
Yppn < rx Zpn if {n <w:pp < qn} €p.
(2) (Kunen, see [Bo, 2.21]) if (rn)n<w Is a discrete sequence in w* and
Tn ™~ rK g, Pk for all n < w, then Ypry ~ gk Egpqnpn;
(3) (folklore) r < gxp®r and r < rg 7 @D;
(4) ifp<gxsandq<ggr, thenpoq < rxs®T.
(5) (Blass [B]) If f : w — w is a function satisfying f(q) = p, and pn < rx qn
for all n < w, then Xppn < rk EQQf(n)'

Throughout this paper, for each 2 < v < w; we fix an increasing sequence
(v(n))n<w of ordinals in wy so that



On p-sequential p-compact spaces 349

w(n) =n for n < w;

(1)
(2)
(3) if v is a limit ordinal, then v(n) v;
(4)

for each n < w.

In [Bo], the power (or the right power) T'(p) is defined for each 0 < v < w; and
for p € w*. For our convenience, if 0 < v < wy and p € w*, then p” stands for an
arbitrary point in T'(p)”. The basic properties of Booth’s powers of ultrafilters are
summarized in the following lemma.

Lemma 1.6. Let p,q € w*. Then
(1) (Booth [Bol) if 1 < v < wy, then p” =~ gy Tpp*(™);
(2) (Booth [Bo]) if 0 < i < v < wy, then p* < gk p”;
(3) if p < gk ¢, then p¥ < gx ¢” for all 0 < v < wy;
(4) (|[G-Fq, 2.29)) if 0 < v < wy is a limit ordinal and w < p < v, then
pep! <rxp”;
(5) VO < p,v <wi130 <wy (pFop” < axp?);
(6) VO < p,v <wi30 < wy (P < rxp?).

PROOF: The proofs of (3), (5) and (6) are similar to those given for 1.7 (3), 1.7 ()
and 1.7 (6') below, respectively, and we omit them. U

We can also define a left exponentiation which will play an important role in the
next section:

2T(p) = T(pop) and "FT(p) = T(p)@"T(p) for n < w. If #T(p) has been
defined for all 0 < p < v < wy and v is a limit ordinal, then *T'(p) = T(e(p)),
where e : w — w* is an embedding with e(n) € " T(p) for n < w. v = p+1,
then YT'(p) = T'(p) ® “T'(p) (the basic difference between the left power and Booth’s
power is that in [Bo] T'(p)**! is defined by T'(p)* @ T'(p)). As above, if 0 < v < wy
and p € w*, then Yp stands for an arbitrary point in ¥7T'(p). Observe that, because of
associativity of ® on the set of types, "T'(p) = T'(p)™ for every n < w, and therefore
“T(p) = T(p)*. It is proved in [Bo, Corollary 2.23] that T'(p)**! < gk “1T(p).

Some properties of the left power of ultrafilters and its relations with the right
power are given in the next lemma.

Lemma 1.7. Let p,q € w*. Then
(2")if 0 < p < v < wiy, then Hp < gx Vp;
(3") if p < rk q, then Vp < gk Vq for all 0 < v < wy;
4), (5) V0 < pv <w130 <wy ("pe’p < rx p);
(6" V0 < p,v <wi30 < wy (“(“p) < rxp);
(V0 < p<w3b,m <wy (p" < rxp and #p < gx p7).
PROOF: (2') Since Hp ~ gk pH for every 0 < p < w, then by 1.6(2) we have:

Pp < gx¥p for all 0 < p < v < w. Suppose that for every p < A < v < w; the
inequality #p < rk )‘p holds. If v = XA + 1, then, by 1.5(3), #p < gk )‘p < RKp®)‘p
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~ gk Yp. Now, assume that v is a limit ordinal. Then there is N < w such that
1 < v(n) for every n > N. By induction hypothesis we have that #p < rx ¥(™p for
every n > N. So, {n < w : #p < px ""p} € p. Therefore, by 1.5(1), we obtain
that #p < grx ‘u+1p ~ gk LpHp < Rk Epy(n)p ~ gk Up.

