Köthe dual of Banach sequence spaces $\ell_p[X] \ (1 \le p < \infty)$ and Grothendieck space

WU CONGXIN, BU QINGYING

Abstract. In this paper, we show the representation of Köthe dual of Banach sequence spaces $\ell_p[X]$ $(1 \le p < \infty)$ and give a characterization of that the spaces $\ell_p[X]$ (1 are Grothendieck spaces.

Keywords: vector-valued sequence space; Köthe dual; GAK-space; Grothendieck space Classification: 46B16

Let X be a Banach space and X^* its topological dual, and let B_X denote the closed unit ball of X. For $1 \le p < \infty$, let

$$\ell_p(X) = \left\{ \overline{x} = (x_j) \in X^{\mathbb{N}} : \|\overline{x}\|_{\ell_p} = \left(\sum_{i=1}^{\infty} \|x_i\|^p \right)^{1/p} < \infty \right\},$$
$$\ell_p[X] = \left\{ \overline{x} = (x_j) \in X^{\mathbb{N}} : \text{ for each } f \in X^*, \ \sum_{i \ge 1} |f(x_i)|^p < \infty \right\}.$$

And for each $\overline{x} \in \ell_p[X]$, let

$$\|\overline{x}\|_{(\ell_p)} = \sup\left\{\left(\sum_{i\geq 1} |f(x_i)|^p\right)^{1/p} : f \in B_{X^*}\right\}$$

Then $(\ell_p(X), \|\cdot\|_{\ell_p})$ and $(\ell_p[X], \|\cdot\|_{(\ell_p)})$ are Banach spaces (see [1], [2], [3]). For $\overline{x} \in X^{\mathbb{N}}$, let

$$\overline{x} \ (i \le n) = (x_1, \dots, x_n, 0, 0, \dots),$$

$$\overline{x} \ (i > n) = (0, \dots, 0, x_{n+1}, x_{n+2}, \dots)$$

And let

$$\ell_p[X]_r = \{ \overline{x} \in \ell_p[X] : \lim_n \| \overline{x} \ (i > n) \|_{(\ell_p)} \} = 0.$$

If $\ell_p[X]_r = \ell_p[X]$, then $\ell_p[X]$ is said to be a GAK-space [4].

For a vector-valued sequence space S(X) from X, define its Köthe dual with respect to the dual pair (X, X^*) (see [4]) as follows:

$$S(X)^{\times} \mid_{(X,X^*)} = \left\{ \overline{f} = (f_j) \in X^{*\mathbb{N}} : \text{ for each } \overline{x} = (x_j) \in S(X), \sum_{i \ge 1} |f_i(x_i)| < \infty \right\}$$

We denote $S(X)^{\times}|_{(X,X^*)}$ by $S(X)^{\times}$ simply if the meaning is clear from the context.

^{*}The authors are supported by The Scientific Fund of China for Ph.D. instructors in Universities.

Lemma 1. For $1 \le p < \infty$, $(\ell_p[X]_r)^{\times} = \ell_p[X]^{\times}$.

PROOF: It is easy to see that $\ell_p[X]^{\times} \subseteq (\ell_p[X]_r)^{\times}$. So we only need to prove that $(\ell_p[X]_r)^{\times} \subseteq \ell_p[X]^{\times}$.

For $\overline{x} = (x_j) \in \ell_p[X]$ and $t = (t_j) \in c_0$, let $t\overline{x} = (t_j x_j)$. Then $||t\overline{x} (i > n)||_{(\ell_p)} \leq ||\overline{x}||_{(\ell_p)} \sup_{i>n} |t_i|$ implies that $t\overline{x} \in \ell_p[X]_r$. So for $\overline{f} = (f_j) \in (\ell_p[X]_r)^{\times}$, we have

$$\sum_{i\geq 1} |f_i(t_i x_i)| < \infty.$$

It follows from the fact that $t \in c_0$ was taken arbitrary that

$$\sum_{i\geq 1} |f_i(x_i)| < \infty.$$

Thus, $\overline{f} \in \ell_p[X]^{\times}$ and the proof is completed.

Lemma 2. (1) For $1 \le p < \infty$, $\ell_p[X]^{\times} \subseteq (\ell_p[X], \|\cdot\|_{(\ell_p)})^*$ and $(\ell_p[X]_r)^{\times} = (\ell_p[X]_r, \|\cdot\|_{(\ell_p)})^*$.

