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Köthe dual of Banach sequence spaces

ℓp[X] (1 ≤ p < ∞) and Grothendieck space

Wu Congxin, Bu Qingying

Abstract. In this paper, we show the representation of Köthe dual of Banach sequence
spaces ℓp[X] (1 ≤ p < ∞) and give a characterization of that the spaces ℓp[X] (1 < p <∞)
are Grothendieck spaces.
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Let X be a Banach space and X∗ its topological dual, and let BX denote the
closed unit ball of X . For 1 ≤ p <∞, let

ℓp(X) =
{

x = (xj) ∈ XN : ‖x‖ℓp =
(

∞
∑

i=1

‖xi‖
p
)1/p

<∞
}

,

ℓp[X ] =
{

x = (xj) ∈ XN : for each f ∈ X∗,
∑

i≥1

|f(xi)|
p <∞

}

.

And for each x ∈ ℓp[X ], let

‖x‖(ℓp) = sup
{(

∑

i≥1

|f(xi)|
p
)1/p

: f ∈ BX∗

}

.

Then (ℓp(X), ‖ · ‖ℓp) and (ℓp[X ], ‖ · ‖(ℓp)) are Banach spaces (see [1], [2], [3]). For

x ∈ XN, let

x (i ≤ n) = (x1, . . . , xn, 0, 0, . . . ),

x (i > n) = (0, . . . , 0, xn+1, xn+2, . . . ).

And let
ℓp[X ]r = {x ∈ ℓp[X ] : lim

n
‖x (i > n)‖(ℓp)} = 0.

If ℓp[X ]r = ℓp[X ], then ℓp[X ] is said to be a GAK-space [4].
For a vector-valued sequence space S(X) from X , define its Köthe dual with

respect to the dual pair (X,X∗) (see [4]) as follows:

S(X)× |(X,X∗)=
{

f = (fj) ∈ X∗N : for each x = (xj) ∈ S(X),
∑

i≥1

|fi(xi)| <∞
}

.

We denote S(X)× |(X,X∗) by S(X)
× simply if the meaning is clear from the context.
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Lemma 1. For 1 ≤ p <∞, (ℓp[X ]r)
× = ℓp[X ]

×.

Proof: It is easy to see that ℓp[X ]
× ⊆ (ℓp[X ]r)

×. So we only need to prove that

(ℓp[X ]r)
× ⊆ ℓp[X ]

×.
For x = (xj) ∈ ℓp[X ] and t = (tj) ∈ c0, let tx = (tjxj). Then ‖tx (i > n)‖(ℓp) ≤

‖x‖(ℓp) supi>n |ti| implies that tx ∈ ℓp[X ]r. So for f = (fj) ∈ (ℓp[X ]r)
×, we have

∑

i≥1

|fi(tixi)| <∞ .

It follows from the fact that t ∈ c0 was taken arbitrary that

∑

i≥1

|fi(xi)| <∞ .

Thus, f ∈ ℓp[X ]
× and the proof is completed. �

Lemma 2. (1) For 1 ≤ p < ∞, ℓp[X ]
× ⊆ (ℓp[X ], ‖ · ‖(ℓp))

∗ and (ℓp[X ]r)
× =

(ℓp[X ]r, ‖ · ‖(ℓp))
∗.

(2) Let ‖·‖∗(ℓp) denote the dual norm of ‖·‖(ℓp) on the dual space (ℓp[X ], ‖·‖(ℓp))
∗.

Then for each x ∈ ℓp[X ], we have

‖x‖(ℓp) = sup{|〈x, f〉| : f ∈ ℓp[X ]
×, ‖f‖∗(ℓp) ≤ 1} ,

where 〈x, f〉 =
∑

i≥1 fi(xi).

Proof: See Theorem 2.3 in [3]. �

Lemma 3. Every weak∗ unconditionally Cauchy series in X∗ is weak uncondition-

ally Cauchy series.

Proof: See the proof of p. 49, Corollary 11 in [5]. �

Lemma 4. For 1 ≤ p <∞,

ℓp[X
∗] =

{

f = (fj) ∈ X∗N : for each x ∈ X,
∑

i≥1

|fi(x)|
p <∞

}

.

Proof: Let

∆ =
{

f = (fj) ∈ X∗N : for each x ∈ X,
∑

i≥1

|fi(x)|
p <∞

}

.

By definition, we only need to prove that ∆ ⊆ ℓp[X
∗].

