
Comment.Math.Univ.Carolin. 35,1 (1994)155–167 155

Exploiting the structure of conflict graphs
in high level synthesis

Klaus Jansen

Abstract. In this paper we analyze the computational complexity of a processor opti-
mization problem. Given operations with interval times in a branching flow graph, the
problem is to find an assignment of the operations to a minimum number of processors.
We analyze the complexity of this assignment problem for flow graphs with a constant
number of program traces and a constant number of processors.

Keywords: independent set, chromatic number, high level synthesis

Classification: 68R10, 05C15

1. Introduction
High level synthesis is the generation of a register transfer level description from

a behaviour description. In one step of the synthesis, operations in a scheduled
flow graph are assigned to modules or processors. To do this, a conflict graph
for the operations is generated. Then, the assignment problem of the operations
to a minimum number of processors is equivalent to the coloring problem of
the conflict graph. The coloring problem is NP-complete for general graphs [3].
As a result, heuristics are usually used to perform the coloring [8], [11]. The
cited heuristics are intended for general graphs, but the conflict graphs are not
necessarily general graphs.
Therefore, the first goal is to get a complete classification of the generated

graphs. Using a model of a flow graph with independent branches, some generated
graph classes are known [4], [5]. In this paper, we consider a more general case
with interdependence between the branches. Then, in general, all undirected
graphs can be generated, but usually we have further restrictions on the problem
instances with

• a constant number of execution traces (a trace is a set of operations exe-
cuted in dependence to the control of the branches),

• a constant number of processors,
• one execution step assigned to each operation.

After the analysis of the structure of the corresponding conflict graphs, we
consider two optimization problems restricted to the corresponding graph class.
The first problem is to compute a maximum compatible set of operations, and
the second relates with the assignment of the operations to a minimum number
of processors.

156 K. Jansen

The paper is organized as follows. Section 2 gives a collection of new graph
theoretical results for the independent set and the coloring problem for restricted
graph classes. These results are used later for the processor optimization problem.
In Section 3 we give a classification of the conflict graphs which correspond to
flow graphs with a constant number of execution traces. Then, we consider the
optimization problems mentioned above for the classified graph classes.

2. Graph theoretical results
Given a graph G = (V,E), a set U ⊂ V is independent iff each pair v, v′ ∈ U ,

v �= v′ is not connected by an edge. The size of a maximum independent set
of a graph G is called the independence number of G and is denoted by α(G).
A k-coloring of a graph G is a mapping f : V → {1, . . . , k} with f(v) �= f(v′) for
each pair v, v′ ∈ V , v �= v′ with {v, v′} ∈ E. The minimum number of colors to
color a graph is called the chromatic number of G and is denoted by χ(G).
Interval graphs are graphs that can be modeled as a set of intervals on the

real line, with an edge between two vertices if their corresponding intervals share
a point. A graph G = (V,E) is complete, if each pair of vertices v, v′ ∈ V , v �= v′
is connected by an edge {v, v′} ∈ E. Let G1 = (V1, E1) and G2 = (V2, E2) be
graphs. Their union ∪(G1, G2) and their intersection ∩(G1, G2) is defined by:

∪(G1, G2) = (V1 ∪ V2, E1 ∪ E2),
∩(G1, G2) = (V1 ∩ V2, E1 ∩ E2).

For a sequence of graphs G1 = (V1, E1), . . . , Gm = (Vm, Em) the graph G =
(V,E) = ∪(G1, . . . , Gm) is obtained by iterative union of the graphs G1, . . . , Gm.
A path decomposition, see [9], of a graph G = (V,E) is a pair (X, I) with

a family X = {Vi|i ∈ I} of subsets of V and a linear list I = [1, . . . ,m] such that
• ∪i∈IVi = V ,
• for each {x, y} ∈ E there is an i ∈ I with {x, y} ⊂ Vi,
• for each x ∈ V , the set Ix = {i ∈ I | x ∈ Vi} forms a subinterval of I.

