Notes on approximation in the Musielak-Orlicz spaces of vector multifunctions

ANDRZEJ KASPERSKI

Abstract. We introduce the spaces $M_{Y,\varphi}^1$, $M_{Y,\varphi}^{o,n}$, $\tilde{M}_{Y,\varphi}^o$ and $M_{Y,\mathbf{d},\varphi}^o$ of multifunctions. We prove that the spaces $M_{Y,\varphi}^1$ and $M_{Y,\mathbf{d},\varphi}^o$ are complete. Also, we get some convergence theorems.

Keywords: Musielak-Orlicz space, multifunction, modular space of multifunctions, integral operator, modular approximation *Classification:* 46E99, 28B20

1. Introduction

In this paper we extend the results of [2] and [3] to the case of the spaces $M_{Y,\varphi}^1$, $\tilde{M}_{Y,\varphi}^o$ and $M_{Y,\mathbf{d},\varphi}^o$ of multifunctions. All definitions and theorems connected with the idea of Musielak-Orlicz space can be found in [4] and [5].

Let I be a bounded interval. Let (I, Σ, μ) be the Lebesgue measure space. Let X be a real separable Hilbert space with the norm $\|\circ\|_X$. We denote by $L^{\varphi}(I, X)$ the Musielak-Orlicz space of all strongly measurable functions $x : I \to X$ generated by a modular

$$\varrho(x) = \int_I \varphi(t, \|x(t)\|_X) d\mu,$$

where φ is a φ -function with a parameter such that $\varphi : I \times R \to R_+, \varphi(t, \circ)$ is an even continuous function, nondecreasing for $u \ge 0$, $\varphi(t, u) = 0$ iff u = 0 for every $t \in I$, $\varphi(\circ, u)$ is measurable for every $u \in R$ and $\lim_{u \to \infty} \varphi(t, u) = \infty$ for a.e. $t \in I$. The space $L^{\varphi}(I, X)$ is N-complete (see [5, Corollaries 3.3]).

Let N be the set of all positive integers.

2. Completeness

Let Y be a real separable Hilbert space. Let o denote the zero element in Y. Let

dist
$$(A, B) = \max(\sup_{x \in A} \inf_{y \in B} ||x - y||_Y, \sup_{y \in B} \inf_{x \in A} ||x - y||_Y),$$

for all nonempty bounded $A, B \subset Y$. Let

$$M_Y(I) = \{F : I \to 2^Y : F(s) \text{ is nonempty for every } s \in I, \text{ closed} \\ \text{and bounded for a.e. } s \in I\}.$$

For $F, G \in M_Y(I)$ we introduce the function $\mathbf{d}(F, G)$ by the formula:

$$\mathbf{d}(F,G)(t) = \begin{cases} 0, & \text{if } F(t) = G(t) \\ \text{dist}(F(t), G(t)), & \text{if } F(t), G(t) \text{ are bounded} \\ \infty, & \text{if } F(t) \neq G(t) \text{ and } F(t) \text{ or } G(t) \text{ is unbounded} \end{cases}$$

for every $t \in I$.

Remark 1. If X is a Banach space, then the space of all nonempty closed and bounded subsets of X with dist is a complete metric space.

Lemma 1. Let $F_n \in M_Y(I)$ for every $n \in \mathbb{N}$. If:

- (a) there is $n_o > 0$ such that $\mathbf{d}(F_n, F_m)$ are measurable for $m, n > n_o$,
- (b) for every $\varepsilon > 0$ and every $\delta > 0$ there exists $K > n_o$ such that $\mu(\{t \in I : \mathbf{d}(F_n, F_m)(t) \ge \delta\}) < \varepsilon$, for all m, n > K,

then there exist a subsequence $\{F_{n_k}\}$ of the sequence $\{F_n\}$ and $F \in M_Y(I)$ such that $\mathbf{d}(F_{n_k}, F) \to 0$ a.e. and $\mathbf{d}(F_n, F)$ are measurable for $n > n_o$.

