# Bernoulli sequences and Borel measurability in (0, 1)

Petr Veselý

Abstract. The necessary and sufficient condition for a function  $f : (0, 1) \to [0, 1]$  to be Borel measurable (given by Theorem stated below) provides a technique to prove (in Corollary 2) the existence of a Borel measurable map  $H : \{0, 1\}^{\mathbb{N}} \to \{0, 1\}^{\mathbb{N}}$  such that  $\mathcal{L}(H(\mathbf{X}^p)) = \mathcal{L}(\mathbf{X}^{1/2})$  holds for each  $p \in (0, 1)$ , where  $\mathbf{X}^p = (X_1^p, X_2^p, \dots)$  denotes Bernoulli sequence of random variables with  $P[X_i^p = 1] = p$ .

 $Keywords\colon$  Borel measurable function, Bernoulli sequence of random variables, Strong law of large numbers

Classification: 60A10, 28A20

## 1. The main result and notation.

Consider a sequence  $X_n$ ,  $n \in \mathbb{N}$ , of mutually independent random variables assuming the values 1 and 0 with probabilities p and 1-p, where  $p \in (0,1)$ . Denote the distribution of the random variable

$$Y = \sum_{n=1}^{\infty} 2^{-n} X_n$$

by  $\lambda_p$ . Identifying Borel spaces (0, 1) and  $\{0, 1\}^{\mathbb{N}}$  by the irrational dyadic expansion map we can also define these measures by

$$\lambda_p\left(\{x \in \{0,1\}^{\mathbb{N}} \mid x_1 = a_1, \dots, x_n = a_n\}\right) = \prod_{i=1}^n p^{a_i} (1-p)^{1-a_i}, \ n \in \mathbb{N}, \ a \in \{0,1\}^n$$

or equivalently by

$$\lambda_p = \bigotimes_{1}^{\infty} (1-p)\varepsilon_0 + p\varepsilon_1 \,,$$

where  $\varepsilon_x$  denotes the atomic measure supported by  $\{x\}$ .

Our main result is

I am very grateful to Professor J. Štěpán for his assistance. The Corollaries 1, 2 and 3 belong to him (see [2])

### P. Veselý

**Theorem.** For each function  $f: (0,1) \rightarrow [0,1]$ , the following assertions are equivalent:

- (a) f is a Borel measurable;
- (b) there exists a Borel set  $B \subseteq (0,1)$  such that  $f(p) = \lambda_p(B)$  for all  $p \in (0,1)$ .

Corollaries to this result related to Bernoulli sequences of random variables are stated and proved in the part 3 of the present paper.

The following terminology and notation will be used in the sequel: Let  $x \in (0,1)$ . By the dyadic expansion of x we mean the sequence  $(x_1, x_2, \ldots) \in \{0,1\}^{\mathbb{N}}$  with infinitely many  $x_i$ 's zeros such that  $x = \sum_{i=1}^{\infty} x_i 2^{-i}$ . In this case we write  $x = (x_1, x_2, \ldots)$ . Put

$$\mathcal{I}(n,a) = \{ x \in (0,1) \mid x_1 = a_1, \dots, x_n = a_n \} \text{ for } n \in \mathbb{N}, \ a = (a_1, \dots, a_n) \in \{0,1\}^n$$

and denote by  $\mathcal{K}$  the algebra generated by the sets  $\mathcal{I}(n, a)$ . Note that the algebra  $\mathcal{K}$  consists exactly of finite (possibly empty) unions of the sets  $\mathcal{I}(n, a)$  and generates Borel  $\sigma$ -algebra  $\mathcal{B}(0, 1)$ . Putting

$$\Lambda(B) = \{ x \in (0,1) \mid \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} x_i \in B \}, \qquad B \subseteq (0,1),$$

it follows easily by Strong law of large numbers that

(1) 
$$\Lambda(B) \in \mathcal{B}(0,1)$$
 and  $\lambda_p(\Lambda(B)) = I_B(p)$  for each  $B \in \mathcal{B}(0,1)$  and  $p \in (0,1)$ .