Let f ∈ ∆ and tj ∈ ℓq(1/p + 1/q = 1). Then
∑

i≥1 |fi(tix)| < ∞ for each

x ∈ X . So the series
∑

j tjfj is weak
∗ unconditionally Cauchy in X∗ and hence, it

is weak unconditionally Cauchy by Lemma 3. That is,
∑

i≥1 |F (tifi)| <∞ for each

F ∈ X∗∗. Since (tj) is arbitrary in ℓq,
∑

i≥1 |F (fi)|
p < ∞ and f = (fj) ∈ ℓp[X

∗].
The proof is completed. �



Köthe dual of Banach sequence spaces ℓp[X] (1 ≤ p <∞) and Grothendieck space 267

Lemma 5 (the principle of local reflexivity, [6]). Let X be a normed space and
Z∗∗ a finite dimensional subspace of X∗∗. For {Fi}

n
1 ⊆ Z∗∗, {fi}

n
1 ⊆ X∗ and ε > 0,

there exists a linear map T : Z∗∗ → X such that ‖T ‖ ≤ 1 and

|fi(TFi)− Fi(fi)| < ε, i = 1, 2, . . . , n.

Proposition 6. ℓp[X
∗∗]× |(X∗∗,X∗)= ℓp[X ]

× |(X,X∗) (1 ≤ p <∞).

Proof: It is easy to see that ℓp[X ] ⊆ ℓp[X
∗∗] implies that

ℓp[X
∗∗]× |(X∗∗,X∗)⊆ ℓp[X ]

× |(X,X∗) .

So we only need to prove that

ℓp[X ]
× |(X,X∗)⊆ ℓp[X

∗∗]× |(X∗∗,X∗) .

Let f = (fj) ∈ ℓp[X ]
× |(X,X∗) and F = (Fj) ∈ ℓp[X

∗∗]. For a fixed n ∈ N, by

Lemma 5, there exists a linear map Tn : span {Fi}
n
1 → X such that ‖Tn‖ ≤ 1 and

|Fi(fi)| ≤ |fi(TnFi)|+ 1/n, i = 1, 2, . . . , n.

Now we prove that {(TnF1, . . . , TnFn, 0, 0, . . . )}
∞
n=1 is a bounded subset of ℓp[X ].

By Theorem 1.5 in [2], we have

‖(TnF1, . . . , TnFn, 0, 0, . . . )‖(ℓp)

= sup
{

‖
n

∑

i=1

siTnFi‖ : s = (sj) ∈ Bℓq

}

(1/p+ 1/q) = 1

≤ sup
{

‖Tn‖‖

n
∑

i=1

siFi‖ : s ∈ Bℓq

}

≤ sup
{

‖

∞
∑

i=1

siFi‖ : s ∈ Bℓq

}

= ‖F‖(ℓp) .

So {(TnF1, . . . , TnFn, 0, 0, . . . )}
∞
n=1 is a bounded subset of ℓp[X ] and hence,

σ(ℓp[X ], ℓp[X ]
× |(X,X∗))-bounded. Thus, we have

n
∑

i=1

|Fi(fi)| ≤

n
∑

i=1

|fi(TnFi)|+ 1 ≤ sup
n≥1

{

n
∑

i=1

|fi(TnFi)|
}

+ 1.

Because n ∈ N is arbitrary, it follows that

∞
∑

i=1

|Fi(fi)| <∞ .

So we prove that f = (fj) ∈ ℓp[X
∗∗]× |(X∗∗,X∗) and this completes the proof. �
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Proposition 7. (ℓp[X ]
× |(X,X∗))

× |(X∗,X∗∗)= ℓp[X
∗∗] (1 ≤ p <∞).

Proof: By Proposition 6, it is easy to see that

ℓp[X
∗∗] ⊆ (ℓp[X

∗∗]× |(X∗∗,X∗))
× |(X∗,X∗∗)

= (ℓp[X ]
× |(X,X∗))

× |(X∗,X∗∗) .

So we only need to prove that

(ℓp[X
∗∗]× |(X∗∗,X∗))

× |(X∗,X∗∗)⊆ ℓp[X
∗∗] .

Let F = (Fj) ∈ (ℓp[X
∗∗]× |(X∗∗,X∗))

× |(X∗,X∗∗). Since f ∈ X∗ and t = (tj) ∈

ℓq (1/p + 1/q = 1) implies that (tjf) ∈ ℓp[X
∗∗]× |(X∗∗,X∗),

∑

i≥1 |Fi(tif)| < ∞.