(2) Let $\|\cdot\|_{(\ell_p)}^{*}$ denote the dual norm of $\|\cdot\|_{(\ell_p)}$ on the dual space $(\ell_p[X], \|\cdot\|_{(\ell_p)})^*$. Then for each $\overline{x} \in \ell_p[X]$, we have

$$\|\overline{x}\|_{(\ell_p)} = \sup\{|\langle \overline{x}, \overline{f} \rangle| : \overline{f} \in \ell_p[X]^{\times}, \ \|\overline{f}\|_{(\ell_p)}^* \le 1\},\$$

where $\langle \overline{x}, \overline{f} \rangle = \sum_{i \ge 1} f_i(x_i).$

PROOF: See Theorem 2.3 in [3].

Lemma 3. Every weak^{*} unconditionally Cauchy series in X^* is weak unconditionally Cauchy series.

PROOF: See the proof of p. 49, Corollary 11 in [5].

Lemma 4. For $1 \le p < \infty$,

$$\ell_p[X^*] = \left\{ \overline{f} = (f_j) \in X^{*\mathbb{N}} : \text{ for each } x \in X, \ \sum_{i \ge 1} |f_i(x)|^p < \infty \right\}.$$

PROOF: Let

$$\Delta = \left\{ \overline{f} = (f_j) \in X^{*\mathbb{N}} : \text{ for each } x \in X, \ \sum_{i \ge 1} |f_i(x)|^p < \infty \right\}.$$

By definition, we only need to prove that $\Delta \subseteq \ell_p[X^*]$.

Let $\overline{f} \in \Delta$ and $t_j \in \ell_q(1/p + 1/q = 1)$. Then $\sum_{i \ge 1} |f_i(t_i x)| < \infty$ for each $x \in X$. So the series $\sum_j t_j f_j$ is weak^{*} unconditionally Cauchy in X^* and hence, it is weak unconditionally Cauchy by Lemma 3. That is, $\sum_{i \ge 1} |F(t_i f_i)| < \infty$ for each $F \in X^{**}$. Since (t_j) is arbitrary in ℓ_q , $\sum_{i \ge 1} |F(f_i)|^p < \infty$ and $\overline{f} = (f_j) \in \ell_p[X^*]$. The proof is completed.

 \square

Lemma 5 (the principle of local reflexivity, [6]). Let X be a normed space and Z^{**} a finite dimensional subspace of X^{**} . For $\{F_i\}_1^n \subseteq Z^{**}$, $\{f_i\}_1^n \subseteq X^*$ and $\varepsilon > 0$, there exists a linear map $T: Z^{**} \to X$ such that $||T|| \leq 1$ and

$$|f_i(TF_i) - F_i(f_i)| < \varepsilon, \quad i = 1, 2, \dots, n.$$

Proposition 6. $\ell_p[X^{**}]^{\times}|_{(X^{**},X^*)} = \ell_p[X]^{\times}|_{(X,X^*)} \ (1 \le p < \infty).$ PROOF: It is easy to see that $\ell_p[X] \subseteq \ell_p[X^{**}]$ implies that

$$\ell_p[X^{**}]^{\times} |_{(X^{**},X^*)} \subseteq \ell_p[X]^{\times} |_{(X,X^*)}$$

So we only need to prove that

$$\ell_p[X]^{\times}|_{(X,X^*)} \subseteq \ell_p[X^{**}]^{\times}|_{(X^{**},X^*)}$$

Let $\overline{f} = (f_j) \in \ell_p[X]^{\times} |_{(X,X^*)}$ and $\overline{F} = (F_j) \in \ell_p[X^{**}]$. For a fixed $n \in \mathbb{N}$, by Lemma 5, there exists a linear map $T_n : \operatorname{span} \{F_i\}_1^n \to X$ such that $||T_n|| \leq 1$ and

$$|F_i(f_i)| \le |f_i(T_n F_i)| + 1/n, \quad i = 1, 2, \dots, n.$$

Now we prove that $\{(T_nF_1, \ldots, T_nF_n, 0, 0, \ldots)\}_{n=1}^{\infty}$ is a bounded subset of $\ell_p[X]$. By Theorem 1.5 in [2], we have