The pathwidth of a path decomposition is defined as maxi∈I |Vi| − 1 and the
pathwidth of a graph G is the minimum pathwidth over all path decompositions
of G. We note that a path decomposition for a graph with constant pathwidth
can be found in linear time [2]. For these graphs the following result is proved
in [1].

Proposition 2.1. Let G = (V,E) be a graph with constant pathwidth. Then,
the problems of finding a maximum independent set and a minimum coloring are
solvable in linear time O(|V |). �

2.1 Polynomial results
In this subsection, we give a collection of polynomial results for the independent

set and coloring problem on graphs constructed by an intersection of two special
graphs.

Exploiting the structure of conflict graphs in high level synthesis 157

Theorem 2.2. Let � be a constant and let G be an intersection of an interval
graph and a union of � complete graphs. Then, the independence number α(G)
can be found in polynomial time.

Proof: First, we may assume that each vertex x ∈ V is assigned an interval
Ix ⊂ [1, 2 · |V |] such that we have an edge between vertices x, y, x �= y in the
interval graph, if and only if Ix ∩ Iy �= ∅. Let Gi be the subgraph of G induced
by the vertices {x ∈ V |i ∈ Ix}. Since the second graph is given as a union of
� complete graphs, the independence number α(Gi) ≤ �. Hence, the number of
independent sets in each graph Gi can be bounded by the polynomial O(n�).
Given a graph G = ∪1≤i≤mGi and intervals Ix for each vertex, an acyclic

digraph D = (V ′, E′) with positive edge weights will be constructed. The search
for a maximum independent set of G is equivalent to the search for a maximum
weighted path in the digraph. Such a path in an acyclic digraph can be con-
structed in O(|V ′|2) steps (see Lawler [6]).
Let Ui be the collection of all independent sets in Gi, including the empty set.

Let G0 and G2·n+1 be graphs with no vertices, so that U0 = U2·n+1 = {∅}. The
digraph D = (V ′, E′) is defined as follows: Let V ′ be the disjoint union of the sets
Ui (i.e. an independent set in G appears once for each Gi containing it). We will
view the vertex fromU0 as the source s and the vertex from U2·n+1 as the sink t.
For 0 ≤ i ≤ 2 · n, E′ contains the edges (U,U ′) if and only if U ∈ Ui, U ′ ∈ Ui+1,
and if there is an independent set in Gi ∪ Gi+1 whose intersection with Vi and
Vi+1 is U and U ′, respectively. For each edge (U,U ′) it follows that vertices which
are contained in U and in Vi+1 are elements of U ′ and that vertices which are
contained in U ′ and in Vi are elements of U . The weight of an edge (U,U ′) is
|U ′ \ U |. Because α(Gi) is less than or equal to a constant �, this digraph can be
constructed in polynomial time.
Clearly, each directed path in D has a corresponding independent set of G and

each independent set of G gives a path in D. Therefore, α(G) can be computed
in polynomial time. �
Theorem 2.3. Let G1 be a disjoint union of m complete graphs and let G2
be a non-disjoint union of a constant number � of complete graphs. Then, the
problem of finding α(G) and χ(G) of the intersection of G1 and G2 can be solved
in linear and polynomial time, respectively.

Proof: Let G1 be a disjoint union of m complete graphs with vertex sets
K1, . . . ,Km. We define G(i) as the subgraph of G induced by the set Ki.
Since G is a disjoint union of the graphs G(i), we get α(G) =

∑m
i=1 α(G

(i))
and χ(G) = max1≤i≤m χ(G(i)) Hence, we must consider the problems only for
the graphs which are given as a non-disjoint union of at most �, with � constant,
complete graphs.
(a) α(G): Let H = (V,E) be a non-disjoint union of � complete graphs with
vertex sets Hi. We construct for H a graph H with a constant number of vertices
(at most 2�). For each subset A ⊂ {1, . . . , �} such that there is a vertex x ∈ V

158 K. Jansen

with x ∈ Hi for i ∈ A and x /∈ Hi for i /∈ A, we take a vertex vA in the
graph H. The computation of the vertex set of H can be done in linear time
O(|V |). We connect two vertices vA and vA′ with A �= A′ in H , if and only
if their corresponding subsets are not disjoint. Then, the independence number
α(H) = α(H). Since H has only a constant number of vertices, the problem of
finding a maximum independent set in H is solvable in linear time O(|V |).
(b) χ(G): We define for each vertex vA of H corresponding to a subset A ⊂
{1, . . . , �} a weight

wA = |{v ∈ V | v ∈ Vi, i ∈ A, v /∈ Vi′ , i
′ /∈ A}|.

