On the numerical range of operators on locally and on H-locally convex spaces

Edvard Kramar

Abstract. The spatial numerical range for a class of operators on locally convex space was studied by Giles, Joseph, Koehler and Sims in [3]. The purpose of this paper is to consider some additional properties of the numerical range on locally convex and especially on H-locally convex spaces.

Keywords: locally convex space, H-locally convex space, numerical range, spectrum *Classification:* 47A12, 46A13, 46A19

1. Introduction.

Let X be a locally convex Hausdorff space over the real or complex field K. Each system of seminorms $P = \{p_{\alpha}, \alpha \in \Delta\}$ inducing its topology will be called a *calibration*. Such a space is said to be H-*locally convex* with respect to a calibration P if P consists of Hilbertian seminorms, i.e. for each $p_{\alpha} \in P$ there is a semi-inner product $(,)_{\alpha}$ (it is only nonnegative definite) such that $p_{\alpha}^2(x) = (x, x)_{\alpha}, x \in X$. Such spaces have been studied e.g. in [6], [7] and [8].

For a given calibration P we denote by $Q_P(X)$ the algebra of quotient bounded operators on X, i.e. the set of all linear operators T on X for which

$$p_{\alpha}(Tx) \leq C_{\alpha}p_{\alpha}(x), \quad x \in X, \quad \alpha \in \Delta$$

and by $B_P(X)$ the algebra of universally bounded operators on X, i.e. the set of all $T \in Q_P(X)$ for which $C = C_\alpha$ is independent of $\alpha \in \Delta$ ([3]). The family $Q_P(X)$ is a unital l.m.c. algebra with respect to seminorms $\hat{P} = \{q_\alpha, \alpha \in \Delta\}$ where

$$q_{\alpha}(T) = \sup\{p_{\alpha}(Tx) : p_{\alpha}(x) \le 1, x \in X\}, \quad \alpha \in \Delta, \quad T \in Q_P(X)$$

and $B_P(X)$ is a unital normed algebra with respect to the norm

$$||T||_P = \sup\{q_\alpha(T) : \alpha \in \Delta\}.$$

For each $\alpha \in \Delta$ let J_{α} denote the null space of p_{α} and X_{α} the quotient space X/J_{α} . This is a normed space with the norm $||x_{\alpha}||_{\alpha} := p_{\alpha}(x), x_{\alpha} = x + J_{\alpha}$, and \widetilde{X}_{α} is the completion of X_{α} . For a given $T \in Q_P(X)$ we define T_{α} on X_{α} by $T_{\alpha}x_{\alpha} := (Tx)_{\alpha}$, and denote by \widetilde{T}_{α} its continuous linear extension on \widetilde{X}_{α} ([3]).

Let (X, P) be an H-locally convex space. Then an operator $T \in Q_P(X)$ has an adjoint operator T^0 if and only if $(Tx, y)_{\alpha} = (x, T^0 y)_{\alpha}$ for each $\alpha \in \Delta$ and $x, y \in X$. In this case $(\widetilde{T^0}) = (\widetilde{T}_{\alpha})^*$ for all $\alpha \in \Delta$ ([5]) where $(\widetilde{T}_{\alpha})^*$ is the adjoint operator of \widetilde{T}_{α} in the Hilbert space \widetilde{X}_{α} .

2. The spatial numerical range.

The spatial numerical range for a given operator $T \in Q_P(X)$ in a locally convex space (X, P) is defined by

$$V(X, P, T) = \bigcup V\{(\widetilde{X}_{\alpha}, \|\cdot\|_{\alpha}, \widetilde{T}_{\alpha}) : \alpha \in \Delta\}$$

where on the right hand side there are numerical ranges on normed spaces \widetilde{X}_{α} . The above numerical range has the usual properties ([3])

$$V(X, P, \lambda T + \mu I) = \lambda V(X, P, T) + \mu, \quad T \in Q_P(X), \quad \lambda, \mu \in K$$

and

$$V(X, P, T+S) \subseteq V(X, P, T) + V(X, P, S), \quad T, S \in Q_P(X).$$

We shall consider some additional properties of the numerical range in locally convex and especially in H-locally convex spaces.

