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On the conditional intensity of a random measure

PIERRE JACOB, PAULO EDUARDO OLIVEIRA™

Abstract. We prove the existence of the conditional intensity of a random measure that
is absolutely continuous with respect to its mean; when there exists an LP-intensity,
p > 1, the conditional intensity is obtained at the same time almost surely and in the
mean.
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1. Introduction

Let X be a locally compact Hausdorff space with a countable topological basis,
and d a distance such that the space (X, d) is Polish. Further, we denote by B
the ring of relatively compact Borel subsets of X', and by M the space of Borel
non negative measures that are finite on B, that is, the space of Radon measures,
endowed with the vague topology. A random measure £ is a measurable function
defined on a probability space (Q, F,P) taking values on M endowed with the
Borel o-algebra associated with the vague topology. Finally, if B € B, we denote
by B¢ the random measure on B induced by &: (BE)(A) = £(A N B), for every
AebB.

Take a sequence {II,}, of B-measurable partitions of X such that, for every
C € B and n > 1, the number of elements of the set {I € II,, : INC # 0} is
finite, and maxjcyy, diam (/) — 0 as n — oco. Further, suppose that II, 1 is
a refinement of II,,, for every n € N.

Let K € T =|J;2; II,, be such that E((K)) < co. For every n > 1 define

G(K)= Y EEDY),

Iell,NK

where I¢ represents the complementary set of I. In [6], it is shown that ¢, (K)
converges almost surely and in mean to ((K), where ¢ is a random measure, when
¢ is a simple point process with finite second order moment. Moreover, Papangelou
[6], [7] has given conditions for ¢ to be almost surely diffuse and independent of
the choice of the sequence of partitions. Kallenberg extended these results with
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a proof which enables a more accurate study of the limit random measure ¢, [2].
In the book [4, p. 160], it is remarked that this property may be generalized to
any discrete random measure. In fact, the proofs depend essentially on the fact
that the random measure £ is discrete, as the following property is fundamental
in that proof:

P{ &\ J) =0[I°¢}
P{{(I\ J) = 0[I¢}

with P{{(I\ J) =01} >0 a.s. on {£(I\ J) =0}.

In this paper we propose a quite different proof of the above mentioned con-
vergences adapted to the case of a random measure almost surely absolutely
continuous with respect to its mean measure (which excludes most discrete point
processes!). In fact, to prove the almost sure convergence, we explicitly use Kallen-
berg’s condition of absolute continuity: let p > 1 and || - ||, be the norm of
LP(Q, F,P), and define the set function |[{||, by

l€lp(r) = tim S e

Iell,NK

Vigez,cr, P{|J€} =

for every K € T (see [3] or [4, p. 23]). Suppose that, for every K € B, ||{||p(K) <
oo. If we put p = E¢ then, £ < p a.s. and ||{]|p is a measure verifying ||£||, =
|Xpllp = 1X [, where X = 4.

However, to prove the mean convergence, we follow an argument which is close
to the proof of Theorem 1 in [7]. In what regards the mean convergence our result
is somewhat weaker than the result proved by Papangelou [7], as the assumption
of almost sure absolute continuity with respect to the mean measure implies the
absolute continuity of the Campbell measure with respect to p®P on the product
o-field which is stronger than the absolute continuity imposed by Papangelou in
his theorem.

The results obtained are essentially convergence theorems, as there is no con-
struction on our reasoning. Nevertheless, if £ < p a.s. and p is diffuse, it is
known that the conditional intensity measure is the same as the original random
measure £. This is already known in the more general case of £ being a.s. diffuse,

cf. [8].
2. Mean convergence

(a) Let K € B be fixed. The restriction ug of ppto By ={Be€B: BC K} is
a finite measure. Without loss of generality we may suppose that ug (K) = 1 in or-
der to enable us to use martingale theory. For example, if Qg = {w € Q: & < p}
and w € g, the sequence

o () )
Hn )‘I%ﬂ[( Bea) "7t



On the conditional intensity of a random measure

converges i x-almost everywhere on K to X (w). As remarked by [4, p. 24], the
sequence { Xy} converges then to X P ® pp-almost everywhere on 2 x K, so we
may suppose X measurable on (Q x K, F ® By).