The weight wA gives the number of vertices lying in exactly the complete graphs
corresponding to set A. Then, a k coloring of H is equivalent to a collection of
k independent sets in H — it is allowed to take an independent set several times
— such that each vertex vA in H is covered at least wA times. The graph H
contains no more than a constant number � ≤ 22� of independent sets U1, . . . , U�.
Each feasible k-coloring of H or a collection of k independents sets in H can be
described as a function f : {1, . . . , �} → {0, . . . , k} such that

• For each vertex vA,
∑
1≤i≤�,vA∈Ui

f(i) ≥ wA and

• ∑
1≤i≤� f(i) = k.

Since the number of feasible functions f can be bounded by the polynomial k�,
the problem of computing χ(H) is solvable in polynomial time. �
2.2 NP-completeness
In this subsection we give a NP-completeness result for the coloring problem

on a small class of graphs.

Theorem 2.4. Let G be an intersection of an interval graph and a union of two
complete graphs. Then, the problem of finding χ(G) is NP-complete.

Proof: Clearly, any coloring problem is in NP.We give a transformation from the
numerical 3-dimensional matching problem (see e.g. [3]) to the coloring problem.
An instance of the matching problem is given by three sets W = {w1, . . . , wm},
X = {x1, . . . , xm} and Y = {y1, . . . , ym} and a bound Z ∈ N such that

∑m
i=1 [wi+

xi + yi] = m · Z. The problem is to decide whether there exists a partition of
W ∪X ∪Y into m disjoint sets Ai such that each Ai contains exactly one element
from each of W, X and Y and such that for each 1 ≤ i ≤ m,

∑
a∈Ai

a = Z.
We assume that wm is the largest integer in the set W (i.e. wm ≥ wi for each
1 ≤ i ≤ m).
We first give the construction of a set of intervals for the interval graph.

1. For each wi ∈W , take an interval ai = [0, wi + i],
2. for each wi ∈ W , xj ∈ X , take an interval bi,j = [wi + i + 1, wi + xj +
(m+ 1) + (j Z)],

Exploiting the structure of conflict graphs in high level synthesis 159

3. for each xj ∈ X ,yk ∈ Y , take an interval cj,k = [(j + 1)Z − yk + m +
2, (m+ 1)(Z + 1) + k],

4. for each yk ∈ Y , take an interval dk = [(m+1)(Z+1)+k+1, (m+1)(Z+
2) + 1],

5. for each wi ∈W , take intervals ei,� = [0, wi + i] for 1 ≤ � ≤ m− 1,
6. for each 1 ≤ j ≤ m and 1 ≤ � ≤ m−1, take intervals fj,� = [1, jZ+m+1]
and gj,� = [(j + 1)Z +m+ 1, (m+ 1)(Z + 2)].

7. for each 1 ≤ k ≤ m and 1 ≤ � ≤ m− 1, take intervals hk,� = [(m+1)(Z+
1) + k + 1, (m+ 1)(Z + 2) + 1],

8. for 1 ≤ i ≤ m, take an interval pi = [0, (m+ 1)(Z + 2) + 1],
9. for 1 ≤ i ≤ m(m − 1), take intervals ri = [wm +m + 1, (m+ 1)(Z + 2)],
qi = [(m+ 1)(Z + 2)+ 1, (m+ 1)(Z + 2)+ 1], r′i = [1, (m+ 1)(Z + 1) + 1]
and q′i = [0, 0].