(3) First we shall show that there is g : w — w onto such that g(m) < m for all
m < w and g(q) = p. We cousider the following two cases:

I. There is no finite-to-one function f : w — w for which f(q) =p. Let g : w — w
be onto such that g(¢) = p. Assume that A = {m < w : m < g(m)} € ¢q. Then,
there is N € B = g[A] such that |¢g7 (N)NA| =w. If m > N and m € g~} (N)N A4,
then g(m) = N < m, which is a contradiction. Therefore, {m < w : g(m) < m} € q.
We may assume that g(m) < m for all m < w.

II. There is a finite-to-one function f : w — w such that f(¢g) = p. Then,
for each n < w we have that f~1(n) = {kf},...,k2 }. Define h : w — w by
h(n) = min{k{,...,k }. Notice that h is one-to-one. Put g = ho f. If m < w and
f(m) = n, then g(m) = h(f(m)) = h(n) < m since m € {kg,...,k; }. Since h is
one-to-one, by [CN, 9.2 (b)], 5(¢) = h(f(q)) = h(p) ~ rk p- This proves our claim.

We now proceed by induction. By 1.5(4) we have that "p < gx "¢ for all 1 <
n < w. Assume that #p < gxHgforall p <v <wi. fv=p+1, by 1.5(4), we
have that Yp ~ gxp®#p < rx q®*q ~ rx Yq. Suppose that v is a limit ordinal.
Let g : w — w be such that g(n) < n for all n < w and g(q) = p. By assumption,
and using (2'), we have that *(p < pi *(" g and *9(M) g < 1 V(Mg From 1.5 (5)
and 1.5 (1) it follows that ¥p ~ gk Ep”(”)p < Rk Eq”(g("))q < Rk Eq”(")q ~ gk Yq.

(4’), (5') We proceed by induction on p. By definition we have that pe”p < rx
v+ly for every v < wi. Assume that for each v < wy and each A < p < wy, there is
0 < wy for which *p®¥p < rx ?p. First, suppose that = A+ 1, then by induction
hypothesis there exists # < w; such that #p®¥p ~ gk p®()‘p® p) < prxpP® Op ~ rx
0+1p. Now, assume that “p ~ gk Ep“(”)p. By assumption, for each n < w, there
is Ay, < wi such that “MpeVp < perp. Set A = sup{A\p : n < w}. Then,
) perp < g p for all n < w. Hence, by 1.5(2) and 1.5(1), “pe’p ~ rx
(Epu(n)p) ®@"p ~ rx Ep(“(n)p ®"p) <rxP® )‘p =~ RK )"Hp.

(6') The proof is by induction on . Suppose that for each v < wy and each
A < p < wy there is 0 for which )‘(Vp) < rx?p. If 4 = X\ + 1, then by induction
hypothesis there exists § < wy such that *1(Vp) ~ r’po*(¥p) < rx Vp&op.
Because of (5') we can find 6 < wy for which #(“p) < rx“p®°%p < rx /p. If p is
a limit ordinal we have that #(¥p) ~ gk Eq”(")q, where ¢ = Yp. By assumption, for
each n < w there is A, such that #(" g < g Anp. If we put A = sup{A\n : n < w},
then #(M g < pyx p and so Eq“(")q < ri ¢®p. Applying (5’) there is 6 < wy such
that #(Vp) ~ rk 2qu(n)q <Rk Vp®)\]9 < Rk 6]9-

(7) We are going to prove the first inequality because the second one is shown
in an analogous fashion. Assume that for each 0 < v < p < w; there is 0 <
wi such that ¥p < pxp?. If 4 = X+ 1, then there is § < wy such that Hp =
MIp ~ pxpe™p < repep’. By 1.6(4), we can find 0 < wy satisfying #p < px
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pop® < gk p?. Let us suppose now that #p ~ px Ep“(”)p. By induction hypothesis,
for each n < w, there is 8, < w; such that #(Mp < e pdn. If § = sup{dp : n <
w}, then #Mp < pypd for all n < w. Thus, using 1.5(1) and 1.6 (4), we obtain
Fp~ gk Ep“(n)p < RK pr5 ~ rx p@p° < ri p? for some § < wy. U