Finally, let us agree that if  $\mathcal{T}_1$ ,  $\mathcal{T}_2$  are two decompositions of a set  $\mathcal{S}$  and if for all  $T_1 \in \mathcal{T}_1$ ,  $T_2 \in \mathcal{T}_2$  either  $T_1 \cap T_2 = \emptyset$  or  $T_1 \subseteq T_2$ , then we shall write  $\mathcal{T}_1 \preccurlyeq \mathcal{T}_2$ .

# 2. Proof of Theorem.

**Lemma 1.** Let  $p \in (0, 1)$  and  $K \in \mathcal{K}$ . Then  $\{\lambda_p(D); K \supseteq D \in \mathcal{K}\}$  is a dense set in the interval  $[0, \lambda_p(K)]$ .

The assertion follows easily by the inequality

$$\lambda_p(\mathcal{I}(m, a)) \le \max\{p^m, (1-p)^m\}, \quad m \in \mathbb{N}, \ a \in \{0, 1\}^m$$

using the fact that for almost all  $m \in \mathbb{N}$  there exists a set  $A_m \subseteq \{0,1\}^m$  such that  $\{\mathcal{I}(m,a); a \in A_m\}$  forms a decomposition of K.

**Lemma 2.** Consider  $K \in \mathcal{K}$ , a Borel set  $V \subseteq [a, b] \subset (0, 1)$  and a continuous function  $\gamma: [0, 1] \to [0, 1]$  such that  $\gamma(p) \leq \lambda_p(K)$  for all  $p \in V$ . Then to each  $\varepsilon > 0$  there is a finite Borel measurable decomposition  $\{A_1, \ldots, A_t\}$  of V and the sets  $K \supseteq F_i \in \mathcal{K}$  such that

$$0 \le \gamma(p) - \lambda_p(F_i) \le \varepsilon$$

holds for each  $p \in A_i$  and  $1 \le i \le t$ .

PROOF: Since  $p \mapsto \lambda_p(K)$  is a continuous function defined on (0, 1) we get that  $\gamma(p) \leq \lambda_p(K)$  holds for all  $p \in \overline{V}$ . Fix a  $p \in \overline{V}$ . Lemma 1 provides a set  $K \supseteq D_p \in \mathcal{K}$  such that

$$0 \le \gamma(p) - \lambda_p(D_p) \le \frac{1}{2}\varepsilon$$
.

Let  $V_p$  be an open neighbourhood of p such that

 $0 \le \gamma(q) - \lambda_q(D_p) \le \varepsilon$  for all  $q \in V_p$ .

Now, let  $V_{p_1}, \ldots, V_{p_t}$  be a covering of the compact set  $\overline{V}$ . It is easy to see that the sets

$$A_{1} = V_{p_{1}} \cap V, \ A_{2} = V_{p_{2}} \cap A_{1}^{c} \cap V, \ \dots, \ A_{t} = V_{p_{t}} \cap A_{1}^{c} \cap \dots \cap A_{t-1}^{c} \cap V,$$
$$F_{1} = D_{p_{1}}, \dots, \ F_{t} = D_{p_{t}}$$

provide the desired construction.

**Lemma 3.** Let  $[a,b] \subset (0,1)$  and let  $f: [a,b] \to [0,1]$  be a Borel measurable function. Then there exists a Borel set  $B \subseteq (0,1)$  such that  $f(p) = \lambda_p(B)$  for all  $p \in [a,b]$ .

PROOF: Consider a nondecreasing sequence of simple functions  $0 \leq f_n \leq 1$  such that  $f_n \to f$  uniformly on [a, b]. Denote by  $\{U_{n,1}, \ldots, U_{n,r(n)}\}$  a Borel measurable decomposition of [a, b] such that

$$f_n(p) = \sum_{j=1}^{r(n)} c_{n,j} I_{U_{n,j}}(p), \qquad p \in [a, b],$$

where  $c_{n,j} \in [0,1]$ . By induction, we shall construct sequences

$$\mathcal{W}_n = \{W_{n,1}, \ldots, W_{n,\alpha(n)}\} \subset \mathcal{B}(0,1), \ \mathcal{H}_n = \{H_{n,1}, \ldots, H_{n,\alpha(n)}\} \subset \mathcal{K},$$

such that for all  $n \ge 0$ :