PROOF: Let $F_n \in M_Y(I)$ for every $n \in \mathbf{N}$. We have from the assumptions that there exists N(k) such that $\mu(\{t \in I : \mathbf{d}(F_n, F_m)(t) \ge 2^{-k}\}) < 2^{-k}$ for all m, n > N(k). Let $n_1 = N(1), n_2 = \max\{N(2), N(1) + 1\}, \ldots, n_m = \max\{N(m), N(m - 1) + 1\}$. Let $\varepsilon > 0$ be arbitrary. So there is i_0 such that $2^{i_0-1} < \varepsilon$. Let $i_0 < i < j$. Let $A_i = \{t \in I : \mathbf{d}(F_{n_{i+1}}, F_{n_i})(t) \ge 2^{-i}\}$. It is easy to see that $\mu(\bigcup_{i=i_0}^{\infty} A_i) < \varepsilon$ and for $t \in I \setminus \bigcup_{i=i_0}^{\infty} A_i$ we have

$$\mathbf{d}(F_{n_j}, F_{n_i})(t) \le \sum_{k=i}^{j-1} \mathbf{d}(F_{n_{k+1}}, F_{n_k})(t) \le \sum_{k=i}^{\infty} \mathbf{d}(F_{n_{k+1}}, F_{n_k})(t) < \varepsilon.$$

So for the subsequence $\{F_{n_k}\}$ we have that for a.e. $t \in I$ and for every $\varepsilon > 0$ there is K > 0 such that $\mathbf{d}(F_{n_k}, F_{n_l})(t) < \varepsilon$ for all k, l > K. Hence by Remark 1 there is $F \in M_Y(I)$ such that $\mathbf{d}(F_{n_k}, F) \to 0$ as $k \to \infty$ a.e. and $\mathbf{d}(F_n, F)$ are measurable for $n > n_0$ because $\mathbf{d}(F_n, F) = \lim_{k \to \infty} \mathbf{d}(F_{n_k}, F_n)$ a.e.

Let:

 $M(I,Y) = \{x : I \to Y : x \text{ is strongly measurable}\},\$

 $M(I,R) = \{q: I \to R: q \text{ is measurable}\}.$

We denote for all $a \in Y$, $R, r \ge 0$, $B(a, r) = \{x \in Y : ||x - a||_Y \le r\}$,

 $R(o,r,\mathbf{R})=\{x\in Y:r\leq \|x\|_{Y}\leq \mathbf{R}\}.$ Let:

$$\begin{split} M_Y^{o,n}(I) &= \{F \in M_Y(I) : F(s) = \bigcup_{i=1}^n R(o, r_F^i(s), R_F^i(s)) \text{ for every } s \in I, r_F^i(\circ), \\ R_F^i(\circ) \in M(I, R) \text{ for } i = 1, \dots, n, \ R_F^i(t) \le r_F^{i+1}(t) \text{ for } t \in I, \\ i = 1, \dots, n-1, \ \text{if } n > 1\}, \\ \tilde{M}_Y^o(I) &= \bigcup_{i=1}^\infty M_Y^{o,i}(I), \\ M_Y^o(I) &= \{F \in M_Y(I) : F(s) = B(o, R_F(s)) \text{ for every } s \in I, R_F(\circ) \in M(I, R)\} \\ M_Y^1(I) &= \{F \in M_Y(I) : F(s) = B(a_F(s), r_F(s)) \text{ for every } s \in I, a_F(\circ) \in M(I, R)\}. \end{split}$$