Let (X, P) be an H-locally convex space. Then \widetilde{X}_{α} are Hilbert spaces and $V(\widetilde{X}_{\alpha}, \|\cdot\|, \widetilde{T}_{\alpha})$ are convex sets. Unfortunately, their union i.e. V(X, P, T) is in general not convex. In [3] there was defined the algebra numerical range of an element a for a unital l.m.c. algebra (A, \widehat{P}) as

$$V(A, \widehat{P}, a) = \bigcup \{ V(A_{\alpha}, \| \cdot \|_{\alpha}, a_{\alpha}), \ \alpha \in \Delta \}$$

where A_{α} are quotient algebras with respect to the null spaces N_{α} of $q_{\alpha} \in \widehat{P}$ and $a_{\alpha} = a + N_{\alpha}$, $||a_{\alpha}||_{\alpha} = q_{\alpha}(a)$. In particular, for the l.m.c. algebra $Q_P(X)$ the following relation holds

(2.1)
$$V(Q_P(X), \widehat{P}, T) = \bigcup \{ V(B(\widetilde{X}_\alpha), \|\cdot\|_\alpha, \widetilde{T}_\alpha), \ \alpha \in \Delta \}$$

where on the right hand side there are algebra numerical ranges on Banach algebras $B(\tilde{X}_{\alpha})$ ([3]).

For a locally convex space (X, P) the following inclusions were proved in [3]: $V(X, P, T) \subset V(Q_P(X), \hat{P}, T) \subset \overline{co} V(X, P, T)$ where $\overline{co} M$ denotes closed convex hull of a set M. For an H-locally convex space we have

Theorem 2.1. Let (X, P) be an H-locally convex space and $T \in Q_P(X)$. Then

(i)
$$V(X, P, T) \subset V(Q_P(X), \hat{P}, T) \subset \overline{V(X, P, T)},$$

(ii) $V(Q_P(X), \hat{P}, T) = \overline{V(X, P, T)}.$

PROOF: We have to prove the second inclusion in (i). Let us take into account the connection between the spatial and the algebra numerical range in Hilbert spaces \widetilde{X}_{α}

(2.2)
$$V(Q_P(X), \widehat{P}, T) = \bigcup \{ V(B(\widetilde{X}_\alpha), \|\cdot\|_\alpha, \widetilde{T}_\alpha), \ \alpha \in \Delta \} =$$

$$= \bigcup \{ \overline{V(\widetilde{X}_{\alpha}, \|\cdot\|_{\alpha}, \widetilde{T}_{\alpha})}, \ \alpha \in \Delta \} \subset \bigcup \{ V(\widetilde{X}_{\alpha}, \|\cdot\|_{\alpha}, \widetilde{T}_{\alpha}), \ \alpha \in \Delta \} = \overline{V(X, P, T)}$$

Thus (i) holds and taking the closure implies (ii).

Remark. The relation (ii) can also be found in [3] for the special case when X is a product of Hilbert spaces.

When \widehat{P} is a directed family, $V(Q_P(X), \widehat{P}, T)$ is a convex set ([3]) and we have **Corollary 2.2.** Let (X, P) be an H-locally convex space and P a calibration such that \widehat{P} is directed. Then for $T \in Q_P(X)$ the set $\overline{V(X, P, T)}$ is convex.

3. The numerical range and the spectrum.

Let $T \in Q_P(X)$. Then the number $\lambda \in K$ is in the resolvent set $(\lambda \in \varrho(Q, T))$ if and only if there exists $(T - \lambda I)^{-1} \in Q_P(X)$. The spectrum of T is the set $\sigma(Q,T) := \varrho(Q,T)^c$ ([6]). Let $\sigma_\alpha(\widetilde{T}_\alpha)$ denote the spectrum of \widetilde{T}_α in \widetilde{X}_α . Then ([3])

Proposition 3.1. If (X, P) is a complete locally convex space and $T \in Q_P(X)$, then

$$\sigma(Q,T) = \bigcup \{ \sigma_{\alpha}(\widetilde{T}_{\alpha}), \ \alpha \in \Delta \}.$$

As in a Banach space we can define the following four main subsets of the spectrum: $\sigma_p(Q,T)$, $\sigma_c(Q,T)$, $\sigma_r(Q,T)$ and $\sigma_a(Q,T)$ — the point, the continuous, the residual and the approximate spectrum respectively.