Observe that we do not have a statement in 1.7 analogous to that in 1.6(1).
In fact, because of 1.5(1) we obtain the following inequality: Ep(“""l)(")p ~ RK
Epw(n)—Hp ~ RK Epn—i_lp < Rk Zp“P X R P®YP ~ Rk whlp,

Notation 1.8. For p € w* we put L(p) = {*p: v <wi} and R(p) = {p" : v <wi}.

2. SFU(M)-spaces and WFU(M )-spaces.

The Fréchet-Urysohn spaces and sequential spaces can be generalized using p-
limits as follows:
Definition 2.1. Let p € w* and X be a space. Then

(1) (Comfort-Savchenko) X is a FU(p)-space if for each A C X and z € Cl(A)
there is a sequence (zy)pn<w in A such that z = p-lim xp;

(2) (Kombarov [Ko]) X is p-sequential if for every non-closed subset A of X there
is x € Cl(A) \ 4 and a sequence (2 )n<w in A such that z = p-limz,.

The p-limits and subsets of w* can be used to produce the following classes of
spaces, which are closely related to the FU(p)-property.

Definition 2.2 (Koc¢inac [Ko¢]). Let () 2 M C w* and let X be a space. Then

(1) X is a WEU(M)-space if for A C X and © € A~ there are p € M and
a sequence (In)n<w in A such that © = p-lim xy;

(2) X is a SFU(M)-space if for A C X and « € A~ there is a sequence (zp,)n<w
in A such that = p-limx,, for all p € M.

Notice that the concept of SFU(w*)-space (resp. WFU(w*)-space) coincides with
the concept of Fréchet-Urysohn space (resp. countable tightness). If p € w*, then
SFU({p})-space = WFU({p})-space = FU(p)-space. The fundamental properties
of the notions given in 2.2 are stated in the next theorem.

Theorem 2.3. Let () # M C w*. Then
(1) if p e M, SFU(M)-space = FU(p)-space = WFU(M)-space;
(2) SFU(M)-space < SFU(Clg,,) (M))-space;
(3) FU(p)-space & WFU(T (p))-space, for p € w*;
(4) WFU(M)-space = WEFU(Clg,,) (M))-space.

For a nonempty closed subset M of w*, we define (M) = wU{M?}, where w has
the discrete topology and the neighborhood system of M is {{M}UA: A C w and
M C A*}. Then {(M) is a WFU(M)-space for each ) # M C w*. Observe that,
for ACw, M € Clg(M)(A) iff there is p € M such that A € p, and if M is closed,

M=(){B*:BCw and M C B*}.



352

S. Garcia-Ferreira, A. Tamariz-Mascarua

This kind of spaces will supply some important examples. We are also going to
analyze when {(M) is a SFU(M)-space and when it is a Fréchet-Urysohn space.

Lemma 2.4. Let M C w* be closed. Then {(M) is a SFU(M)-space iff for each
A C w satisfying A* N M # (), there exists f : w — A such that f[M] C M N A*.

PROOF: Necessity. Let A C w such that A* N M # 0. Thus, M € Clgp(A).
Hence, there is a sequence (an)n<w in A such that M = p-lim a,, for every p € M.
Let f : w — A defined by f(n) = ap. It is not difficult to see that f(M) C M N A*.

Sufficiency. M € Clg(pp)(A) implies that M N A* # (. By hypothesis, there

exists f : w — A for which f[M] C M N A*. The sequence (f(n))n<w g-converges
to M for every q € M. g

Next, we give some equivalent conditions which guarantee that £(M) is Fréchet-
Urysohn. The statement (1) < (2) below is due to Malyhin [M, Theorem 1].