If $F, G \in M_Y^1(I)$ and F(t) = G(t) for a.e. $t \in I$, then F = G in $M_Y^1(I)$. If $F, G \in \tilde{M}_Y^o(I)$ and F(t) = G(t) for a.e. $t \in I$, then F = G in $\tilde{M}_Y^o(I)$. In the set $M_Y^1(I)$ we introduce the operations $\odot : R \times M_Y^1(I) \to M_Y^1(I), \oplus : M_Y^1(I) \times M_Y^1(I) \to M_Y^1(I)$ as follows: let $F_1, F_2 \in M_Y^1(I), a \in R, F_1(s) = B(a_{F_1}(s), r_{F_1}(s)), F_2(s) = B(a_{F_2}(s), r_{F_2}(s))$ for every $s \in I$; if $F = F_1 \oplus F_2$ then

$$F(s) = B(a_{F_1}(s) + a_{F_2}(s), r_{F_1}(s) + r_{F_2}(s)) \text{ for every } s \in I,$$

if $G = a \odot F_1$, then $G(s) = B(aa_{F_1}(s), ar_{F_1}(s))$ for every $s \in I.$

It is easy to see that $F, G \in M_Y^1(I)$. In the set $\tilde{M}_Y^o(I)$ we introduce the operations $\odot: R \times \tilde{M}_Y^o(I) \to \tilde{M}_Y^o(I), \oplus: \tilde{M}_Y^o(I) \times \tilde{M}_Y^o(I) \to \tilde{M}_Y^o(I)$ as follows: let $F_1, F_2 \in \tilde{M}_Y^o(I), a \in R$,

$$\begin{split} F_1(s) &= \bigcup_{i=1}^n R(o, r_{F_1}^i(s), R_{F_1}^i(s)), \ F_2(s) = \bigcup_{i=1}^m R(o, r_{F_2}^i(s), R_{F_2}^i(s)) \ \text{for all } s \in I, \\ \text{if } F &= F_1 \oplus F_2, \ \text{then } F(s) = \bigcup_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}} R(o, r_{F_1}^i(s) + r_{F_2}^j(s), R_{F_1}^i(s) + R_{F_2}^j(s)) \end{split}$$

for every $s \in I$, if

$$G = a \odot F_1$$
, then $G(s) = \bigcup_{i=1}^n R(o, ar_{F_1}^i(s), aR_{F_1}^i(s))$

for every $s \in I$. It is easy to see that $F, G \in \tilde{M}_{Y}^{o}(I)$.

83

Let now

$$\begin{split} M^o_{Y,\varphi}(I) &= \{F \in M^o_Y(I) : r_F(\circ) \in L^{\varphi}(I,R)\},\\ M^1_{Y,\varphi}(I) &= \{F \in M^1_Y(I) : a_F(\circ) \in L^{\varphi}(I,Y), r_F(\circ) \in L^{\varphi}(I,R)\},\\ \tilde{M}^o_{Y,\varphi}(I) &= \{F \in \tilde{M}^o_Y(I) : r^i_F(\circ), R^i_F(\circ) \in L^{\varphi}(I,R) \text{ for } i = 1, \dots, n,\\ &\text{ if } F \in M^{o,n}_Y(I)\}. \end{split}$$

Remark 2. If $F, G \in M^1_{Y, \omega}(I)$, then $\mathbf{d}(F, G)$ is measurable.

PROOF: It is easy to see that

$$\mathbf{d}(F,G)(s) = \|a_F(s) - a_G(s)\|_Y + |r_F(s) - r_G(s)| \text{ for a.e. } s \in I,$$

so $\mathbf{d}(F,G)$ is measurable.

Remark 2'. If $F, G \in \tilde{M}^{o}_{Y,\varphi}(I)$, then $\mathbf{d}(F,G)$ is measurable.

PROOF: Let

$$F(s) = \bigcup_{i=1}^{n} R(o, r_F^i(s), R_F^i(s)), G(s) = \bigcup_{j=1}^{m} R(o, r_G^j(s), R_G^j(s))$$

for $s \in I$. It is easy to see that

$$\mathbf{d}(F,G)(s) = \operatorname{dist} (\bigcup_{i=1}^n [r_F^i(s), R_F^i(s)], \bigcup_{j=1}^m [r_G^j(s), R_G^j(s)]) \text{ for a.e. } s \in I,$$

so $\mathbf{d}(F,G)$ is measurable (see [1, Remark 1, p. 120]).