Definition 3.2. For $T \in Q_P(X)$ and $\lambda \in K$ in a locally convex space (X, P) we have

- (i) $\lambda \in \sigma_p(Q, T)$ if and only if $\ker(T \lambda I) \neq \{0\}$,
- (ii) $\lambda \in \sigma_c(Q, T)$ if and only if there exists $(T \lambda I)^{-1}$ on the set im $(T \lambda I)$ which is dense in X and $(T \lambda I)^{-1} \notin Q_P(X)$,
- (iii) $\lambda \in \sigma_r(Q, T)$ if and only if $(T \lambda I)^{-1}$ exists on the set im $(T \lambda I)$ which is not dense in X,
- (iv) $\lambda \notin \sigma_a(Q,T)$ if and only if for each $\alpha \in \Delta$ there exists $C_{\alpha} > 0$ such that $p_{\alpha}((T \lambda I)x) \ge C_{\alpha}p_{\alpha}(x), x \in X.$

Let us write down the following connection.

Proposition 3.3. For $T \in Q_P(X)$ in a locally convex space (X, P) the following holds

$$\sigma_a(Q,T) \cup \sigma_r(Q,T) = \sigma(Q,T).$$

PROOF: Let $\lambda \in \sigma_a(Q,T)^c \cap \sigma_r(Q,T)^c$ and $y \in X$. Since $\operatorname{im}(T-\lambda I)$ is dense, there exists a net $\{x_\delta\}$ such that $y_\delta := Tx_\delta - \lambda x_\delta \to y$. Since $\lambda \notin \sigma_a(Q,T)$ by the above definition there exists on $\operatorname{im}(T-\lambda I)$ the inverse operator which is continuous in the sense $p_\alpha((T-\lambda I)^{-1}z) \leq D_\alpha p_\alpha(z), \alpha \in \Delta, z \in \operatorname{im}(T-\lambda I)$. Hence the sequence $x_\delta = (T-\lambda I)^{-1}y_\delta$ is also convergent, $x_\delta \to x$ and by continuity of $T-\lambda I$ it follows $(T-\lambda I)x = y$. Thus, $\operatorname{im}(T-\lambda I) = X$ and by the above inequality $(T-\lambda I)^{-1} \in Q_P(X)$, which means $\lambda \in \sigma(Q,T)^c$. The reverse inclusion $\sigma_a(Q,T) \cup \sigma_r(Q,T) \subset \sigma(Q,T)$ is obvious. \Box

Some connections between parts of the spectrum on X and on the quotient spaces \widetilde{X}_{α} are

E. Kramar

Proposition 3.4. For $T \in Q_P(X)$ on a separated locally convex space (X, P) the following two relations hold:

(i)
$$\sigma_p(Q,T) \subset \cup \{\sigma_p(\widetilde{T}_\alpha), \alpha \in \Delta\},\$$

(ii) $\sigma_a(Q,T) = \cup \{\sigma_a(\widetilde{T}_\alpha), \alpha \in \Delta\}.$

PROOF: (i) We may choose $\lambda = 0 \in \sigma_p(Q, T)$. Then there is some $x \neq 0$ such that Tx = 0. Since X is separated there exists some $\beta \in \Delta$ such that $p_\beta(x) \neq 0$, hence x_β is a nonzero vector in ker (\widetilde{T}_β) . Thus, $0 \in \sigma_p(\widetilde{T}_\beta) \subset \cup \{\sigma_p(\widetilde{T}_\alpha), \alpha \in \Delta\}$.