$$\|(T_nF_1, \dots, T_nF_n, 0, 0, \dots)\|_{(\ell_p)} = \sup \left\{ \|\sum_{i=1}^n s_i T_nF_i\| : s = (s_j) \in B_{\ell_q} \right\} (1/p + 1/q) = 1$$

$$\leq \sup \left\{ \|T_n\|\| \sum_{i=1}^n s_i F_i\| : s \in B_{\ell_q} \right\}$$

$$\leq \sup \left\{ \|\sum_{i=1}^\infty s_i F_i\| : s \in B_{\ell_q} \right\} = \|\overline{F}\|_{(\ell_p)}.$$

So $\{(T_nF_1, \ldots, T_nF_n, 0, 0, \ldots)\}_{n=1}^{\infty}$ is a bounded subset of $\ell_p[X]$ and hence, $\sigma(\ell_p[X], \ell_p[X]^{\times}|_{(X,X^*)})$ -bounded. Thus, we have

$$\sum_{i=1}^{n} |F_i(f_i)| \le \sum_{i=1}^{n} |f_i(T_n F_i)| + 1 \le \sup_{n \ge 1} \left\{ \sum_{i=1}^{n} |f_i(T_n F_i)| \right\} + 1.$$

Because $n \in \mathbb{N}$ is arbitrary, it follows that

$$\sum_{i=1}^{\infty} |F_i(f_i)| < \infty.$$

So we prove that $\overline{f} = (f_j) \in \ell_p[X^{**}]^{\times} |_{(X^{**},X^*)}$ and this completes the proof. \Box

Proposition 7. $(\ell_p[X]^{\times}|_{(X,X^*)})^{\times}|_{(X^*,X^{**})} = \ell_p[X^{**}] \ (1 \le p < \infty).$

PROOF: By Proposition 6, it is easy to see that

$$\ell_p[X^{**}] \subseteq (\ell_p[X^{**}]^{\times} |_{(X^{**},X^{*})})^{\times} |_{(X^{*},X^{**})}$$
$$= (\ell_p[X]^{\times} |_{(X,X^{*})})^{\times} |_{(X^{*},X^{**})} .$$

So we only need to prove that

$$(\ell_p[X^{**}]^{\times}|_{(X^{**},X^*)})^{\times}|_{(X^*,X^{**})} \subseteq \ell_p[X^{**}].$$

Let $\overline{F} = (F_j) \in (\ell_p[X^{**}]^{\times} |_{(X^{**},X^*)})^{\times} |_{(X^*,X^{**})}$. Since $f \in X^*$ and $t = (t_j) \in \ell_q (1/p + 1/q = 1)$ implies that $(t_j f) \in \ell_p[X^{**}]^{\times} |_{(X^{**},X^*)}, \sum_{i\geq 1} |F_i(t_i f)| < \infty$. Thus, $\sum_{i\geq 1} |F_i(f)|^p < \infty$ and hence, $\overline{F} \in \ell_p[X^{**}]$ by Lemma 4. The proof is completed.

Theorem 8. For $1 \le p < \infty$, $\ell_p \bigotimes^{\lor} X$, the injective tensor product of ℓ_p and X, is isometrically isomorphic to the space $(\ell_p[X]_r, \|\cdot\|_{(\ell_p)})$.

PROOF: For each $u = \sum_{i=1}^{n} t^{(i)} \otimes x_i \in \ell_p \otimes X$ $(t^{(i)} \in \ell_p, x_i \in X)$, define $\overline{x}_u = (\sum_{i=1}^{n} t_1^{(i)} x_i, \sum_{i=1}^{n} t_2^{(i)} x_i, \dots)$. Then

}

$$\|\overline{x}_{u}\|_{(\ell_{p})} = \sup \left\{ |\sum_{k\geq 1} s_{k} f(\sum_{i=1}^{n} t_{k}^{(i)} x_{i})| : f \in B_{X^{*}}, \ s \in B_{\ell_{q}} \right\}$$
$$= \sup \left\{ |\sum_{i=1}^{n} f(x_{i}) \langle t^{(i)}, s \rangle| : f \in B_{X^{*}}, \ s \in B_{\ell_{q}} \right\}$$
$$= \lambda(u) \quad (\text{see } [7, \text{ p. } 223]) \quad (1/p + 1/q = 1).$$

