# Bernoulli sequences and Borel measurability in ( 0,1 ) 

Petr Veselý


#### Abstract

The necessary and sufficient condition for a function $f:(0,1) \rightarrow[0,1]$ to be Borel measurable (given by Theorem stated below) provides a technique to prove (in Corollary 2) the existence of a Borel measurable map $H:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1\}^{\mathbb{N}}$ such that $\mathcal{L}\left(H\left(\mathbf{X}^{p}\right)\right)=$ $\mathcal{L}\left(\mathbf{X}^{1 / 2}\right)$ holds for each $p \in(0,1)$, where $\mathbf{X}^{p}=\left(X_{1}^{p}, X_{2}^{p}, \ldots\right)$ denotes Bernoulli sequence of random variables with $P\left[X_{i}^{p}=1\right]=p$.


Keywords: Borel measurable function, Bernoulli sequence of random variables, Strong law of large numbers

Classification: 60A10, 28A20

## 1. The main result and notation.

Consider a sequence $X_{n}, n \in \mathbb{N}$, of mutually independent random variables assuming the values 1 and 0 with probabilities $p$ and $1-p$, where $p \in(0,1)$. Denote the distribution of the random variable

$$
Y=\sum_{n=1}^{\infty} 2^{-n} X_{n}
$$

by $\lambda_{p}$. Identifying Borel spaces $(0,1)$ and $\{0,1\}^{\mathbb{N}}$ by the irrational dyadic expansion map we can also define these measures by

$$
\lambda_{p}\left(\left\{x \in\{0,1\}^{\mathbb{N}} \mid x_{1}=a_{1}, \ldots, x_{n}=a_{n}\right\}\right)=\prod_{i=1}^{n} p^{a_{i}}(1-p)^{1-a_{i}}, n \in \mathbb{N}, a \in\{0,1\}^{n}
$$

or equivalently by

$$
\lambda_{p}=\bigotimes_{1}^{\infty}(1-p) \varepsilon_{0}+p \varepsilon_{1}
$$

where $\varepsilon_{x}$ denotes the atomic measure supported by $\{x\}$.
Our main result is

[^0]Theorem. For each function $f:(0,1) \rightarrow[0,1]$, the following assertions are equivalent:
(a) $f$ is a Borel measurable;
(b) there exists a Borel set $B \subseteq(0,1)$ such that $f(p)=\lambda_{p}(B)$ for all $p \in(0,1)$.

Corollaries to this result related to Bernoulli sequences of random variables are stated and proved in the part 3 of the present paper.

The following terminology and notation will be used in the sequel: Let $x \in$ $(0,1)$. By the dyadic expansion of $x$ we mean the sequence $\left(x_{1}, x_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}$ with infinitely many $x_{i}$ 's zeros such that $x=\sum_{i=1}^{\infty} x_{i} 2^{-i}$. In this case we write $x=\left(x_{1}, x_{2}, \ldots\right)$. Put
$\mathcal{I}(n, a)=\left\{x \in(0,1) \mid x_{1}=a_{1}, \ldots, x_{n}=a_{n}\right\}$ for $n \in \mathbb{N}, a=\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}$
and denote by $\mathcal{K}$ the algebra generated by the sets $\mathcal{I}(n, a)$. Note that the algebra $\mathcal{K}$ consists exactly of finite (possibly empty) unions of the sets $\mathcal{I}(n, a)$ and generates Borel $\sigma$-algebra $\mathcal{B}(0,1)$. Putting

$$
\Lambda(B)=\left\{x \in(0,1) \left\lvert\, \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} x_{i} \in B\right.\right\}, \quad B \subseteq(0,1)
$$

it follows easily by Strong law of large numbers that
(1) $\quad \Lambda(B) \in \mathcal{B}(0,1)$ and $\lambda_{p}(\Lambda(B))=I_{B}(p)$ for each $B \in \mathcal{B}(0,1)$ and $p \in(0,1)$.

Finally, let us agree that if $\mathcal{T}_{1}, \mathcal{T}_{2}$ are two decompositions of a set $\mathcal{S}$ and if for all $T_{1} \in \mathcal{T}_{1}, T_{2} \in \mathcal{T}_{2}$ either $T_{1} \cap T_{2}=\emptyset$ or $T_{1} \subseteq T_{2}$, then we shall write $\mathcal{T}_{1} \preccurlyeq \mathcal{T}_{2}$.