(ii) Again we may choose $\lambda = 0 \notin \sigma_a(Q, T)$. Then for each $\alpha \in \Delta$ there exists $C_{\alpha} > 0$ such that $p_{\alpha}(Tx) \geq C_{\alpha}p_{\alpha}(x)$, $x \in X$ and consequently $||T_{\alpha}x_{\alpha}||_{\alpha} \geq C_{\alpha}||x_{\alpha}||_{\alpha}$, $x_{\alpha} \in X_{\alpha}$. The same estimate then holds on the space \widetilde{X}_{α} . This means $0 \notin \sigma_a(\widetilde{T}_{\alpha})$ for all $\alpha \in \Delta$. Conversely, suppose $0 \notin \sigma_a(\widetilde{T}_{\alpha})$ for all $\alpha \in \Delta$, then for each $\alpha \in \Delta$ there is some $C_{\alpha} \geq 0$ such that $||\widetilde{T}_{\alpha}x_{\alpha}|| \geq C_{\alpha}||x_{\alpha}||$, $x_{\alpha} \in \widetilde{X}_{\alpha}$, in particular we have the same estimate for T_{α} and it follows

$$p_{\alpha}(Tx) \ge C_{\alpha}p_{\alpha}(x), \quad x \in X, \ \alpha \in \Delta,$$

which means $0 \notin \sigma_a(Q, T)$.

Corollary 3.5. For $T \in Q_P(X)$ in a separated locally convex space $(X, P), \lambda \in \sigma_a(Q, T)$ if and only if there exists an $\alpha \in \Delta$ and a sequence $\{x_n\} \subset X, \{x_n\} \subset J_{\alpha}^c$ such that $p_{\alpha}((T - \lambda I)x_n) \to 0$.

We can prove also a result concerning the boundary points of the spectrum. There it must be supposed an additional assumption since the spectrum in general is not closed.

Theorem 3.6. Let (X, P) be a complete separated locally convex space and $T \in Q_P(X)$. Then

$$\sigma(Q,T) \cap \partial \sigma(Q,T) \subset \sigma_a(Q,T).$$

PROOF: Let $\lambda \in \sigma(Q, T) \cap \partial \sigma(Q, T)$. Then there exists an $\alpha \in \Delta$ such that $\lambda \in \sigma(\widetilde{T}_{\alpha})$. If λ were an inner point of $\sigma(\widetilde{T}_{\alpha})$, there would exist an open neighborhood S with the property $\lambda \in S \subset \sigma(\widetilde{T}_{\alpha})$. Then S would be contained also in $\sigma(Q, T)$ and λ would not be a boundary point of the spectrum. Thus, $\lambda \in \partial \sigma(\widetilde{T}_{\alpha})$. By such a theorem for normed spaces ([1]), $\lambda \in \sigma_a(\widetilde{T}_{\alpha})$ and by Proposition 3.4 we have $\lambda \in \sigma_a(Q, T)$.

In the following we shall consider the connections between the spectrum and the numerical range of an operator. The following result is basic to this subject ([3]).

Theorem 3.7. Let (X, P) be a complete separated locally convex space and $T \in Q_P(X)$. Then

$$\sigma(Q,T) \subset \overline{V(X,P,T)}.$$

Let us take $\lambda \in \sigma_p(Q,T)$, then there is some $\alpha \in \Delta$ such that $\lambda \in \sigma_p(\widetilde{T}_\alpha) \subset V(\widetilde{X}_\alpha, \|\cdot\|_\alpha, \widetilde{T}_\alpha)$, consequently the following holds

Proposition 3.8. Given a locally convex space (X, P) and $T \in Q_P(X)$, then

$$\sigma_p(Q,T) \subset V(X,P,T).$$

Let, now, (X, P) be an H-locally convex space.

Proposition 3.9. Let (X, P) be an H-locally convex space, let $T \in B_P(X)$ and $\lambda \in V(X, P, T)$ with the property $|\lambda| = ||T||_P$. Then $\lambda \in \sigma_a(Q, T)$.

PROOF: Let $\lambda \in V(X, P, T)$. Then λ is in some $V(\widetilde{X}_{\alpha}, \|\cdot\|_{\alpha}, \widetilde{T}_{\alpha})$ and by assumption $|\lambda| \leq \|\widetilde{T}_{\alpha}\| \leq \|T\|_{P} = |\lambda|$, hence $|\lambda| = \|\widetilde{T}_{\alpha}\|$. By a similar theorem for Hilbert spaces ([4]), and by Proposition 3.4 it follows $\lambda \in \sigma_{a}(\widetilde{T}_{\alpha}) \subset \sigma_{a}(Q, T)$.