Thus,
∑

i≥1 |Fi(f)|
p < ∞ and hence, F ∈ ℓp[X

∗∗] by Lemma 4. The proof is
completed. �

Theorem 8. For 1 ≤ p <∞, ℓp
∨

⊗X , the injective tensor product of ℓp and X , is
isometrically isomorphic to the space (ℓp[X ]r, ‖ · ‖(ℓp)).

Proof: For each u =
∑n
i=1 t

(i) ⊗ xi ∈ ℓp ⊗ X (t(i) ∈ ℓp, xi ∈ X), define xu =

(
∑n
i=1 t

(i)
1 xi,

∑n
i=1 t

(i)
2 xi, . . . ). Then

‖xu‖(ℓp) = sup
{

|
∑

k≥1

skf(

n
∑

i=1

t
(i)
k xi)| : f ∈ BX∗ , s ∈ Bℓq

}

= sup
{

|

n
∑

i=1

f(xi)〈t
(i), s〉| : f ∈ BX∗ , s ∈ Bℓq

}

= λ(u) (see [7, p. 223]) (1/p+ 1/q = 1).

Let M = sup1≤i≤n ‖xi‖. It follows from the above equality that

‖xu (j > k)‖(ℓp) = sup
{

|

n
∑

i=1

f(xi)〈t
(i), s (j > k)〉| : f ∈ BX∗ , s ∈ Bℓq

}

≤M sup
{

n
∑

i=1

|〈t(i), s (j > k)〉| : s ∈ Bℓq

}

.

Since Bℓq is weak
∗ compact, Theorem 6.11 in [8] implies that

lim
k

‖xu (j > k)‖(ℓp) = 0.

So, xu ∈ ℓp[X ]r and we can define a map ϕ : ℓp ⊗X → ℓp[X ]r by ϕ(u) = xu. It is
easy to see that ϕ is a linear isometrically isomorphic map from ℓp ⊗X to ℓp[X ]r.
Next, we only need to prove that ϕ is surjective.
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For x = (x1, . . . , xn, 0, 0, . . . ), if we let u =
∑n
i=1 ei ⊗ xi (where ei =

(0, . . . , 0, 1(i), 0, 0, . . . )), then x = ϕ(u). Notice that limn x (j ≤ n) = x for each
x ∈ ℓp[X ]r. So ϕ is surjective and the proof is completed. �

For two Banach spaces X and Y , let B∧(X,Y ), I(X,Y ) and N(X,Y ) denote the
class of integral bilinear functionals on X × Y , the class of integral operators from
X to Y and the class of nuclear operators from X to Y respectively (see p. 232 and
p. 170 in [7]).

Theorem 9. Let 1 ≤ p < ∞ and 1/p+ 1/q = 1. Then f = (fj) ∈ ℓp[X ]
× |(X,X∗)

if and only if there exist an r = (rj) ∈ ℓ1 a bounded sequence {s
(n)}∞n=1 of ℓq and

a bounded sequence {hn}
∞
n=1 of X

∗ such that

fi =
∑

n≥1

rns
(n)
i hn, i = 1, 2, . . . .

Proof: Necessity. Let f = (fj) ∈ ℓp[X ]
×. By Lemma 1 and Lemma 2, f ∈

(ℓp[X ]r, ‖ · ‖(ℓp))
∗. So Theorem 8 implies that there is an ψ∗ ∈ (ℓp

∨

⊗ X)∗ corre-

sponding to f . By Definition 6 in [7, p. 232], there is an ψ ∈ B∧(ℓp, X) corresponding
to ψ∗. Furthermore, by Corollary 12 in [7, p. 237], there exists a Tψ ∈ I(ℓp, X

∗)
corresponding to ψ. Since Corollary 10 in [7, p. 235] and Theorem 6 in [7, p.248]
guarantee that I(ℓp, X

∗) = N(ℓp, X
∗), there are an r = (rj) ∈ ℓ1, a bounded

sequence {s(n)}∞n=1 of ℓq and a bounded sequence {hn}
∞
n=1 of X

∗ such that

Tψ(t) =
∑

n≥1

rn〈t, s
(n)〉hn, for t ∈ ℓp.

Now for each i ≥ 1 and each x ∈ X , by the above corresponding relations, we
have

Tψ(ei)(x) = ψ(ei, x) = ψ
∗(ei ⊗ x) = 〈ϕ(ei ⊗ x), f 〉 = fi(x).