## 2. Proof of Theorem.

Lemma 1. Let $p \in(0,1)$ and $K \in \mathcal{K}$. Then $\left\{\lambda_{p}(D) ; K \supseteq D \in \mathcal{K}\right\}$ is a dense set in the interval $\left[0, \lambda_{p}(K)\right]$.

The assertion follows easily by the inequality

$$
\lambda_{p}(\mathcal{I}(m, a)) \leq \max \left\{p^{m},(1-p)^{m}\right\}, \quad m \in \mathbb{N}, a \in\{0,1\}^{m}
$$

using the fact that for almost all $m \in \mathbb{N}$ there exists a set $A_{m} \subseteq\{0,1\}^{m}$ such that $\left\{\mathcal{I}(m, a) ; a \in A_{m}\right\}$ forms a decomposition of $K$.

Lemma 2. Consider $K \in \mathcal{K}$, a Borel set $V \subseteq[a, b] \subset(0,1)$ and a continuous function $\gamma:[0,1] \rightarrow[0,1]$ such that $\gamma(p) \leq \lambda_{p}(K)$ for all $p \in V$. Then to each $\varepsilon>0$ there is a finite Borel measurable decomposition $\left\{A_{1}, \ldots, A_{t}\right\}$ of $V$ and the sets $K \supseteq F_{i} \in \mathcal{K}$ such that

$$
0 \leq \gamma(p)-\lambda_{p}\left(F_{i}\right) \leq \varepsilon
$$

holds for each $p \in A_{i}$ and $1 \leq i \leq t$.

Proof: Since $p \mapsto \lambda_{p}(K)$ is a continuous function defined on $(0,1)$ we get that $\gamma(p) \leq \lambda_{p}(K)$ holds for all $p \in \bar{V}$. Fix a $p \in \bar{V}$. Lemma 1 provides a set $K \supseteq D_{p} \in \mathcal{K}$ such that

$$
0 \leq \gamma(p)-\lambda_{p}\left(D_{p}\right) \leq \frac{1}{2} \varepsilon
$$

Let $V_{p}$ be an open neighbourhood of $p$ such that

$$
0 \leq \gamma(q)-\lambda_{q}\left(D_{p}\right) \leq \varepsilon \quad \text { for all } \quad q \in V_{p}
$$

Now, let $V_{p_{1}}, \ldots, V_{p_{t}}$ be a covering of the compact set $\bar{V}$. It is easy to see that the sets

$$
\begin{gathered}
A_{1}=V_{p_{1}} \cap V, A_{2}=V_{p_{2}} \cap A_{1}^{c} \cap V, \ldots, A_{t}=V_{p_{t}} \cap A_{1}^{c} \cap \cdots \cap A_{t-1}^{c} \cap V \\
F_{1}=D_{p_{1}}, \ldots, F_{t}=D_{p_{t}}
\end{gathered}
$$

provide the desired construction.
Lemma 3. Let $[a, b] \subset(0,1)$ and let $f:[a, b] \rightarrow[0,1]$ be a Borel measurable function. Then there exists a Borel set $B \subseteq(0,1)$ such that $f(p)=\lambda_{p}(B)$ for all $p \in[a, b]$.

Proof: Consider a nondecreasing sequence of simple functions $0 \leq f_{n} \leq 1$ such that $f_{n} \rightarrow f$ uniformly on $[a, b]$. Denote by $\left\{U_{n, 1}, \ldots, U_{n, r(n)}\right\}$ a Borel measurable decomposition of $[a, b]$ such that

$$
f_{n}(p)=\sum_{j=1}^{r(n)} c_{n, j} I_{U_{n, j}}(p), \quad p \in[a, b]
$$

where $c_{n, j} \in[0,1]$. By induction, we shall construct sequences

$$
\mathcal{W}_{n}=\left\{W_{n, 1}, \ldots, W_{n, \alpha(n)}\right\} \subset \mathcal{B}(0,1), \mathcal{H}_{n}=\left\{H_{n, 1}, \ldots, H_{n, \alpha(n)}\right\} \subset \mathcal{K}
$$