An example is shown in Figure 1, where we have w1 = 1, w2 = 2, x1 = 1,
x2 = 1, y1 = 2, y2 = 3 and Z = 5, m = 2. Since m− 1 is equal to one, the second
index for the intervals e, f, g and h is removed.

�
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

r′1
r′2

r1
r2

p1
p2

a1 b1,1 c1,2 d1
a2 b2,2 c2,1 d2

e2 b2,1 g1 q1
e1 b1,1 g2 q2

q′2 f2 c2,2 h2
q′1 f1 c1,1 h1

Figure 1: Example for the construction of an interval graph

160 K. Jansen

Denote the set of all intervals ai (1 ≤ i ≤ m) by A. In a similar way, define
sets B,C,D,E, F,G,H, P,R,R′, Q and Q′; each of these sets contains all intervals
with the same letter. First, let us consider which sets of vertices form cliques in
the interval graph. These are A∪E ∪P ∪Q′, A∪E ∪F ∪P ∪R′, B ∪F ∪P ∪R′,
P ∪ R ∪ R′, C ∪ G ∪ P ∪ R, D ∪ G ∪ H ∪ P ∪ R, D ∪ H ∪ P ∪ Q and possibly
further sets depending on the instance.
Now we define two complete graphs with the following vertex sets

(1) A ∪B ∪ C ∪D ∪ E ∪ F ∪G ∪H ∪Q ∪Q′,
(2) E ∪H ∪ P ∪R ∪R′ ∪Q ∪Q′.

Then, the intersection of the union of these two graphs and the interval graph
is the input graph of the coloring problem. The sizes of the sets are |A| = |D| =
|P | = m, |B| = |C| = m2 and the sizes of the other sets are |E| = |F | = |G| =
|H | = |Q| = |Q′| = |R| = |R′| = m(m− 1). In total, we get 10m2 − 5m vertices.
In the next part we assume that the input graph has a partition into 2m2−m

independent sets U1, . . . , U2m2−m which induces a 2m2−m coloring and we show
that there is a solution of the matching problem. We split the proof into three
claims. The first claim is to distribute a part of the vertices into three groups of
independent sets {U1, . . . , Um}, {Um+1, . . . , Um2} and {Um2+1, . . . , U2m2−m}.
Using this distribution, we show that m vertices of A, B and C must lie in the
first group and that the remaining m2 −m vertices of B and C must lie in the
second and third group, respectively. The second claim shows that several groups
of vertices must lie together in the same independent sets. Using this result we
can show that each independent set U1, . . . , Um of the first group contains a triple
of the form ai, bi,j, cj,k which corresponds directly to one set A = {wi, xj , yk} of
the matching problem. The third claim proves that each element of W, X and
Y is contained in these sets. Then, the equivalence between a solution of the
matching problem and the coloring problem is shown.

Claim 2.5. We can assume that the independent sets U1, . . . , U2m2−m have the
following form:

(1) {ai, pi, dβ(i)} ⊂ Ui for each 1 ≤ i ≤ m, where β : {1, . . . ,m} → {1, . . . ,m}
is a permutation.

(2) E ∪G ∪Q ∪R ⊂ ⋃m2

i=m+1 Ui.

(3) F ∪H ∪Q′ ∪R′ ⊂ ⋃2m2−m
i=m2+1 Ui.

Since F covers the third group of independent sets and G covers the second,
and since the sets F ∪ B and C ∪ G are cliques, we get for the vertices bi,j ∈ B
and cj,k ∈ C

• B ⊂ ⋃m2

i=1 Ui,

• C ⊂ ⋃m
i=1 Ui ∪

⋃2m2−m
i=m2+1 Ui.

Exploiting the structure of conflict graphs in high level synthesis 161

If we delete the vertices of the independent sets Um+1, . . . , U2m2−m, we have
exactly m vertices of each of the sets A, B, C, D and P . We now study ‘cuts’
between two sets of vertices in the graph. Consider the following three cuts:

(1) A ∪ E and B

(2) B ∪ F and C ∪G
(3) C and D ∪H.

The possibilities for all three cuts are described in the next claim.