Let $M = \sup_{1 \le i \le n} ||x_i||$. It follows from the above equality that

$$\begin{aligned} \|\overline{x}_{u} (j > k)\|_{(\ell_{p})} &= \sup \left\{ |\sum_{i=1}^{n} f(x_{i}) \langle t^{(i)}, s (j > k) \rangle | : f \in B_{X^{*}}, \ s \in B_{\ell_{q}} \right\} \\ &\leq M \sup \left\{ \sum_{i=1}^{n} |\langle t^{(i)}, s (j > k) \rangle | : s \in B_{\ell_{q}} \right\}. \end{aligned}$$

Since B_{ℓ_q} is weak^{*} compact, Theorem 6.11 in [8] implies that

$$\lim_{k} \|\overline{x}_u (j > k)\|_{(\ell_p)} = 0.$$

So, $\overline{x}_u \in \ell_p[X]_r$ and we can define a map $\varphi : \ell_p \otimes X \to \ell_p[X]_r$ by $\varphi(u) = \overline{x}_u$. It is easy to see that φ is a linear isometrically isomorphic map from $\ell_p \otimes X$ to $\ell_p[X]_r$. Next, we only need to prove that φ is surjective. For $\overline{x} = (x_1, \ldots, x_n, 0, 0, \ldots)$, if we let $u = \sum_{i=1}^n e_i \otimes x_i$ (where $e_i = (0, \ldots, 0, 1^{(i)}, 0, 0, \ldots)$), then $\overline{x} = \varphi(u)$. Notice that $\lim_n \overline{x} \ (j \leq n) = \overline{x}$ for each $\overline{x} \in \ell_p[X]_r$. So φ is surjective and the proof is completed. \Box

For two Banach spaces X and Y, let $\mathcal{B}^{\wedge}(X,Y)$, I(X,Y) and N(X,Y) denote the class of integral bilinear functionals on $X \times Y$, the class of integral operators from X to Y and the class of nuclear operators from X to Y respectively (see p. 232 and p. 170 in [7]).

Theorem 9. Let $1 \le p < \infty$ and 1/p + 1/q = 1. Then $\overline{f} = (f_j) \in \ell_p[X]^{\times} |_{(X,X^*)}$ if and only if there exist an $r = (r_j) \in \ell_1$ a bounded sequence $\{s^{(n)}\}_{n=1}^{\infty}$ of ℓ_q and a bounded sequence $\{h_n\}_{n=1}^{\infty}$ of X^* such that

$$f_i = \sum_{n \ge 1} r_n s_i^{(n)} h_n, \quad i = 1, 2, \dots$$

PROOF: Necessity. Let $\overline{f} = (f_j) \in \ell_p[X]^{\times}$. By Lemma 1 and Lemma 2, $\overline{f} \in (\ell_p[X]_r, \|\cdot\|_{(\ell_p)})^*$. So Theorem 8 implies that there is an $\psi^* \in (\ell_p \otimes X)^*$ corresponding to \overline{f} . By Definition 6 in [7, p. 232], there is an $\psi \in \mathcal{B}^{\wedge}(\ell_p, X)$ corresponding to ψ^* . Furthermore, by Corollary 12 in [7, p. 237], there exists a $T_{\psi} \in I(\ell_p, X^*)$ corresponding to ψ . Since Corollary 10 in [7, p. 235] and Theorem 6 in [7, p.248] guarantee that $I(\ell_p, X^*) = N(\ell_p, X^*)$, there are an $r = (r_j) \in \ell_1$, a bounded sequence $\{s^{(n)}\}_{n=1}^{\infty}$ of ℓ_q and a bounded sequence $\{h_n\}_{n=1}^{\infty}$ of X^* such that

$$T_{\psi}(t) = \sum_{n \ge 1} r_n \langle t, s^{(n)} \rangle h_n, \quad \text{for } t \in \ell_p.$$

Now for each $i \ge 1$ and each $x \in X$, by the above corresponding relations, we have

$$T_{\psi}(e_i)(x) = \psi(e_i, x) = \psi^*(e_i \otimes x) = \langle \varphi(e_i \otimes x), \overline{f} \rangle = f_i(x).$$

Thus

$$f_i = T_{\psi}(e_i) = \sum_{n \ge 1} r_n s_i^{(n)} h_n, \quad i = 1, 2, \dots$$