Theorem 2.5. Let M be a closed subset of w*. Then the following statements are
equivalent

(1) M is a regular closed subset of w*;
(2) &(M) is a Fréchet-Urysohn space;
(3) &(M) is a SFU(M)-space and Ing,« (M) # 0.

PROOF: (1) = (2). Assume that M = Clo+(Iny+(M)) and M € Cle¢(pr)(A). Then
there is p € M such that A € p. We claim that A* NIny« (M) # (. If not, then A*N
M = () which would be a contradiction. Let D C w such that D* C A* N In,+(M).
We may suppose that D C A. Enumerate faithfully D by {d,, : n < w}. We shall
verify that d, — M. Let B C w be such that M C B*. If |D \ B| = w, then there
isqe (D\B)* C D*C M C B*, but this is impossible. Thus, |D \ B| < w and so
there is m < w such that d,, € B for all m < n < w. This shows that d,, — M.

(2) = (3). We only need to show that In,« (M) # 0. By assumption there is
a sequence (ng)g<y of positive integers such that ng — M. Set A = {ng : k < w}.
We claim that A* C M. Indeed, let p € A* and suppose that p ¢ M. Then we can
find B C A such that B € p and B* N M = (). Since M C (w\ B)*, thereis m < w
such that n; € A\ B whenever m < k < w, but this is impossible because B is an
infinite subset of A.

(3) = (1). We shall verify that In,=(M) is dense in M. Fix p € M and A € p.
Then M € Cl¢(pr)(A) and so there is a sequence (2n)n<w in A such that M =
g-lim zy, for all ¢ € M. By hypothesis, there is B C w satisfying B* C Iny«(M). If
g € B*, then {n < w: zy, € B*} € q. Hence, |JANB| =w and so § # A* N B* C
A* N Ing= (M). O
Examples 2.6. (1) If p € w*, then {(p) is a FU(p)-space and not a SFU(T'(p))-
space.

(2) Let p,q € w* be RK-incomparable (see [CN, 10.4]). Then £(p) is
a WEFU(Clg(,) T'(g))-space and not a WFU(T'(¢))-space since {(p) cannot be
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a FU(q)-space (by [G-F1, 2.2]). Also, £(p) is not ¢g-sequential and is a WFU({p, ¢})-
space; this shows that WFU(M)-space does not imply r-sequential for r € M.

(3) If p,q € w*, and p is not ~ gxk -equivalent to ¢, then £({p, ¢}) is not
a SFU({p, ¢})-space.

(4) Let p € w* and {pp, : n < w} be a discrete subset of T'(p). If M = Cl,({pn :
n < w}), then £(M) is a SFU(M)-space and is not Fréchet-Urysohn. In fact, since
In« (M) = 0, £(M) cannot be Fréchet-Urysohn (2.5). Since {pp, : n < 7} is discrete,
we can find a partition {Ay, : n < w} of w such that A, € p, for each n < w. Let
A C w be such that A* N M # (). Choose r € A* N M. Without loss of generality,
we may assume that r # py,, for all n < w. Then there is m < w such that p,, € A*.
Since pp, =~ rx pm and p, € A* N A, for each m # n < w, there is a bijection
on @ Ap — A such that &,(pp) = pm. Define o = Um¢n<w on :w — A. Then we
have that [M] = {pm} € A* N M and the conclusion follows from 2.4.

In the next theorem, we will show that the WFU(L(¥p))-property agrees with
the WFU(R(p*))-property for each 0 < v, u < wy. First, we prove a lemma.

Lemma 2.7. Let N, M C w* such that N # ) # M and Vp € M3dq € N
(p < gk q). Then every WFU(M)-space is a WFU(N)-space.

PRrROOF: Let X be a WFU(M)-space and A C X. Fix z € Cl(A4). Then, there is
a sequence (o )n<w in A and p € M such that 2 = p-lim x,,. By assumption, there
is ¢ € N such that p < rxq. Let f : w — w be a surjection such that f(q) = p.
By 1.2, we have that z = ¢-limz ¢(,,). Thus, z is a WFU(N)-space. O

Theorem 2.8. Ifp € w* and 0 < v, u < wy, then a space X is WFU(L("p))-space
iff it is a WFU(R(p*))-space.