- (i)  $\mathcal{W}_n$  is a Borel measurable decomposition of the interval [a, b];
- (ii)  $\mathcal{W}_n \preccurlyeq \mathcal{W}_{n-1} \preccurlyeq \cdots \preccurlyeq \mathcal{W}_0;$
- (iii) if  $W_{0,i_0} \in \mathcal{W}_0, W_{1,i_1} \in \mathcal{W}_1, \ldots, W_{n,i_n} \in \mathcal{W}_n$  and  $W_{0,i_0} \supseteq W_{1,i_1} \supseteq \cdots \supseteq W_{n,i_n}$ , then the sets  $H_{0,i_0}, H_{1,i_1}, \ldots, H_{n,i_n}$  are pairwise disjoint;
- (iv) the inequality  $0 \le f_n(p) \hat{f}_n(p) \le n^{-1}$  holds for all  $p \in [a, b]$ , where

$$\hat{f}_n(p) = \sum_{k=0}^n \sum_{i=1}^{\alpha(n)} \lambda_p(H_{k,i}) I_{W_{k,i}}(p)$$

#### P. Veselý

Put  $f_0 \equiv 0$ ,  $\hat{f}_0 \equiv 0$ ,  $\mathcal{W}_0 = \{[a, b]\}$  and  $\mathcal{H}_0 = \{\emptyset\}$ . Assume that  $\mathcal{W}_1, \mathcal{H}_1, \ldots, \mathcal{W}_{m-1}, \mathcal{H}_{m-1}$  have been already constructed such that (i), (ii), (iii), (iv) hold for some  $m \in \mathbb{N}$  and  $n = 0, 1, \ldots, m-1$ . Choose a finite Borel measurable decomposition  $\mathcal{V}_m = \{V_{m,1}, \ldots, V_{m,s(m)}\}$  of [a, b] such that  $\mathcal{V}_m \preccurlyeq \{U_{m,1}, \ldots, U_{m,r(m)}\}$  and  $\mathcal{V}_m \preccurlyeq \mathcal{W}_{m-1}$ . Fix a  $V_{m,g} \in \mathcal{V}_m$  and let  $U_{m,j} \in \{U_{m,1}, \ldots, U_{m,r(m)}\}$  be the unique set for which  $V_{m,g} \subseteq U_{m,j}$  holds. By (ii), there exists an uniquely determined sequence of positive integers  $i_0, i_1, \ldots, i_{m-1}$  such that  $[a, b] = W_{0,i_0} \supseteq W_{1,i_1} \supseteq \cdots \supseteq W_{m-1,i_{m-1}} \supseteq V_{m,g}$ . It follows easily from (iii) and (iv) that

$$0 \le f_{m-1}(p) - \hat{f}_{m-1}(p) \le f_m(p) - \hat{f}_{m-1}(p) = c_{m,j} - \sum_{k=0}^{m-1} \lambda_p(H_{k,i_k})$$
$$= c_{m,j} - \lambda_p(\bigcup_{k=0}^{m-1} H_{k,i_k}) \le 1, \qquad p \in V_{m,g}.$$

Since  $c_{m,j} - \sum_{k=0}^{m-1} \lambda_p(H_{k,i_k})$  is a polynomial (because  $H_{k,i_k} \in \mathcal{K}$ ), there exists a continuous function  $\gamma: [0,1] \to [0,1]$  such that

$$\gamma(p) = f_m(p) - \hat{f}_{m-1}(p) \le \lambda_p(K_g), \qquad p \in V_{m,g},$$

where

$$K_g = (0,1) - \bigcup_{k=0}^{m-1} H_{k,i_k}.$$

Thus, for each  $1 \leq g \leq s(m)$  there exists by Lemma 2 a finite Borel measurable decomposition  $\{A_1^{m,g}, \ldots, A_{t(g)}^{m,g}\}$  of  $V_{m,g}$  and the sets  $F_1^{m,g}, \ldots, F_{t(g)}^{m,g} \in \mathcal{K}$  such that  $F_1^{m,g} \subseteq K_g, \ldots, F_{t(g)}^{m,g} \subseteq K_g$  and