In the Hilbert space the convex hull of the spectrum of a normal operator is equal to closedness of the numerical range. A generalization of this result is

Theorem 3.10. Let (X, P) be a complete H-locally convex space, let $T \in Q_P(X)$ be an operator for which T^0 exists and let T be normal operator. Then

$$\overline{co}\,\sigma(Q,T) = \overline{co}\,V(X,P,T).$$

PROOF: First, by Theorem 3.7, $\overline{co} \sigma(Q,T) \subset \overline{co} V(X,P,T)$. Conversely, since T is normal, $T^0T = TT^0$, all operators \widetilde{T}_{α} are normal, too. Thus, in Hilbert spaces \widetilde{X}_{α} we have

$$co\,\sigma(\widetilde{T}_{\alpha}) = \overline{V(\widetilde{X}_{\alpha}, \|\cdot\|_{\alpha}, \widetilde{T}_{\alpha})} = V(B(\widetilde{X}_{\alpha}), \|\cdot\|_{\alpha}, \widetilde{T}_{\alpha}), \quad \alpha \in \Delta$$

Let us take the union for all $\alpha \in \Delta$, then (2.1) implies

$$V(Q_P(X), \widehat{P}, T) = \bigcup \{ V(B(\widetilde{X}_{\alpha}), \| \cdot \|_{\alpha}, \widetilde{T}_{\alpha}), \alpha \in \Delta \} = \bigcup \{ co \, \sigma(\widetilde{T}_{\alpha}), \alpha \in \Delta \} \subset co \, \bigcup \{ \sigma(\widetilde{T}_{\alpha}), \alpha \in \Delta \} = co \, \sigma(Q, T).$$

By Theorem 2.1

$$\overline{V(X,P,T)} = \overline{V(Q_P(X),\hat{P},T)} \subset \overline{co}\,\sigma(Q,T).$$

Corollary 3.11. Let (X, P) be a complete H-locally convex space and $T \in Q_P(X)$ an operator such that T^0 exists and let T be normal. When P is a calibration such that \widehat{P} is directed then

$$\overline{co}\,\sigma(Q,T) = \overline{V(X,P,T)}.$$

Let us denote by $d(\lambda, M)$ the distance between λ and the set M in the complex plane. Then

E. Kramar

Theorem 3.12. Let (X, P) be a complete H-locally convex space, let $T \in Q_P(X)$ and $\lambda \notin V(X, P, T)$. Then $(T - \lambda I)^{-1} \in B_P(X)$ and

(3.1)
$$||(T - \lambda I)^{-1}||_P \le (d(\lambda, \overline{V(X, P, T)}))^{-1}.$$

PROOF: One may suppose $\lambda = 0$. Let $0 \notin \overline{V(X, P, T)}$, then by Theorem 3.7, $0 \in \rho(Q, T)$ and by Proposition 3.1, $0 \in \rho(\widetilde{T}_{\alpha})$ for each $\alpha \in \Delta$. Thus

$$\|\widetilde{T}_{\alpha}^{-1}x_{\alpha}\|_{\alpha} \le \|\widetilde{T}_{\alpha}^{-1}\|_{\alpha}\|x_{\alpha}\|_{\alpha}, \quad x_{\alpha} \in \widetilde{X}_{\alpha}$$

for each $\alpha \in \Delta$ and then it is easy to see that $p_{\alpha}(T^{-1}x) \leq \|\widetilde{T}_{\alpha}^{-1}\|_{\alpha}p_{\alpha}(x)$, for all $x \in X$ and $\alpha \in \Delta$. Hence

(3.2)
$$q_{\alpha}(T^{-1}) \leq \|\widetilde{T}_{\alpha}^{-1}\|_{\alpha}, \quad \alpha \in \Delta.$$