PROOF: By 1.7(6'), 1.7(7), 1.5(3) and 1.8 (6) for each v, u, 6 < wy there are v, T <
wy such that ?(Vp) < gk (p*)Y < rx "(¥p). Then the conclusion is a consequence
of 2.7. O

3. p-sequential p-compact spaces.

We saw in 2.6 (2) that a WEFU(M )-space is not necessarily r-sequential whenever
r € M. There are also r-sequential spaces with r € M C w*, which are not
WFU(M)-spaces; for instance, every p-sequential which is not a FU(p)-space, for
p € w* (see [G-F1]). The situation is quite different in the class of p-compact spaces
when M = L(p), as we shall prove in this section (3.8). First some preliminary
lemmas and definitions.

Definition 3.1. Let p be a free ultrafilter on w x w and (Zn,m )n,m<w @ bisequence
in a space X. Then we say = p-limxy, p, if for every V € N(z) we have that
{(n,m) ewxw:zpmeV}ep.

Lemma 3.2. Let p,q, € w*, for n < w, and let (,Tn,m)n7m<w be a bisequence in

a space X. If qu-limpy, o0 Tn,m exists for all n < w, then x = (Xpgn)-lim @y, 4 iff

T =p- nli_{réo(Qn‘ mlgnoo xn,m)-
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PROOF: Necessity. Assume that x # p-lim,— 00 (gn- limm—oco Zn,m). Then there
is V € N(z) such that {n < w: gp-limyy—oo Tnm ¢ CI(V)} € p. By assumption,
A={(nm) € wxw:apm€V} & Xpgp; that is, {n < w: {m < w :zpm €
V} € gn} € p. Thus, there is N < w such that gn-limm—co 2y, ¢ CI(V) and
{m <w:aN,, €V} € qy, but this is a contradiction.

Sufficiency. If V € N (z), then {n < w : ¢n-limm—oo Zn,m € V} € p and hence
n<w:{m<w:zpmeV}eqg}ep Thus, {(n,m) ewxw:azpm eV} e
Ypgn. Therefore, z = (Xpgn)-limzy, m. O

We remark that the conclusion of 3.2 does not hold if we drop the condition
gn-limy, 00 Tn,m exists for each n < w. For instance, in the space {(pep) =
wXxXwU{p®p} we have that p@p = p® p-lim(n, m), but p-lim, . (n, m) does not
exist for each n < w.

Definition 3.3. Let X be a space, A C X and p € w*. We put A, = A, and, if
Ay, y is already defined for every A < p < wy, then Ay, = {z € X : z = p-limz,
for some sequence (zn)n<w in Uy<,, 4pa}. When it is clear what p we are talking
about, we write Ay instead of A, . We also define L(q, 4) = {x € X : v = ¢-limz,,
for some (2n)n<w C A}. Because of 1.2, if p < gk ¢, then L(p, A) C L(q, A).

We omit the proof of the next easy lemma.

Lemma 3.4. Let p € M C w*, and let X be a space. Then
(1) X is p-sequential iff for every A C X, Clx(A) = U<y, Ap,i
(2) X is a WFU(M)-space iff for every A C X, Clx(A) = Upepr L(p, 4);
(3) X is a FU(p)-space iff for every A C X, Clx(A) = Ly 4.

Definition 3.5. Let p € w*. A p-sequential space X has a degree of p-sequentiality
equal to p < wy if p is the least ordinal such that for every A C X, Clx(A) = A4,
(see the notation in 3.3).

Theorem 3.6. For p € w*, every p-sequential space is a WFU(L(p))-space. More-
over, if X has a degree of p-sequentiality equal to p < w1 (resp. 0 < p < w) then X
is a FU(#*1p)-space (resp. FU(*p)-space).