For every I e TN K and t € I, put

:/ X(,t)dP, A€ a(I%),
A

where o(1¢¢) is the o-algebra induced by the restriction of  to I¢. As the space M
endowed with the vague topology is Polish, o(I¢¢) admits a countable base. From
a theorem of Doob ([5, p. 64]), there exists a 0(I°¢) ® Bg-measurable function
u! (w,t) on Q x K such that, for every t € K

dvl
1 t

L) = —=.
u' (1) P

As E(X|I°) = u!(-,-), we derive that

> EX[I9I
Iell,NK
is an F ® B -measurable function.

Define
B §an
= 2 E(E(&(I))'I 5)1“’

Iell,NK

then

/|Zn—Yn|dP®,Uk:

_ §I) e c _
—/KE > E(E(g(l))Ug)]II— > EX[I9)I| du=

Iell,NK Iell,NK
/KI@M 5 (geqry — X107 |1 v <
<o X o 5 (& (|5t €)=
-/ T E} mery Y|l =

Iell,NK

£)
“ " I — X| dp= [ |Xp— X|dP ® .
/K Iel,NK E((1)) ! . / | | Q WK
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We may now apply Scheffé’s lemma ([1, p. 184]). In fact,
o P ® ug is a finite measure;
XndP®,uK=/XdP®,uK=E(§(K)) < 00;
* Xp2>0,neN, X >0;
e X, — X P ® pg-almost everywhere.
Consequently
Jim / \Zny — Y| dP @ pigc = 0.
n—oo
(b) For every x € K, let In(z) be the element of I, that contains z and
on(z) = 0(&(A), A € I(z)). The sequence of o-algebras {on(x)}, for fixed z, is
increasing and o(z) = o (Un2; on(z)) = c({z}€) = 0(£(A), z ¢ A). In fact, if
AeBandx ¢ A, {(A) =limy—oo E(ANIE(T)).
On the other hand, E({(K)) = / E(X) du < o0, so E(X) < 0o pg-almost
K
everywhere. Put Ko = {z € K : E(X(:,2)) < oo}. If x € K, we have

E(X(,2)[[n6) — E(X(,2){z}%€) as..
The set D = {(w,z) : Yy (w,z) does not converge} is F ® By-measurable, and,
for every x € K, the set Dy = {w: Y, (w, x) does not converge} is F-measurable.
As P(Dy) = 0 for z € Ky, and pu(K \ Kg) = 0, it follows P ® ug (D) = 0. We
may then suppose that Y = E(X|{-}%) is F ® Bg-measurable and Y, — Y
P ® pupc-almost everywhere. Also Y, >0, Y > 0 and

L[5
KIeH

| B du= / E(X) dy = B(§(K)).
K K

B(XI1°6) T du= [ B(X) du = B(E()

Applying Scheffé’s lemma as above, it follows / |V, = Y| dP ® ug — 0.
(c) From (a) and (b)

BlG.() - [ BOXI{)Y du‘—E /. zn—mu}s [ 17| P — 0.

Taking account of the F ® B -measurability of E(X|{-}°¢€), we may define a ran-
dom measure on K by

Vesni ((B) = /B E(X|{}°) du,

which is easily extended to the whole space X.