For each $\alpha \in \Delta$ the inclusion in (2.2) implies $0 \notin V(\widetilde{X}_{\alpha}, \|\cdot\|_{\alpha}, \widetilde{T}_{\alpha})$. By an analogous inequality as is (3.1) for Hilbert space ([4]) and again by the inclusion in (2.2) we obtain

$$\|\widetilde{T}_{\alpha}^{-1}\|_{\alpha} \leq (d(0, \overline{V(\widetilde{X}_{\alpha}, \|\cdot\|_{\alpha}, \widetilde{T}_{\alpha})}))^{-1} \leq (d(0, \bigcup\{\overline{V(\widetilde{X}_{\alpha}, \|\cdot\|_{\alpha}, \widetilde{T}_{\alpha})}, \alpha \in \Delta\}))^{-1}$$
$$\leq (d(0, \bigcup\{V(\widetilde{X}_{\alpha}, \|\cdot\|_{\alpha}, \widetilde{T}_{\alpha}), \alpha \in \Delta\}))^{-1} = (d(0, \overline{V(X, P, T)}))^{-1}.$$

By (3.2) we obtain $q_{\alpha}(T^{-1}) \leq (d(0, \overline{V(X, P, T)}))^{-1}$ for each $\alpha \in \Delta$. Thus, $T^{-1} \in B_P(X)$ and $\|T^{-1}\|_P \leq (d(0, \overline{V(X, P, T)}))^{-1}$.

In a separated complex locally convex space (X, P), an operator $T \in Q_P(X)$ is hermitian if $V(X, P, T) \subset \mathcal{R}$ ([3]). This definition is consistent with the notion of a hermitian operator in an H-locally convex space ([6]), namely

Proposition 3.13. In a complex H-locally convex space for an operator $T \in Q_P(X)$ the following two relations are equivalent:

- (i) $V(X, P, T) \subset \mathcal{R}$,
- (ii) $(Tx, y)_{\alpha} = (x, Ty)_{\alpha}, \ \alpha \in \Delta, \ x, y \in X.$

PROOF: If $V(X, P, T) \subset \mathcal{R}$, then $V(\widetilde{X}_{\alpha}, \|\cdot\|_{\alpha}, \widetilde{T}_{\alpha}) \subset \mathcal{R}$ for all $\alpha \in \Delta$, consequently $\widetilde{T}_{\alpha}^* = \widetilde{T}_{\alpha}$. Thus, $(Tx, y)_{\alpha} = (x, Ty)_{\alpha}, \alpha \in \Delta, x, y \in X$. Conversely, when the last equalities are valid, they hold for all \widetilde{T}_{α} , too, hence $V(\widetilde{X}_{\alpha}, \|\cdot\|_{\alpha}, \widetilde{T}_{\alpha}) \subset \mathcal{R}$ for all $\alpha \in \Delta$, thus, $V(X, P, T) \subset \mathcal{R}$.

Definition 3.14. Let (X, P) be a locally convex space and $T \in Q_P(X)$.

(i) When $\sigma(Q, T)$ is a bounded set, we define the spectral radius of T by the relation

$$r(Q,T) = \sup\{|\lambda| : \lambda \in \sigma(Q,T)\}.$$

(ii) When V(X, P, T) is bounded, we define the numerical radius of T by the relation

$$v(Q,T) = \sup\{|\lambda| : \lambda \in V(X,P,T)\}.$$

By $r(\tilde{T}_{\alpha})$ and $v(\tilde{T}_{\alpha})$ we denote the spectral radius and the numerical radius of \tilde{T}_{α} in \tilde{X}_{α} , respectively. By the above definition the following equality follows

(3.3)
$$v(Q,T) = \sup\{v(\widetilde{T}_{\alpha}), \alpha \in \Delta\}.$$

It was proved in [3] that for $T \in Q_P(X)$ the numerical range is bounded if and only if $T \in B_P(X)$.

Proposition 3.15. For $T \in B_P(X)$ in a locally convex space (X, P) the following holds:

$$r(Q,T) \le v(Q,T) \le ||T||_P.$$

PROOF: The first inequality follows by Theorem 3.7. Let us prove the second one. Clearly, $v(\tilde{T}_{\alpha}) \leq \|\tilde{T}_{\alpha}\|_{\alpha} = q_a(T) \leq \|T\|_P$ for each $\alpha \in \Delta$, hence taking the supremum we obtain $v(Q,T) \leq \|T\|_P$.