PrOOF: Let p € w*, X a p-sequential space and A C X. In order to prove all
the statements in the theorem, it is enough to show that A, C L()"Hp,A) for
every 0 < A < wy, and Ay C L(*p,A) if 0 < A\ < w (see 3.4). We proceed
by induction. Evidently, A1 C L(p,A). Suppose that for every A < p < wiy,
Ay © L(Mp, A) (resp. for every 0 < A < p < w, Ay C L(*p,A)). Let x € Ay,
so x = p-lim, oo Tn, Where x, € U)\<MA)\ for all n < w. For each n < w
there is A, < p such that z, € Ay . Let v = sup{\, : n < w}. By hypoth-
esis xp € L(Yp, A) for every n < w. Then, for each n < w there exists a se-
quence (Zn,m)m<w C A such that z, = Yp-limy, 0o Tn,m. Then, because of 3.2,
z = p-limy oo (Vp-limpm—oo Tnym) = V"'lp—limxn,m; that is, = € L(V+1p,A) C
L(Fp, A)if 0 < p < w,and x € L(*Tp, A) Cc L(*T1p, A) if w < pu < wy. O

The following lemma is a direct consequence of [G-Fg, 2.7(3)], 1.2 and 1.7 (7).



On p-sequential p-compact spaces

Lemma 3.7. For p € w* and 0 < v < wj, p-compactness, ¥p-compactness and
pY-compactness are equivalent.

We are ready now to prove that the converse of Theorem 3.6 holds in the class
of p-compact spaces.

Theorem 3.8. Let p € w*. If X is a p-compact, WFU(L(p))-space, then X is
p-sequential. In addition, if X is a FU(*p)-space for some 0 < p < w1, then X has
a degree of p-sequentiality < p.
Proor: Let A C X. We will prove by induction that for every 0 < A < wy,
L(*p, A) C A (see the definition in 3.4). It is clear that A; = L(p, A). Assume
that, for every 0 < A\ < p < wy, we have L(*p, A) C Ay. Let 2 € L(*p, A), then
x = Fp-limy— 00 Tn, for some sequence (Tp)n<yw in A. First, suppose that = A+1,
so x = p®)‘p— lim 2y, where zp m € A for all n,m < w (this is possible because
of 1.2). Since X is p-compact, by 3.7, X is Ap—compact and so )‘p— limyn— 00 Tn,m
exists for each n < w. In virtue of 3.2, x = p-limy,— oo (>‘p— limy,— o0 Tnm). By
induction hypothesis, we have that, for each n < w, y, = Ap-limym — oo Tnm € Ay.
Therefore, x = p-limy oo Yn € Axy1 = Ap.

Now assume that g is a limit ordinal. So ¥p ~ gk Ep“(”)p and hence, by 1.2,
T = Ep“(")p— lim ©p, ;n where zn m € A for all n,m < w. According to 3.7, X is
“(")p—compact for all n < w. Then, “(")p— limyy, 00 Tn,m exists for each n < w.
By 3.2, x = p-limp_00 (“(")p— limy, oo Tn,m). By assumption, for each n < w,

Yn = P p-limy, oo Tnm € Ayy(n)- Therefore, z € Ay, and so L(#p,A) C Ay O

w(n
As a direct consequence of 2.8, 3.6 and 3.8 we have:

Corollary 3.9. Let p € w*, 0 < v < wy and X be a p-compact space. Then the
following are equivalent

(a) X is p-sequential;

(b) X is ¥p-sequential;

(¢) X is p¥-sequential.

Observe that if p € w*, then & (p2) is p2-sequential, but it is not p-sequential, by
[G-F1, 2.2].

If we assume CH, then the situation for p-compact FU(p)-spaces is quite different
to that described in 3.9. In fact, Boldjiev and Malyhin [BM] have shown that, under
CH, for every P-point p of w* there is a compact Franklin space X, (this space is
constructed from a suitable almost disjoint family on w) which is a compact FU(pz)—
space and is not a FU(p)-space. The answer to the following question remains
unknown.

Question 3.10. Does ZFC imply that there is a p-compact, FU(p?)-space which
is not a FU(p)-space, for each p € w*?
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