such that for all $n \geq 0$ :
(i) $\mathcal{W}_{n}$ is a Borel measurable decomposition of the interval $[a, b]$;
(ii) $\mathcal{W}_{n} \preccurlyeq \mathcal{W}_{n-1} \preccurlyeq \cdots \preccurlyeq \mathcal{W}_{0}$;
(iii) if $W_{0, i_{0}} \in \mathcal{W}_{0}, W_{1, i_{1}} \in \mathcal{W}_{1}, \ldots, W_{n, i_{n}} \in \mathcal{W}_{n}$ and $W_{0, i_{0}} \supseteq W_{1, i_{1}} \supseteq \cdots \supseteq$ $W_{n, i_{n}}$, then the sets $H_{0, i_{0}}, H_{1, i_{1}}, \ldots, H_{n, i_{n}}$ are pairwise disjoint;
(iv) the inequality $0 \leq f_{n}(p)-\hat{f}_{n}(p) \leq n^{-1}$ holds for all $p \in[a, b]$, where

$$
\hat{f}_{n}(p)=\sum_{k=0}^{n} \sum_{i=1}^{\alpha(n)} \lambda_{p}\left(H_{k, i}\right) I_{W_{k, i}}(p)
$$

Put $f_{0} \equiv 0, \hat{f}_{0} \equiv 0, \mathcal{W}_{0}=\{[a, b]\}$ and $\mathcal{H}_{0}=\{\emptyset\}$. Assume that $\mathcal{W}_{1}, \mathcal{H}_{1}, \ldots$, $\mathcal{W}_{m-1}, \mathcal{H}_{m-1}$ have been already constructed such that (i), (ii), (iii), (iv) hold for some $m \in \mathbb{N}$ and $n=0,1, \ldots, m-1$. Choose a finite Borel measurable decomposition $\mathcal{V}_{m}=\left\{V_{m, 1}, \ldots, V_{m, s(m)}\right\}$ of $[a, b]$ such that $\mathcal{V}_{m} \preccurlyeq\left\{U_{m, 1}, \ldots, U_{m, r(m)}\right\}$ and $\mathcal{V}_{m} \preccurlyeq \mathcal{W}_{m-1}$. Fix a $V_{m, g} \in \mathcal{V}_{m}$ and let $U_{m, j} \in\left\{U_{m, 1}, \ldots, U_{m, r(m)}\right\}$ be the unique set for which $V_{m, g} \subseteq U_{m, j}$ holds. By (ii), there exists an uniquely determined sequence of positive integers $i_{0}, i_{1}, \ldots, i_{m-1}$ such that $[a, b]=W_{0, i_{0}} \supseteq W_{1, i_{1}} \supseteq \cdots \supseteq$ $W_{m-1, i_{m-1}} \supseteq V_{m, g}$. It follows easily from (iii) and (iv) that

$$
\begin{aligned}
0 & \leq f_{m-1}(p)-\hat{f}_{m-1}(p) \leq f_{m}(p)-\hat{f}_{m-1}(p)=c_{m, j}-\sum_{k=0}^{m-1} \lambda_{p}\left(H_{k, i_{k}}\right) \\
& =c_{m, j}-\lambda_{p}\left(\bigcup_{k=0}^{m-1} H_{k, i_{k}}\right) \leq 1, \quad p \in V_{m, g}
\end{aligned}
$$

Since $c_{m, j}-\sum_{k=0}^{m-1} \lambda_{p}\left(H_{k, i_{k}}\right)$ is a polynomial (because $H_{k, i_{k}} \in \mathcal{K}$ ), there exists a continuous function $\gamma:[0,1] \rightarrow[0,1]$ such that

$$
\gamma(p)=f_{m}(p)-\hat{f}_{m-1}(p) \leq \lambda_{p}\left(K_{g}\right), \quad p \in V_{m, g}
$$

where

$$
K_{g}=(0,1)-\bigcup_{k=0}^{m-1} H_{k, i_{k}}
$$

Thus, for each $1 \leq g \leq s(m)$ there exists by Lemma 2 a finite Borel measurable decomposition $\left\{A_{1}^{m}, g, \ldots, A_{t(g)}^{m, g}\right\}$ of $V_{m, g}$ and the sets $F_{1}^{m, g}, \ldots, F_{t(g)}^{m, g} \in \mathcal{K}$ such that $F_{1}^{m, g} \subseteq K_{g}, \ldots, F_{t(g)}^{m, g} \subseteq K_{g}$ and

$$
\begin{equation*}
0 \leq f_{m}(p)-\hat{f}_{m-1}(p)-\lambda_{p}\left(F_{i}^{m, g}\right) \leq m^{-1}, \quad p \in A_{i}^{m, g}, 1 \leq i \leq t(g) \tag{2}
\end{equation*}
$$