Claim 2.6. The following three assertions are true:

(1) Fix i, and let U be an independent set with bi,j ∈ U ∩ B. Then, there is
a vertex ai ∈ A with ai ∈ U or there is a vertex ei,� ∈ E, 1 ≤ � ≤ m − 1
with ei,� ∈ U .

(2) Fix j, and let U be an independent set with bi,j ∈ U ∩ B or with fi,j ∈
U ∩F . Then, there is a vertex cj,k ∈ C, 1 ≤ k ≤ m with cj,k ∈ U or there
is a vertex gj,� ∈ G, 1 ≤ � ≤ m− 1 with gj,� ∈ U .

(3) Fix k, and let U be an independent set with cj,k ∈ U ∩C. Then, there is
a vertex dk ∈ D with dk ∈ U or there is a vertex hk,� ∈ H with hk,� ∈ U .

From this analysis of cuts, we may now assume that the independent sets
contain pairs of intervals, as illustrated in the following table. Take, for example,
there is no independent set which contains {ai, bi′,�} or {ei,�, bi′,�′} for i �= i′.

first vertex second vertex
ai or ei,− bi,− 1 ≤ i ≤ m
b−,j or fj,− cj,− or gj,− 1 ≤ j ≤ m
c−,k dk or hk,− 1 ≤ k ≤ m

Now consider the graph after deleting the independent sets Um+1, . . . , U2m2−m.
We now have exactly m vertices of each of the sets A,B,C,D and P and m in-
dependent sets Ui with {ai, pi, dβ(i)} ⊂ Ui, 1 ≤ i ≤ m where β is a permutation.

Claim 2.7. The first m independent sets have the form:

Ui = {ai, pi, bi,α(i), cα(i),β(i), dβ(i)},

where α, β : {1, . . . ,m} → {1, . . . ,m} are permutations.
Now we can prove that there is a partition of W ∪ X ∪ Y into sets Ai with

exactly one element of W, X and Y and with
∑
a∈Ai

a = Z iff the constructed

one branching graph has a 2m2 −m coloring.
Let U1, . . . , U2m2−m be such a coloring. Then we can assume that the second

and third group of independent sets contain the vertices E ∪F ∪G∪H ∪Q∪Q′∪

162 K. Jansen

R ∪R′. Then, using the analysis above, the independent sets Ui, 1 ≤ i ≤ m have
the form

Ui = {ai, bi,α(i), cα(i),β(i), dβ(i), pi}
where α, β are permutations of {1, . . . ,m}. Using the fact that each set Ui is
an independent set, we have wi + xα(i) + yβ(i) ≤ Z. Since the α(i) and β(i) are
permutations of {1, . . . ,m}, we get

m∑

i=1

wi + xα(i) + yβ(i) =
m∑

i=1

wi + xi + yi.

Applying the equality
∑m
i=1wi +

∑m
j=1 xj +

∑m
k=1 yk = mZ, we get for each

1 ≤ i ≤ m,
wi + xα(i) + yβ(i) = Z.

Again, because the mappings α(i), β(i) are permutations, we can use these sets
Ai = {wi, xα(i), yβ(i)} as a solution of the numerical matching problem.
Conversely, w.l.o.g. we may assume that the sets Ai = {wi, xi, yi}, 1 ≤ i ≤ m

form a solution of the numerical matching problem. For the firstm sets, we choose

Ui = {ai, bi,i, ci,i, di, pi}.

The interval ai lies on the left side to bi,i. To prove that bi,i lies on the left side
to ci,i we compare the right endpoint of bi,i with the left endpoint of ci,i. Using
the fact that wi+xi+yi = Z, we get wi+xi+(iZ) < (i+1)Z−yi+1. Therefore
the sets U1, . . . , Um are independent.
Then, the vertex sets B′ = {bi,j|1 ≤ i �= j ≤ m} and C′ = {ci,j |1 ≤ i �= j ≤ m}

are not covered. Construct for each bi,j ∈ B′ an independent set. To do this,
we take vertices ei,�, gj,�′, qk, rk′ which are not covered and put them together in
one set U . Clearly, this set is independent. The construction is correct, because
each index i and j appears only (m − 1) times in B′. Similarly, we construct
independent sets for the set C′. For each ci,j ∈ C′ we take vertices fi,�, hj,�′, q′k,
r′k′ which are not covered. After these steps all vertices are covered and we have
2m2 −m independent sets. This completes the proof of the theorem. �
3. Incompatibility graphs