(2) 
$$0 \le f_m(p) - \hat{f}_{m-1}(p) - \lambda_p(F_i^{m,g}) \le m^{-1}, \quad p \in A_i^{m,g}, \ 1 \le i \le t(g).$$

Putting

$$\mathcal{W}_m = \{A_i^{m,g} \mid g = 1, \dots, s(m); i = 1, \dots, t(g)\},\$$
$$\mathcal{H}_m = \{F_i^{m,g} \mid g = 1, \dots, s(m); i = 1, \dots, t(g)\},\$$

it is easy to verify (i), (ii), (iii), (iv) for  $\mathcal{W}_1, \mathcal{H}_1, \ldots, \mathcal{W}_m, \mathcal{H}_m$  using (2).

For each  $n \in \mathbb{N}$  put

$$C_n = \bigcup_{k=1}^n \bigcup_{i=1}^{\alpha(k)} \left( H_{k,i} \cap \Lambda(W_{k,i}) \right)$$

By (i), (ii), (iii) and by (1) we have  $\lambda_p(C_n) = \hat{f}_n(p)$  for all  $p \in [a, b]$  and, consequently,  $\lambda_p(C_n) \to f(p)$  uniformly on [a, b] by (iv). Since  $C_n \subseteq C_{n+1}$  for all  $n \in \mathbb{N}$ , we may put

$$B = \bigcup_{n=1}^{\infty} C_n$$

to get that  $f(p) = \lambda_p(B)$  for all  $p \in [a, b]$ .

Now, to prove our Theorem it is sufficient to verify the implication  $(a) \Rightarrow (b)$ : Let  $f: (0,1) \rightarrow [0,1]$  be a Borel measurable function. By Lemma 3, there exists a Borel set  $B_n \subseteq (0,1)$  such that  $f(p) = \lambda_p(B_n)$  for all  $p \in [\frac{1}{n}, \frac{n-1}{n}]$  and all  $n \ge 3$ . Thus, it is sufficient to put

$$B = \bigcup_{n=3}^{\infty} \left( B_n \cap \Lambda(J_n) \right) \,,$$

where

$$J_3 = \begin{bmatrix} \frac{1}{3}, \frac{2}{3} \end{bmatrix}, \quad J_n = \begin{bmatrix} \frac{1}{n}, \frac{1}{n-1} \end{bmatrix} \cup \begin{bmatrix} \frac{n-2}{n-1}, \frac{n-1}{n} \end{bmatrix}, \quad n \ge 4.$$

As the contrary implication is standard, the proof is completed.

### 3. Corollaries.

In the sequel,  $F \circ \nu$  denotes the image measure of a measure  $\nu$  w.r.t. a measurable map F, i.e.  $(F \circ \nu)(A) = \nu(F^{-1}(A))$  for all measurable sets A. Also, if necessary, we identify for each  $p \in (0, 1)$  the probability space  $((0, 1), \mathcal{B}(0, 1), \lambda_p)$  with the product  $(\{0, 1\}^{\mathbb{N}}, \mathcal{B}(\{0, 1\}^{\mathbb{N}}), \mu_p = \bigotimes_{1}^{\infty} (1-p)\varepsilon_0 + p\varepsilon_1)$ . The identification is obviously "good enough" for all our purposes, as the measure  $\mu_p$  is the image of  $\lambda_p$  w.r.t. the dyadic expansion map  $x \to (x_1, x_2, \ldots)$  which has the measurable inverse defined almost surely w.r.t.  $\mu_p$ .

**Corollary 1.** For each Borel measurable function  $f: (0,1) \to (0,1)$  there exists a Borel measurable function  $H_f: (0,1) \to (0,1)$  such that  $H_f \circ \lambda_p = \lambda_{f(p)}$  for all  $p \in (0,1)$ .