Sufficiency. Let $M = \sup_{n\geq 1} \|s^{(n)}\|_q$ and $N = \sup_{n\geq 1} \|h_n\|$. Then, for each $\overline{x} = (x_j) \in \ell_p[X]$, we have

$$\sum_{k\geq 1} |s_i^{(n)} h_n(x_i)| \le MN \|\overline{x}\|_{(\ell_p)}, \quad \text{for } n \ge 1.$$

And so

$$\sum_{i\geq 1} |f_i(x_i)| \le \sum_{n\geq 1} |r_n| \sum_{i\geq 1} |s_i^{(n)} h_n(x_i)| < \infty.$$

Therefore, $\overline{f} \in \ell_p[X]^{\times}$ and the proof is completed.

Theorem 10. For $1 , <math>(\ell_p[X]^{\times}, \|\cdot\|_{(\ell_p)}^*)$ is a GAK-space.

PROOF: Let $\overline{f} = (f_j) \in \ell_p[X]^{\times}$. Then by Theorem 9, there exist an $r = (r_j) \in \ell_1$, a bounded sequence $\{s^{(n)}\}_1^{\infty}$ of ℓ_q and a bounded sequence $\{h_n\}_1^{\infty}$ of X^* such that

$$f_i = \sum_{n \ge 1} r_n s_i^{(n)} h_n, \quad i = 1, 2, \dots$$

Without loss of generality, we can assume that $||s^{(n)}||_q \leq 1$ and $||h_n|| \leq 1$ for $n \geq 1$. Thus, for $\overline{x} \in \ell_p[X]$ with $||\overline{x}||_{(\ell_n)} \leq 1$, we have

$$\sum_{i\geq 1} |s_i^{(n)} h_n(x_i)| \le \|\overline{x}\|_{(\ell_p)} \le 1 \quad \text{for } n \ge 1.$$

 So

$$\left\{ \left(\sum_{i\geq 1} |s_i^{(n)} h_n(x_i)| \right)_{n\geq 1} : \|\overline{x}\|_{(\ell_p)} \le 1 \right\} \subseteq B_{\ell_\infty}$$

Let $\varepsilon > 0$. Then $B_{\ell_{\infty}}$ is weak^{*} compact implies that there exists an $n_0 \in \mathbb{N}$ such that

$$\sum_{n>n_0} |r_n| \sum_{i\geq 1} |s_i^{(n)} h_n(x_i)| < \varepsilon/2, \quad \overline{x} \in \ell_p[X], \quad \|\overline{x}\|_{(\ell_p)} \le 1.$$

Since B_{ℓ_n} is weakly compact set and

$$\left\{(h_n(x_i))_{i\geq 1}: \overline{x} \in \ell_p[X], \|\overline{x}\|_{(\ell_p)} \le 1, \ n \ge 1\right\} \subseteq B_{\ell_p},$$

there is a $k_0 \in \mathbb{N}$ such that for each $k > k_0$,

$$\sum_{i>k} |s_i^{(n)} h_n(x_i)| < \varepsilon/2 ||r||_1$$

for $\overline{x} \in \ell_p[X]$ with $\|\overline{x}\|_{(\ell_p)} \leq 1$ and $n = 1, 2, ..., n_0$. Thus, for each $\overline{x} \in \ell_p[X]$ with $\|\overline{x}\|_{(\ell_p)} \leq 1$ and each $k > k_0$, we have

$$\sum_{i>k} |f_i(x_i)| \le \sum_{n=1}^{n_0} |r_n| \sum_{i>k} |s_i^{(n)} h_n(x_i)| + \sum_{n>n_0} |r_n| \sum_{i>k} |s_i^{(n)} h_n(x_i)|$$

$$\le \Big(\sum_{n=1}^{\infty} |r_n| \Big) \varepsilon/2 ||r||_1 + \sum_{n>n_0} |r_n| \sum_{i\ge 1} |s_i^{(n)} h_n(x_i)| < \varepsilon.$$

So for $k > k_0$,

$$\begin{aligned} \|\overline{f} \ (j>k)\|_{(\ell_p)}^* &= \sup\left\{ |\langle \overline{x}, \overline{f} \ (j>k)\rangle| : \overline{x} \in \ell_p[X], \ \|\overline{x}\|_{(\ell_p)} \le 1 \right\} \\ &= \sup\left\{ |\sum_{i>k} f_i(x_i)| : \|\overline{x}\|_{(\ell_p)} \le 1 \right\} < \varepsilon. \end{aligned}$$

Köthe dual of Banach sequence spaces $\ell_p[X]$ $(1 \le p < \infty)$ and Grothendieck space

Therefore, $\lim_k \|\overline{f}(j>k)\|_{(\ell_p)}^* = 0$ and $\overline{f} \in (\ell_p[X], \|\cdot\|_{(\ell_p)}^*)_r$.