3.1 The problem definition
A flow graph is an acyclic digraphD = (V,E) with vertex set V and edge set E.

The vertex set V is a union of a set of operations Op and a set of branching
vertices F ∪ J where F is a set of fork vertices and where J is a set of join
vertices. For the control, each fork vertex f ∈ F is assigned a boolean function
bf over a set of control variables S. The functions describe the interdependence
between the branches. There exist different hardware-design systems which use

Exploiting the structure of conflict graphs in high level synthesis 163

the information of the conflict graph corresponding to a branching-free flow graph.
In this case as a conflict graph [7], [10] we get an interval graph.

�
f1

v1

v2

v3

j1

v4

f2

v5

j2

0 1 0 1

s1 ∨ s2 s1 ∧ s2

Figure 2: A flow graph with two branches

The simplest flow graph is a digraph with only one operation vertex. Given
single operation flow graphs the class of all branching flow graphs can be generated
recursively by the following two operations. The first operation connects two
disjoint flow graphs Di = (Vi, Ei) for i = 0, 1 with any subset of edges from

{(v, v′)|dout(v) = din(v′) = 0, v ∈ V0, v
′ ∈ V1},

where dout(v) (din(v)) denotes the out-degree (in-degree) of the vertex v. Using
this operation two flow graphs can be connected or identified as independent parts.
The second operation constructs a branch, which is identified by two unique

vertices, a fork vertex f ∈ F and a join vertex j ∈ J . Given two disjoint flow
graphs Di = (Vi, Ei) for i = 0, 1 and two new branching vertices f and j, a new
flow graph D = (V,E) is generated. The vertex set V is equal to V0 ∪ V1 ∪ {f, j}
and the edge set E is given by

E0 ∪ E1 ∪ {(f, v)|v ∈ Vi, din(v) = 0} ∪ {(v, j)|v ∈ Vi, dout(v) = 0}.

To specify two different branching parts, we give the directed edges e = (f, v) ∈ E
a weight we = i for v ∈ Vi. Using this operation, the fork vertex f has in-degree
din(f) = 0, the join vertex j has out-degree dout(j) = 0 and all other vertices lie
on a directed path from f to j.
Using a pair of branching vertices f and j, we can divide the flow graph into

two different parts. Let V (f, j) be the operations lying on a directed path from f
to j, and let Vi(f, j) for i = 0, 1 be the operations in V (f, j) which can be reached
over an i-weighted directed edge (f, v) ∈ E. Depending on an assignment of the

164 K. Jansen

control variables only one of the sets V0(f, j) or V1(f, j) can be executed. For
a control function ψ : S → {0, 1}, the set of executed operations for ψ is defined
by

Opψ = Op \
⋃

f∈F
V (f, j)1−bf (ψ(s1),... ,ψ(s|S|)).

A set of operations Opψ is also called an execution trace. An example of a flow
graph with operation set Op = {v1, . . . , v5}, two branches and corresponding
boolean functions s1 ∨ s2, s1 ∧ s2 is given in Figure 2. The execution traces for
the flow graph are {v1, v2, v4}, {v3, v4} and {v3, v5}; the set {v1, v2, v5} is not
possible.
In a schedule for the flow graph, each operation v ∈ Op is assigned an interval

Iv on the positive real line such that for each control function ψ and each pair of
operations v, v′ ∈ Opψ, v �= v′ with directed path from v to v′ in the digraph and
x ∈ Iv , y ∈ Iv′ , we have x < y. For simplification we assume that the endpoints
of the intervals are positive integers. A feasible schedule for our example is given
by Iv1 = Iv5 = [1, 1], Iv2 = [2, 2] and Iv3 = Iv4 = [1, 2].
We denote Opz = {v ∈ Op|z ∈ Iv} as the operations at timestep z ∈ Zm =