PROOF: By Theorem there exists a Borel set  $B_f \subseteq \{0,1\}^{\mathbb{N}}$  such that  $f(p) = \lambda_p(B_f)$  for all  $p \in (0,1)$ . Let  $\{i_{n,k}\}_{k=1}^{\infty} \subseteq \mathbb{N}, n \in \mathbb{N}$ , are increasing sequences such that  $i_{n,k}$  are distinct integers for all  $(n,k) \in \mathbb{N}^2$ . Define a mapping  $\rho_n \colon \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$  for each  $n \in \mathbb{N}$  by

$$\rho_n(x) = (x_{i_{n,1}}, x_{i_{n,2}}, \dots), \qquad x \in \{0, 1\}^{\mathbb{N}}$$

and put  $B_f^n = \rho_n^{-1}(B_f)$ . The indicator functions  $I_{B_f^1}$ ,  $I_{B_f^2}$ , ... are i.i.d. random variables w.r.t. each probability measure  $\lambda_p$  such that  $\lambda_p[I_{B_f^n} = 1] = \lambda_p(B_f^n) = \lambda_p(B_f) = f(p)$  holds. Thus, the function  $H_f$  defined by

$$H_f(x) = (I_{B_f^1}(x), I_{B_f^2}(x), \dots), \qquad x \in \{0, 1\}^{\mathbb{N}},$$

has the desired property.

**Corollary 2.** For each  $\alpha \in (0,1)$  there exists a Borel measurable function

$$H_{\alpha}\colon (0,1)\to (0,1)$$

such that  $H_{\alpha} \circ \lambda_p = \lambda_{\alpha}$  holds for all  $p \in (0, 1)$ .

Recall that a probability measure  $\nu$  on  $((0,1), \mathcal{B}(0,1))$  is called symmetric, if

$$\nu(A) = \nu\left(\{x \in (0,1) \mid (x_{\pi(1)}, \dots, x_{\pi(n)}, x_{n+1}, x_{n+2}, \dots) \in A\}\right)$$



### P. Veselý

holds for each  $A \in \mathcal{B}(0,1)$ , for each  $n \in \mathbb{N}$  and for each permutation  $\pi: \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$ . Equivalently, a measure  $\nu$  on  $((0,1), \mathcal{B}(0,1))$  is symmetric iff  $\nu$  is the distribution of a random variable

$$Y = \sum_{n=1}^{\infty} 2^{-n} X_n \,,$$

where  $\{X_n\}_{n=1}^{\infty}$  is a sequence of exchangeable 0–1 random variables. For example, each measure  $\lambda_p$ ,  $p \in (0, 1)$ , is symmetric.

**Corollary 3.** For each Borel probability measure  $\mu$  on  $\mathbb{R}$  there exists a Borel measurable function  $H_{\mu}: (0,1) \to \mathbb{R}$  such that  $H_{\mu} \circ \nu = \mu$  holds for all symmetric probability measures  $\nu$  defined on  $((0,1), \mathcal{B}(0,1))$ .

PROOF: It is easy to see that it suffices to treat the case  $\mu = \lambda_{1/2}$ . A well-known de Finetti's result says that for each symmetric probability measure  $\nu$  on  $((0,1), \mathcal{B}(0,1))$  there exists a probability measure Q on  $((0,1), \mathcal{B}(0,1))$  such that

$$\nu(A) = \int_{0}^{1} \lambda_p(A) \ Q(dp)$$

holds for all  $A \in \mathcal{B}(0,1)$  (see e.g. [1, p. 225]). Now, the assertion follows easily applying Corollary 2 with  $\alpha = \frac{1}{2}$ .

### References

- Feller W., An Introduction to Probability Theory and its Applications. Volume II., John Wiley & Sons, Inc., New York, London and Sydney, 1966.
- [2] Stěpán J., Personal communication, 1992.

CHARLES UNIVERSITY, DEPARTMENT OF PROBABILITY AND STATISTICS, SOKOLOVSKÁ 83, 186 00 PRAHA 8, CZECH REPUBLIC

(Received September 8, 1992)