For 1 , by Theorem 10 and [4, Proposition 4.9], we have

(*)
$$(\ell_p[X]^{\times}|_{(X,X^*)})^{\times}|_{(X^*,X^{**})} = (\ell_p[X]^{\times}|_{(X,X^*)}, \|\cdot\|_{(\ell_p)}^*)^*$$

Now, if we let $\|\cdot\|_{(\ell_p)}^{**}$ denote the dual norm of $\|\cdot\|_{(\ell_p)}^{*}$ on the dual space $(\ell_p[X]^{\times}|_{(X,X^*)})$, $\|\cdot\|_{(\ell_p)}^*$, then by Proposition 7 and Lemma 2, the norm $\|\cdot\|_{(\ell_p)}$ on the space $\ell_p[X^{**}]$ is equal to the norm $\|\cdot\|_{(\ell_n)}^{**}$.

Similarly as the proof of Theorem 3.6 in [3], we have the following two propositions.

Proposition 11. Let $\overline{f}^{(n)} \in \ell_p[X]^{\times}$ $(1 \le p < \infty)$. Then that

$$\sigma(\ell_p[X]^{\times}|_{(X,X^*)}, (\ell_p[X]^{\times}|_{(X,X^*)})^{\times}|_{(X^*,X^{**})}) - \lim_n \overline{f}^{(n)} = 0$$

is equivalent to

- (a) $\sigma(X^*, X^{**}) \lim_{n \to \infty} f_i^{(n)} = 0$ for $i \ge 1$; and (b) $\sup_{n \ge 1} \|\overline{f}^{(n)}\|_{(\ell)}^* < \infty$

if and only if $((\ell_p[X]^{\times}|_{(X,X^*)})^{\times}|_{(X^*,X^{**})}, \|\cdot\|_{(\ell_n)}^{**})$ is a GAK-space.

Proposition 12. Let $\overline{f}^{(n)} \in (\ell_p[X]_r)^* \ (1 \le p < \infty)$. Then

$$\sigma((\ell_p[X]_r)^*, \ \ell_p[X]_r) - \lim \overline{f}^{(n)} = 0$$

if and only if $\sigma(X^*, X) - \lim_n f_i^{(n)} = 0$ for $i \ge 1$ and $\sup_{n \ge 1} \|\overline{f}^{(n)}\|_{(\ell_n)}^* < \infty$.

We say a Banach space X to be a Grothendieck space if every weak^{*} null sequence on X^{*} is weak null sequence (see [7, p. 179]). Leonard [1] has proved that $\ell_p(X)$ (1 is a Grothendieck space if and only if X is a Grothendieck space. Nowwe have

Theorem 13. For $1 . The Banach space <math>(\ell_p[X]_r, \|\cdot\|_{(\ell_p)})$ is a Grothendieck space if and only if

- (i) X is a Grothendieck space; and
- (ii) $(\ell_p[X^{**}], \|\cdot\|_{(\ell_p)})$ is a GAK-space.

PROOF: Sufficiency. By (ii), $(\ell_p[X], \|\cdot\|_{(\ell_p)})$ is a GAK-space, i.e. $\ell_p[X]_r = \ell_p[X]$. Let $\overline{f}^{(n)} \in (\ell_p[X], \|\cdot\|_{(\ell_p)})^*$ such that