{1, . . . ,m}. For each timestep z and each control function ψ the set of executed
operations for ψ at timestep z is denoted by Opψ,z = Opψ ∩Opz .
For each scheduled flow graph a conflict graph IC = (Op,E) is defined with

an edge e = (v, v′) ∈ E between two different operations v, v′ ∈ Op, if and only
if there is at least one trace Opψ with {v, v′} ⊂ Opψ and z ∈ Iv ∩ Iv′ . In other
words, if there is at least one execution trace Opψ which executes two operations
v, v′ at a time step z ∈ Iv ∩ Iv′ , then these operations cannot be assigned to the
same processor. The graph ICz , the so called local conflict graph for the time
step z ∈ Zm, is the subgraph of IC induced by the set Opz . The conflict graph
for our example is given in Figure 3.� v1 v2

v4 v3 v5

Figure 3: The conflict graph to the flow graph in Figure 2

Our goal is to determine a minimum number of processors for a scheduled flow
graph. This corresponds to a partition of the operation set Op in compatible sets
U1, . . . , Uk with minimum k ∈ N which in turn is equivalent to the problem of
finding a minimum coloring of the conflict graph IC. We note that for general
boolean functions bf the problem whether two operations are compatible is NP-
hard. We can simulate the SAT-problem in the boolean functions such that there

Exploiting the structure of conflict graphs in high level synthesis 165

is an execution trace ψ with {v, v′} ∈ Opψ iff the SAT problem is satisfiable.
However, we consider here the case that the boolean functions are not too com-
plicated (e.g. bf (s1, . . . , s|S|) ∈ S.) Then, the conflict graph can be computed in
polynomial time.

3.2 Structure of conflict graphs
The difficulty of the optimization problems lies in the conflict graphs. Since

in the general case each undirected graph can be a conflict graph [5], and since
the coloring problem is known to be NP-complete [3], the processor assignment
problem is also NP-complete. In the following we analyze the structure of the
conflict graphs for scheduled flow graphs with a constant number of execution
traces.

Theorem 3.1. Let D be a flow graph with operations v ∈ Op where the number
of execution traces is bounded by a constant � and let Iv , v ∈ Op be intervals in
a feasible schedule. Then, the conflict graph IC = (Op,E) is the intersection of
an interval graph G1 and a graph G2 which is a union of � complete graphs.

Proof: This result follows directly from the definition of the conflict graph. We
have an edge between two operations v, v′ with v �= v′ if and only if two conditions
are satisfied. The first condition Iv ∩Iv′ �= ∅ corresponds to the interval graph G1
and the second to a union of a constant number of complete graphs; one complete
graph for each execution trace Opψ. Since we only have an edge if both conditions
are satisfied, the conflict graph is the intersection of both graphs. �
From this classification, it follows that each independent set in the local conflict

graph ICz has size at most �. In other words, the independence number α(ICz)
is bounded by the constant �. In the following we analyze the case that each
operation is assigned an interval Iv which consists of one execution step. In other
words, Iv ∈ {1, . . . ,m} for each operation v ∈ Op. In this case, we say that the
operations have unit times.

Theorem 3.2. Let D be a flow graph with unit-times Iv ∈ {1, . . . ,m}, v ∈ Op
and with � execution traces. Then, the conflict graph IC is the intersection of
graphs G1 and G2 where G1 is a disjoint union of m complete graphs and where
G2 is a non-disjoint union of � complete graphs.

Proof: This follows, because the interval graph G1 is a disjoint union of m
complete graphs; one complete graph for each execution step i ∈ {1, . . . ,m}. �
In many applications we search for an assignment of the operations to a small

constant number of processors. This corresponds to the case that the conflict
graph can be colored with a constant number of colors.