Thus

fi = Tψ(ei) =
∑

n≥1

rns
(n)
i hn, i = 1, 2, . . . .

Sufficiency. Let M = supn≥1 ‖s
(n)‖q and N = supn≥1 ‖hn‖. Then, for each

x = (xj) ∈ ℓp[X ], we have

∑

i≥1

|s
(n)
i hn(xi)| ≤MN‖x‖(ℓp), for n ≥ 1.

And so
∑

i≥1

|fi(xi)| ≤
∑

n≥1

|rn|
∑

i≥1

|s
(n)
i hn(xi)| <∞.

Therefore, f ∈ ℓp[X ]
× and the proof is completed. �
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Theorem 10. For 1 < p <∞, (ℓp[X ]
×, ‖ · ‖∗(ℓp)) is a GAK-space.

Proof: Let f = (fj) ∈ ℓp[X ]
×. Then by Theorem 9, there exist an r = (rj) ∈ ℓ1,

a bounded sequence {s(n)}∞1 of ℓq and a bounded sequence {hn}
∞
1 of X

∗ such that

fi =
∑

n≥1

rns
(n)
i hn, i = 1, 2, . . . .

Without loss of generality, we can assume that ‖s(n)‖q ≤ 1 and ‖hn‖ ≤ 1 for n ≥ 1.
Thus, for x ∈ ℓp[X ] with ‖x‖(ℓp) ≤ 1, we have

∑

i≥1

|s
(n)
i hn(xi)| ≤ ‖x‖(ℓp) ≤ 1 for n ≥ 1.

So
{(

∑

i≥1

|s
(n)
i hn(xi)|

)

n≥1
: ‖x‖(ℓp) ≤ 1

}

⊆ Bℓ∞ .

Let ε > 0. Then Bℓ∞ is weak
∗ compact implies that there exists an n0 ∈ N such

that
∑

n>n0

|rn|
∑

i≥1

|s
(n)
i hn(xi)| < ε/2, x ∈ ℓp[X ], ‖x‖(ℓp) ≤ 1.

Since Bℓp is weakly compact set and

{

(hn(xi))i≥1 : x ∈ ℓp[X ], ‖x‖(ℓp) ≤ 1, n ≥ 1
}

⊆ Bℓp ,

there is a k0 ∈ N such that for each k > k0,

∑

i>k

|s
(n)
i hn(xi)| < ε/2‖r‖1

for x ∈ ℓp[X ] with ‖x‖(ℓp) ≤ 1 and n = 1, 2, . . . , n0. Thus, for each x ∈ ℓp[X ] with

‖x‖(ℓp) ≤ 1 and each k > k0, we have

∑

i>k

|fi(xi)| ≤

n0
∑

n=1

|rn|
∑

i>k

|s
(n)
i hn(xi)|+

∑

n>n0

|rn|
∑

i>k

|s
(n)
i hn(xi)|

≤
(

∞
∑

n=1

|rn|
)

ε/2‖r‖1 +
∑

n>n0

|rn|
∑

i≥1

|s
(n)
i hn(xi)| < ε.

So for k > k0,

‖f (j > k)‖∗(ℓp) = sup
{

|〈x, f (j > k)〉| : x ∈ ℓp[X ], ‖x‖(ℓp) ≤ 1
}

= sup
{

|
∑

i>k

fi(xi)| : ‖x‖(ℓp) ≤ 1
}

< ε.
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Therefore, limk ‖f (j > k)‖∗(ℓp) = 0 and f ∈ (ℓp[X ], ‖ · ‖
∗
(ℓp)
)r. �

For 1 < p <∞, by Theorem 10 and [4, Proposition 4.9], we have

(∗) (ℓp[X ]
× |(X,X∗))

× |(X∗,X∗∗)= (ℓp[X ]
× |(X,X∗), ‖ · ‖

∗
(ℓp)
)∗ .

Now, if we let ‖·‖∗∗(ℓp) denote the dual norm of ‖·‖
∗
(ℓp)
on the dual space (ℓp[X ]

× |(X,X∗),

‖·‖∗(ℓp))
∗, then by Proposition 7 and Lemma 2, the norm ‖·‖(ℓp) on the space ℓp[X

∗∗]

is equal to the norm ‖ · ‖∗∗(ℓp).

Similarly as the proof of Theorem 3.6 in [3], we have the following two proposi-
tions.