Remark that if p is diffuse, then X, is o({z}¢)-measurable, from what follows
that X is o({«}¢)-measurable, so the conditional intensity measure coincides with
the original random measure &.
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3. Almost sure convergence
(a) Using the same notations as in Section 2, put, for every m € N

Up = inf X, Vin = sup Xp,
n>m

n>m

and suppose that ||€]|,(K) < co. Let ¢ > 0 be such that % + % = 1, then, from

[4, 2.19, p. 24], "
(sup/ X E )

sup/X w) dp < oo

So, for almost every w

which means that the martingale { X, (w)} is bounded in L 1+ (K, Bk, ptic)- Then,
from [5, p. 55]

Isup Xn ()l 1 < (g +1)sup [ Xn()ly 1,

from which follows

1+l 1
E</ suanqdu) (q—l—l (sup/X B u)<oo.
K n
Then

(1) /sup Xn dP ® pg < oo,
n

from which we derive, using the dominated convergence theorem,
/Vm—UmdP®;LK—>0.

We remark that it is the condition (1) that is essential for the rest of the proof.

(b) The proof follows now the proof of a theorem by Hunt ([6, p. 66]): for
n>m

> Bwarons Y B(gsirdns Y Balron

Iell,NK Iell,NK Iell,NK

Analogously to (b) of Section 2, noting that, according to (a), Up(x) and Vi, (z)
are, for px-almost all z, P-integrable, it follows that P ® up-almost everywhere

S EUalIOL — E(Unl{}%)
Iell,NK

S BVl — EVil{}%)

Iell,NK
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as n — 00. So, P ® pi-almost everywhere
E(Un|{-}°¢) <liminf Z, <limsup Z, < E(Vy|{-}°¢).

From Fatou’s lemma,
[ Bl du < timint G, (50)
K

On the other hand, as V, is P ® pg-integrable, E(V;,|{-}°€) is almost surely
1 g -integrable, so from Fatou-Lebesgue’s theorem

limsup (,(K) < /K E(Vip|{-}°€) du, P-as..

Finally, E (/ E (Vin, — Un|{-}%¢) du) = /Vm —Up, dP ® ug, for every m € N,
k

so it follows
liminf ¢, (K) = limsup {,(K) P-as..
4. Conclusion

(a) The simple procedure used is unfortunately specific to the case £ < E&
a.s. and the following counterexample shows that it is not applicable to point
processes: put £ = J, where u is a uniform random variable on [0, 1], then

Xn — 0 P ® p-almost everywhere, /Xn dP @ = 1 for every n € N and

/suanndP®,u:oo,so

> EEI€) =1 Pas..

Iell,

(b) We remark that the result does not change if we take the o-algebras
o(&(J): Jell,, J#1I) in place of ¢(I¢€). In fact, it would be interesting to
know if this substitution is possible when £ is a point process.

Acknowledgement. The authors would like to express their gratitude to Pro-
fessor F. Papangelou for his useful remarks, especially in the case of the measure
1 being diffuse and in what regards the mean convergence.

REFERENCES

1] Billingsley P., Probability and Measure, Wiley, 1979.
2] Kallenberg O., On conditional intensities of point processes, Z. Wahrsch. Verw. Geb. 41
(1978), 205-220.

[
[

3] , Lp intensities of random measures, stochastic processes and their applications,
Stoch. Proc. and Appl. 9 (1979), 155-161.
[4] , Random Measures, Academic Press, 1983.




On the conditional intensity of a random measure 109

[5] Kopp P.E, Martingales and Stochastic Integrals, Cambridge University Press, 1984.

[6] Papangelou F., The conditional intensity of general point processes and an application to
line processes, Z. Wahrsch. Verw. Geb. 28 (1974), 207-226.

, Point processes on spaces of flats and other homogeneous spaces, Math. Proc.
Cambridge Phil. Soc. 80 (1976), 297-314.

[8] Varsei A., Ph.D. thesis, 1978.

[7]

UNIV. SCIENCES ET TECHNIQUES DE LILLE, UFR MATH. PURES ET APPLIQUEES, BAT. M2,
59655 VILLENEUVE D’AscqQ, FRANCE

DEP. MATEMATICA, UNIV. COIMBRA, APARTADO 3008, 3000 COIMBRA, PORTUGAL

(Received June 2,1993)