$$\sigma(\ell_p[X]^*, \ell_p[X]) - \lim_n \overline{f}^{(n)} = 0.$$

271

By Proposition 12, we have

$$\sigma(X^*, X) - \lim_{n} f_i^{(n)} = 0, \quad i = 1, 2, \dots$$

and

$$\sup_{n\geq 1} \|\overline{f}^{(n)}\|_{(\ell_p)}^* < \infty$$

By (i), we have

$$\sigma(X^*, X^{**}) - \lim_{n} f_i^{(n)} = 0, \quad i = 1, 2, \dots$$

By (ii) and Propositions 2, 6, 7, the space $((\ell_p[X]^*)^{\times}|_{(X^*,X^{**})}, \|\cdot\|_{(\ell_p)})$ is a GAK-space. So Proposition 11 guarantees that

$$\sigma(\ell_p[X]^*, (\ell_p[X]^*)^{\times}) - \lim_n \overline{f}^{(n)} = 0$$

It follows from (*) that

$$\sigma(\ell_p[X]^*, \ell_p[X]^{**}) - \lim_n \overline{f}^{(n)} = 0$$

and completes the sufficiency.

Necessity. To prove (i), let $f_n \in X^*$ $(n \ge 1)$ such that $\sigma(X^*, X) - \lim_n f_n = 0.$

Let
$$\overline{f}^{(n)} = (f_n, 0, 0, \dots)$$
 for $n \ge 1$. Then $\overline{f}^{(n)} \in (\ell_p[X]_r)^*$ and
 $\sigma((\ell_p[X]_r)^*, \ell_p[X]_r) - \lim_n \overline{f}^{(n)} = 0.$

 So

$$\sigma((\ell_p[X]_r)^*, (\ell_p[X]_r)^{**}) - \lim_n \overline{f}^{(n)} = 0$$

and hence, $\sigma(X^*, X^{**}) - \lim_n f_n = 0$. (i) follows. For (ii), let $\overline{f}^{(n)} \in \ell_p[X]^{\times} |_{(X,X^*)}$ such that

$$\sigma(X^*, X^{**}) - \lim_{n} f_i^{(n)} = 0, \quad i = 1, 2, \dots$$

and

$$\sup_{n\geq 1} \|\overline{f}^{(n)}\|_{(\ell_p)}^* < \infty.$$

By Lemmas 1, 2 and Proposition 12, we have

$$\sigma((\ell_p[X]_r)^*, \ell_p[X]_r) - \lim_n \overline{f}^{(n)} = 0.$$

And hence,

$$\sigma((\ell_p[X]_r)^*, (\ell_p[X]_r)^{**}) - \lim_n \overline{f}^{(n)} = 0.$$

It follows from (*) that

$$\sigma(\ell_p[X]^{\times}|_{(X,X^*)}, (\ell_p[X]^{\times}|_{(X,X^*)})^{\times}|_{(X^*,X^{**})}) - \lim_n \overline{f}^{(n)} = 0$$

So Propositions 6, 7, 11 imply that $(\ell_p[X^{**}], \|\cdot\|_{(\ell_p)})$ is a GAK-space and (ii) follows. The proof is completed. **Corollary 14.** If $\ell_p[X]_r$ $(1 is a Grothendieck space, then <math>\ell_p[X]$ is a GAK-space.

References

- [1] Leonard I.E., Banach sequence spaces, J. Math. Anal. Appl. 54 (1976), 245-265.
- [2] Wu Congxin, Bu Qingying, The vector-valued sequence spaces $\ell_p(X)$ $(1 \le p < \infty)$ and Banach spaces not containing a copy of c_0 , A Friendly Collection of Mathematical Papers I, Jilin Univ. Press, Changchun, China, 1990, 9–16.
- [3] _____, Banach sequence spaces $\ell_p[X]$ $(1 \le p < \infty)$ and their properties, to appear.
- [4] Gupta M., Kamthan P.K., Patterson J., Duals of generalized sequence spaces, J. Math. Anal. Appl. 82 (1981), 152–168.
- [5] Diestel J., Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer-Verlag, 1984.
- [6] Simons S., Locally reflexivity and (p,q)-summing maps, Math. Ann. 198 (1972), 335–344.
- [7] Diestel J. Uhl J.J., Vector Measures, Amer. Math. Soc. Surveys 15, Providence, 1977.
- [8] Kamthan P.K., Gupta M., Sequence Spaces and Series, Lecture Notes 65, Dekker, New York, 1981.

DEPARTMENT OF MATHEMATICS, HARBIN INSTITUTE OF TECHNOLOGY, HARBIN, 150006 CHINA

(Received September 23, 1992)