Theorem 3.3. Let D be a flow graph with a constant number � of execution
traces. If the chromatic number of the conflict graph IC is also bounded by
a constant, then IC has constant pathwidth.
Proof: First, the graph IC is an intersection of an interval graphG1 and a graph
G2 which is a union of � complete graphs. Let us consider the local conflict

166 K. Jansen

graphs ICz and let us take the path decomposition corresponding to the time
steps 1, . . . ,m. Each local conflict graph is a union of at most � complete graphs.
Since the number of vertices in each graph G = (V,E) is less or equal than the
product of the chromatic number χ(G) and the independence number α(G), we
get |Opz | ≤ α(ICz) × χ(ICz). Since α(ICz) ≤ � and since χ(ICz) ≤ χ(IC), the
number of operations in each local conflict graph is bounded by �× χ(IC). This
implies that the pathwidth of the conflict graph is constant. �
3.3 Complexity results
First, we analyze the complexity of the problem of finding a maximum com-

patible set of operations. Clearly, a maximum compatible set is a maximum
independent set in the conflict graph. As consequence of our graph theoretical
results, we get directly:

Theorem 3.4. Given a scheduled flow graph with a constant number of execution
traces and the corresponding conflict graph IC, the problem of finding a maximum
compatible set of operations is solvable in polynomial time. If all operations have
unit-times or if χ(IC) is bounded by a constant the problem is solvable in linear
time. �

We now analyze the complexity of the problem of finding an assignment of
the operations in a flow graph to a minimum number of processors. The first
result is quite disappointing, because it does not allow a generalization of results
for branch-free graphs to flow graphs with one, two or more branches, unless
P = NP . The result follows directly from Theorem 2.4.

Theorem 3.5. Given a scheduled flow graph with two execution traces and the
corresponding conflict graph, the problem of finding an assignment of the opera-
tions to a minimum number of processors is NP-complete.

�

As consequence of our polynomial results, we get:

Theorem 3.6. Given a scheduled flow graph with a constant number of execu-
tion traces and the corresponding conflict graph IC, the problem of finding an
assignment of unit-time operations to a minimum number of processors is solvable
in polynomial time. If χ(IC) is bounded by a constant, the problem with non
unit-time operations is solvable in linear time. �

References

[1] Arnborg S., Proskurowski A., Linear time algorithms for NP-hard problems on graphs
embedded in k-trees, TRITA-NA-8404, Dept. of Num. Anal. and Comp. Sci, Royal Institute
of Technology, Stockholm, Sweden, 1984.

[2] Bodlaender H.L.,A linear time algorithm for finding tree-decompositions of small treewidth,
Report RUU-CS-92-27, Dept. of Computer Sci., Utrecht University, 1992.

[3] Garey M.R., Johnson D.S., Computers and Intractability: A Guide to the Theory of NP-
Completness, Freeman, San Francisco, 1979.

Exploiting the structure of conflict graphs in high level synthesis 167

[4] Jansen K., Processor optimization for flow graphs, Theor. Comput. Sci. 104 (1992), 285–
298.

[5] , The allocation problem in hardware design, Disc. Appl. Math. 43 (1993), 37–46.
[6] Lawler E.L., Combinatorial Optimization: Networks and Matroids, Rinehard and Winston,
New York, 1976.

[7] Pfahler P., Übersetzermethoden zur automatischen Hardware-Synthese, Thesis, University
of Paderborn, FRG, 1988.

[8] Rajan J.V., Automatic synthesis of data paths in digital systems, PhD thesis, Carnegie
Mellon University, Dec 1988.

[9] Robertson N., Seymour P., Graph minors. I. Excluding a forest, J. Comb. Theory B 35
(1983), 39–61.

[10] Springer D.L., Thomas D.E., Exploiting the special structure of conflict and compatibility
graphs in high-level synthesis, ICCAD (1990), 254–257.

[11] Tseng C.J., Siewiorek D.P., Automated synthesis of data paths in digital systems, IEEE
Trans. Comp.-Aided Design 5 (1986), 379–395.

Fachbereich 11 – Mathematik, FG Informatik, Universität Duisburg, 47 048 Duis-
burg, Germany

(Received May 7, 1993, revised November 5, 1993)