In [3] it was also proved that when a hermitian operator $T \in Q_P(X)$ has a bounded spectrum, then $T \in B_P(X)$. For an H-locally convex space one can somewhat generalize this result.

Theorem 3.16. Let (X, P) be a complete H-locally convex space and $T \in Q_P(X)$ an operator for which T^0 exists, let T be normal and let $r(Q,T) < \infty$. Then the following two assertions hold:

(i)
$$T \in B_P(X)$$
,
(ii) $r(Q,T) = v(Q,T) = ||T||_P$.

PROOF: Using the equality $(\widetilde{T}_{\alpha})^* = (\widetilde{T}^0)_{\alpha}$ ([5]), normality of T implies the normality of all $\widetilde{T}_{\alpha}, \alpha \in \Delta$. Consequently

$$q_{\alpha}(T) = \|T_{\alpha}\|_{\alpha} = \|\widetilde{T}_{\alpha}\|_{\alpha} = r(\widetilde{T}_{\alpha}) \le r(Q, T), \quad \alpha \in \Delta$$

Thus, $\sup q_{\alpha}(T) < \infty$, which implies $T \in B_P(X)$ and the inequality $||T||_P \leq r(Q,T)$. The reverse inequality follows by Proposition 3.15.

Corollary 3.17. Let (X, P) be as above and let $S, T \in B_P(X)$ be such that their adjoint exist and they are normal, then the following inequality holds

$$v(Q, ST) \le v(Q, S)v(Q, T).$$

The numerical radius in locally convex spaces has the same properties as the one in normed spaces.

Proposition 3.18. Let (X, P) be a locally convex space. Then the numerical radius is a norm on $B_P(X)$, equivalent to $\|\cdot\|_P$. Precisely, the following inequalities hold:

$$e^{-1} \cdot ||T||_P \le v(Q,T) \le ||T||_P, \quad T \in B_P(X).$$

PROOF: Clearly, by the definition $v(Q,T) \geq 0$ and $v(Q,\lambda T) = |\lambda|v(Q,T)$. If v(Q,T) = 0, by (3.3), $v(\widetilde{T}_{\alpha}) = 0$ and hence $\widetilde{T}_{\alpha} = 0$, for all $\alpha \in \Delta$, so T = 0. For $S, T \in Q_P(X)$ and all $\alpha \in \Delta$ the following inequality holds:

$$v(\widetilde{S_{\alpha}} + \widetilde{T}_{\alpha}) \le v(\widetilde{S_{\alpha}}) + v(\widetilde{T}_{\alpha}).$$

Then by (3.3) also $v(Q, S + T) \leq v(Q, S) + v(Q, T)$. For any $\alpha \in \Delta$ we have the inequality $e^{-1} \cdot \|\widetilde{T}_{\alpha}\| \leq v(\widetilde{T}_{\alpha})$ ([1]). Then such an inequality holds also for the supremum, thus, the left inequality in the above proposition is proved.

For the case of an H-locally convex space we can generalize more inequalities from the Hilbert space.

Proposition 3.19. Let (X, P) be an H-locally convex space and $S, T \in B_P(X)$. Then the following inequalities hold:

- (i) $\frac{1}{2} \|T\|_P \le v(Q,T) \le \|T\|_P$,
- (ii) $v(Q, ST) \le 4v(Q, S)v(Q, T)$,
- (iii) $v(Q, T^n) \le v(Q, T)^n, n \in N.$

PROOF: (i) Since \widetilde{X}_{α} are Hilbert spaces, we have $\|\widetilde{T}_{\alpha}\|_{\alpha} \leq 2v(\widetilde{T}_{\alpha})$, for all $\alpha \in \Delta$. Taking the supremum we obtain $\|T\|_{P} \leq 2v(Q,T)$. The second inequality is known by the previous proposition. The estimate (ii) follows by (i). For each $\alpha \in \Delta$ the Berger inequality $v(\widetilde{T}_{\alpha}^{n}) \leq v(\widetilde{T}_{\alpha})^{n}$, $n \in N$, holds and taking the supremum we obtain (iii).