Putting

$$
\begin{aligned}
\mathcal{W}_{m} & =\left\{A_{i}^{m, g} \mid g=1, \ldots, s(m) ; i=1, \ldots, t(g)\right\}, \\
\mathcal{H}_{m} & =\left\{F_{i}^{m, g} \mid g=1, \ldots, s(m) ; i=1, \ldots, t(g)\right\},
\end{aligned}
$$

it is easy to verify (i), (ii), (iii), (iv) for $\mathcal{W}_{1}, \mathcal{H}_{1}, \ldots, \mathcal{W}_{m}, \mathcal{H}_{m}$ using (2).
For each $n \in \mathbb{N}$ put

$$
C_{n}=\bigcup_{k=1}^{n} \bigcup_{i=1}^{\alpha(k)}\left(H_{k, i} \cap \Lambda\left(W_{k, i}\right)\right)
$$

By (i), (ii), (iii) and by (1) we have $\lambda_{p}\left(C_{n}\right)=\hat{f}_{n}(p)$ for all $p \in[a, b]$ and, consequently, $\lambda_{p}\left(C_{n}\right) \rightarrow f(p)$ uniformly on $[a, b]$ by (iv). Since $C_{n} \subseteq C_{n+1}$ for all $n \in \mathbb{N}$, we may put

$$
B=\bigcup_{n=1}^{\infty} C_{n}
$$

to get that $f(p)=\lambda_{p}(B)$ for all $p \in[a, b]$.
Now, to prove our Theorem it is sufficient to verify the implication $(\mathrm{a}) \Rightarrow(\mathrm{b})$ : Let $f:(0,1) \rightarrow[0,1]$ be a Borel measurable function. By Lemma 3, there exists a Borel set $B_{n} \subseteq(0,1)$ such that $f(p)=\lambda_{p}\left(B_{n}\right)$ for all $p \in\left[\frac{1}{n}, \frac{n-1}{n}\right]$ and all $n \geq 3$. Thus, it is sufficient to put

$$
B=\bigcup_{n=3}^{\infty}\left(B_{n} \cap \Lambda\left(J_{n}\right)\right)
$$

where

$$
J_{3}=\left[\frac{1}{3}, \frac{2}{3}\right], \quad J_{n}=\left[\frac{1}{n}, \frac{1}{n-1}\right) \cup\left(\frac{n-2}{n-1}, \frac{n-1}{n}\right], \quad n \geq 4
$$

As the contrary implication is standard, the proof is completed.

## 3. Corollaries.

In the sequel, $F \circ \nu$ denotes the image measure of a measure $\nu$ w.r.t. a measurable $\operatorname{map} F$, i.e. $(F \circ \nu)(A)=\nu\left(F^{-1}(A)\right)$ for all measurable sets $A$. Also, if necessary, we identify for each $p \in(0,1)$ the probability space $\left((0,1), \mathcal{B}(0,1), \lambda_{p}\right)$ with the product $\left(\{0,1\}^{\mathbb{N}}, \mathcal{B}\left(\{0,1\}^{\mathbb{N}}\right), \mu_{p}=\bigotimes_{1}^{\infty}(1-p) \varepsilon_{0}+p \varepsilon_{1}\right)$. The identification is obviously "good enough" for all our purposes, as the measure $\mu_{p}$ is the image of $\lambda_{p}$ w.r.t. the dyadic expansion map $x \rightarrow\left(x_{1}, x_{2}, \ldots\right)$ which has the measurable inverse defined almost surely w.r.t. $\mu_{p}$.
Corollary 1. For each Borel measurable function $f:(0,1) \rightarrow(0,1)$ there exists a Borel measurable function $H_{f}:(0,1) \rightarrow(0,1)$ such that $H_{f} \circ \lambda_{p}=\lambda_{f(p)}$ for all $p \in(0,1)$.
Proof: By Theorem there exists a Borel set $B_{f} \subseteq\{0,1\}^{\mathbb{N}}$ such that $f(p)=\lambda_{p}\left(B_{f}\right)$ for all $p \in(0,1)$. Let $\left\{i_{n, k}\right\}_{k=1}^{\infty} \subseteq \mathbb{N}, n \in \mathbb{N}$, are increasing sequences such that $i_{n, k}$ are distinct integers for all $(n, k) \in \mathbb{N}^{2}$. Define a mapping $\rho_{n}:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1\}^{\mathbb{N}}$ for each $n \in \mathbb{N}$ by