Proposition 11. Let f
(n)

∈ ℓp[X ]
× (1 ≤ p <∞). Then that

σ(ℓp[X ]
× |(X,X∗), (ℓp[X ]

× |(X,X∗))
× |(X∗,X∗∗))− limn

f
(n)
= 0

is equivalent to

(a) σ(X∗, X∗∗)− limn f
(n)
i = 0 for i ≥ 1; and

(b) supn≥1 ‖f
(n)

‖∗(ℓp) <∞

if and only if ((ℓp[X ]
× |(X,X∗))

× |(X∗,X∗∗), ‖ · ‖
∗∗
(ℓp)
) is a GAK-space.

Proposition 12. Let f
(n)

∈ (ℓp[X ]r)
∗ (1 ≤ p <∞). Then

σ((ℓp[X ]r)
∗, ℓp[X ]r)− lim f

(n)
= 0

if and only if σ(X∗, X)− limn f
(n)
i = 0 for i ≥ 1 and supn≥1 ‖f

(n)
‖∗(ℓp) <∞.

We say a Banach spaceX to be a Grothendieck space if every weak∗ null sequence
on X∗ is weak null sequence (see [7, p. 179]). Leonard [1] has proved that ℓp(X)
(1 < p <∞) is a Grothendieck space if and only if X is a Grothendieck space. Now
we have

Theorem 13. For 1 < p < ∞. The Banach space (ℓp[X ]r, ‖ · ‖(ℓp)) is a Grothen-

dieck space if and only if

(i) X is a Grothendieck space; and
(ii) (ℓp[X

∗∗], ‖ · ‖(ℓp)) is a GAK-space.

Proof: Sufficiency. By (ii), (ℓp[X ], ‖ · ‖(ℓp)) is a GAK-space, i.e. ℓp[X ]r = ℓp[X ].

Let f
(n)

∈ (ℓp[X ], ‖ · ‖(ℓp))
∗ such that

σ(ℓp[X ]
∗, ℓp[X ])− lim

n
f
(n)
= 0.
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By Proposition 12, we have

σ(X∗, X)− lim
n
f
(n)
i = 0, i = 1, 2, . . .

and

sup
n≥1

‖f
(n)

‖∗(ℓp) <∞.

By (i), we have

σ(X∗, X∗∗)− lim
n
f
(n)
i = 0, i = 1, 2, . . . .

By (ii) and Propositions 2, 6, 7, the space ((ℓp[X ]
∗)× |(X∗,X∗∗), ‖ · ‖(ℓp)) is a GAK-

space. So Proposition 11 guarantees that

σ(ℓp[X ]
∗, (ℓp[X ]

∗)×)− lim
n
f
(n)
= 0.

It follows from (∗) that

σ(ℓp[X ]
∗, ℓp[X ]

∗∗)− lim
n
f
(n)
= 0.

and completes the sufficiency.

Necessity. To prove (i), let fn ∈ X∗ (n ≥ 1) such that

σ(X∗, X)− lim
n
fn = 0.

Let f
(n)
= (fn, 0, 0, . . . ) for n ≥ 1. Then f

(n)
∈ (ℓp[X ]r)

∗ and

σ((ℓp[X ]r)
∗, ℓp[X ]r)− lim

n
f
(n)
= 0.

So

σ((ℓp[X ]r)
∗, (ℓp[X ]r)

∗∗)− lim
n
f
(n)
= 0

and hence, σ(X∗, X∗∗)− limn fn = 0. (i) follows.

For (ii), let f
(n)

∈ ℓp[X ]
× |(X,X∗) such that

σ(X∗, X∗∗)− lim
n
f
(n)
i = 0, i = 1, 2, . . .

and

sup
n≥1

‖f
(n)

‖∗(ℓp) <∞.

By Lemmas 1, 2 and Proposition 12, we have

σ((ℓp[X ]r)
∗, ℓp[X ]r)− lim

n
f
(n)
= 0.

And hence,

σ((ℓp[X ]r)
∗, (ℓp[X ]r)

∗∗)− lim
n
f
(n)
= 0.

It follows from (∗) that

σ(ℓp[X ]
× |(X,X∗), (ℓp[X ]

× |(X,X∗))
× |(X∗,X∗∗))− limn

f
(n)
= 0.

So Propositions 6, 7, 11 imply that (ℓp[X
∗∗], ‖·‖(ℓp)) is a GAK-space and (ii) follows.

The proof is completed. �
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Corollary 14. If ℓp[X ]r (1 < p < ∞) is a Grothendieck space, then ℓp[X ] is
a GAK-space.
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