Finally, we give a result concerning Q-equivalent calibrations. Two calibrations P and P' on a locally convex space X are Q-equivalent (denoted by $P \simeq P'$) if each seminorm $p \in P$ is equivalent to some $p' \in P'$ and vice versa (see [5]). It is easy to see that $P \simeq P'$ implies $Q_P(X) = Q_{P'}(X)$.

Theorem 3.20. Let (X, P) be a complex complete locally convex space and $T \in Q_P(X)$ such that $\sigma(Q, T)$ is bounded. Then

$$\overline{co}\,\sigma(Q,T) = \bigcap\{\overline{co}\,V(X,P',T): P'\simeq P\}.$$

PROOF: Since $\sigma(Q, T)$ is independent of calibrations, by Theorem 3.7, $\overline{co} \sigma(Q, T) \subset \overline{co} V(X, P', T)$, for all $P' \simeq P$, hence $\overline{co} \sigma(Q, T) \subset \cap \{\overline{co} V(X, P', T) : P' \simeq P\}$. Let us prove the opposite inclusion. Since $\overline{co} \sigma(Q, T)$ is compact and convex it is an intersection of the open circular discs containing $\overline{\sigma(Q, T)}$. Take any such an open disc $S = \{\lambda : |\lambda - \lambda_0| < r'\}$. Clearly $r(Q, T - \lambda_0 I) < r'$. Let us choose a number ε such that $0 < \varepsilon < r' - r(Q, T - \lambda_0 I)$. Then by [3] there exists a calibration $P' = \{p'_{\alpha}, \alpha \in \Delta\}$ on X which has the same indexing as P such that for each $\alpha \in \Delta$ the corresponding norm $\|\cdot\|'_{\alpha}$ on \widetilde{X}_{α} is equivalent to $\|\cdot\|_{\alpha}$, such that $T - \lambda_0 I \in B_{P'}(X)$ and such that

$$r(Q, T - \lambda_0 I) \le \|T - \lambda_0 I\|_{P'} \le r(Q, T - \lambda_0 I) + \varepsilon.$$

It is obvious that P' and P are Q-equivalent. Suppose that $\lambda \in \overline{V(X, P', T)}$ then $\lambda - \lambda_0 \in \overline{V(X, P', T - \lambda_0 I)}$ and by Proposition 3.15 we have

$$|\lambda - \lambda_0| \le ||T - \lambda_0 I||_{P'} < r',$$

which means that S contains $\overline{V(X, P', T)}$ and then also $\overline{co} V(X, P', T)$. Thus, the set $\cap \{\overline{co} V(X, P', T) : P' \simeq P\}$ is contained in every circular disc that contains $\overline{\sigma(Q, T)}$ and the opposite inclusion is proved.

References

- Bonsal F.F., Duncan J., Numerical range of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Note Series 2, Cambridge, 1971.
- [2] _____, Numerical ranges II, London Math. Soc. Lecture Note Series 10, Cambridge, 1973.
- [3] Giles J.R., Joseph G., Koehler D.O., Sims B., On numerical ranges of operators on locally convex spaces, J. Austral. Math. Soc. 20 (1975), 468–482.
- [4] Hildebrandt S., Über den numerischen Werterbereich eines Operators, Math. Annalen 163 (1966), 230–247.
- [5] Joseph G.A., Boundedness and completeness in locally convex spaces and algebras, J. Austral. Math. Soc. 24 (1977), 50–63.
- Kramar E., Locally convex topological vector spaces with Hilbertian seminorms, Rev. Roum. Math. pures et Appl. 26 (1981), 55–62.
- [7] _____, Linear operators in H-locally convex spaces, ibid. 26 (1981), 63–77.
- [8] Precupanu T., Sur les produits scalaires dans des espaces vectoriels topologiques, ibid. 13 (1968), 83–93.

Department of Mathematics, University of Ljubljana, Jadranska 19, 61000 Ljubljana, Slovenia

(Received December 18, 1991)