$$
\rho_{n}(x)=\left(x_{i_{n, 1}}, x_{i_{n, 2}}, \ldots\right), \quad x \in\{0,1\}^{\mathbb{N}}
$$

and put $B_{f}^{n}=\rho_{n}^{-1}\left(B_{f}\right)$. The indicator functions $I_{B_{f}^{1}}, I_{B_{f}^{2}}, \ldots$ are i.i.d. random variables w.r.t. each probability measure $\lambda_{p}$ such that $\lambda_{p}\left[I_{B_{f}^{n}}=1\right]=\lambda_{p}\left(B_{f}^{n}\right)=$ $\lambda_{p}\left(B_{f}\right)=f(p)$ holds. Thus, the function $H_{f}$ defined by

$$
H_{f}(x)=\left(I_{B_{f}^{1}}(x), I_{B_{f}^{2}}(x), \ldots\right), \quad x \in\{0,1\}^{\mathbb{N}}
$$

has the desired property.
Corollary 2. For each $\alpha \in(0,1)$ there exists a Borel measurable function

$$
H_{\alpha}:(0,1) \rightarrow(0,1)
$$

such that $H_{\alpha} \circ \lambda_{p}=\lambda_{\alpha}$ holds for all $p \in(0,1)$.
Recall that a probability measure $\nu$ on $((0,1), \mathcal{B}(0,1))$ is called symmetric, if

$$
\nu(A)=\nu\left(\left\{x \in(0,1) \mid\left(x_{\pi(1)}, \ldots, x_{\pi(n)}, x_{n+1}, x_{n+2}, \ldots\right) \in A\right\}\right)
$$

holds for each $A \in \mathcal{B}(0,1)$, for each $n \in \mathbb{N}$ and for each permutation $\pi:\{1, \ldots, n\} \rightarrow$ $\{1, \ldots, n\}$. Equivalently, a measure $\nu$ on $((0,1), \mathcal{B}(0,1))$ is symmetric iff $\nu$ is the distribution of a random variable

$$
Y=\sum_{n=1}^{\infty} 2^{-n} X_{n}
$$

where $\left\{X_{n}\right\}_{n=1}^{\infty}$ is a sequence of exchangeable $0-1$ random variables. For example, each measure $\lambda_{p}, p \in(0,1)$, is symmetric.
Corollary 3. For each Borel probability measure $\mu$ on $\mathbb{R}$ there exists a Borel measurable function $H_{\mu}:(0,1) \rightarrow \mathbb{R}$ such that $H_{\mu} \circ \nu=\mu$ holds for all symmetric probability measures $\nu$ defined on $((0,1), \mathcal{B}(0,1))$.

Proof: It is easy to see that it suffices to treat the case $\mu=\lambda_{1 / 2}$. A well-known de Finetti's result says that for each symmetric probability measure $\nu$ on $((0,1)$, $\mathcal{B}(0,1))$ there exists a probability measure $Q$ on $((0,1), \mathcal{B}(0,1))$ such that

$$
\nu(A)=\int_{0}^{1} \lambda_{p}(A) Q(d p)
$$

holds for all $A \in \mathcal{B}(0,1)$ (see e.g. [1, p. 225]). Now, the assertion follows easily applying Corollary 2 with $\alpha=\frac{1}{2}$.

## References

[1] Feller W., An Introduction to Probability Theory and its Applications. Volume II., John Wiley \& Sons, Inc., New York, London and Sydney, 1966.
[2] Štěpán J., Personal communication, 1992.
Charles University, Department of Probability and Statistics, Sokolovská 83, 18600 Praha 8, Czech Republic


[^0]:    I am very grateful to Professor J. Stěpán for his assistance. The Corollaries 1, 2 and 3 belong to him (see [2])