Definition 1. Let $F, F_n \in M_Y(I)$ for every $n \in \mathbb{N}$. We write $F_n \xrightarrow{d,\varphi} F$, if there exists $n_o > 0$ such that $\mathbf{d}(F_n, F)$ are measurable for $n > n_o$ and

$$\int_{I} \varphi(t, a\mathbf{d}(F_n, F)(t)) dt \to 0 \text{ as } n \to \infty \text{ for every } a > 0.$$

Definition 2. Let $F_n \in M_Y(I)$ for every $n \in \mathbb{N}$. We say that the sequence $\{F_n\}$ fulfils the (C, \mathbf{d}, φ) -condition, if there exists $n_o > 0$ such that $\mathbf{d}(F_n, F_m)$ are measurable for $n, m > n_o$ and for every $\varepsilon > 0$ and every a > 0 there is $K > n_o$ such that $\int_I \varphi(t, a\mathbf{d}(F_n, F_m)(t)) dt < \varepsilon$ for all m, n > K.

Definition 3. Let $A \subset M_Y(I)$. We say that A is (C, \mathbf{d}, φ) -complete, if for every sequence $\{F_n\}$ such that $F_n \subset A$ for every $n \in \mathbf{N}$ and the sequence $\{F_n\}$ fulfils the (C, \mathbf{d}, φ) -condition, there is $F \in A$ such that $F_n \xrightarrow{d, \varphi} F$.

 \Box

Theorem 1. $M^1_{Y,\omega}(I)$ is (C, \mathbf{d}, φ) -complete.

PROOF: Let $F_n \in M^1_{Y,\varphi}(I)$ for every $n \in \mathbf{N}$ and let the sequence $\{F_n\}$ fulfil the (C, \mathbf{d}, φ) -condition. Let $F_n(s) = B(a_{F_n}(s), r_{F_n}(s))$ for every $s \in I$ and every $n \in \mathbf{N}$. Then $\{a_{F_n}\}$ is a Cauchy sequence in the Musielak-Orlicz space $L^{\varphi}(I, Y)$ and $\{r_{F_n}\}$ is a Cauchy sequence in the Musielak-Orlicz space $L^{\varphi}(I, R)$. So there are $\mathbf{a} \in L^{\varphi}(I, Y)$ and $\mathbf{r} \in L^{\varphi}(I, R)$ such that

$$\varrho(a(\mathbf{a}-a_{F_n})) \to 0, \varrho(a(\mathbf{r}-r_{F_n})) \to 0 \text{ as } n \to \infty \text{ for every } a > 0.$$

Let $\mathbf{F}(s) = B(\mathbf{a}(s), \mathbf{r}(s))$ for every $s \in I$. It is easy to see that $\mathbf{F} \in M^1_{Y,\varphi}(I)$ and $F_n \xrightarrow{d,\varphi} \mathbf{F}$.

Remark 3. $\tilde{M}^{o}_{Y,\varphi}(I)$ is not (C, \mathbf{d}, φ) -complete.

Now, let us denote

$$M_{Y,\mathbf{d}}^o(I) = \{ F \in M_Y(I) : \mathbf{d}(F_n, F) \to 0 \text{ a.e. for some } F_n \in M_{Y,\varphi}^o(I), n \in \mathbf{N} \},\$$

$$M_{Y,\mathbf{d},\varphi}^{o}(I) = \{F \in M_{Y,\mathbf{d}}^{o}(I) : F_n \xrightarrow{d,\varphi} F \text{ for some } F_n \in \tilde{M}_{Y,\varphi}^{o}(I), n \in \mathbf{N}\}.$$

Remark 4. If $F, G \in M_{Y,\mathbf{d}}^{o}(I)$, then $\mathbf{d}(F,G)$ is measurable.

PROOF: Let $F, G \in M^o_{Y,\mathbf{d}}(I)$. So there are $F_n, G_n \in \tilde{M}^o_{Y,\varphi}(I)$, $n \in \mathbf{N}$ such that $\mathbf{d}(F_n, F) \to 0$ and $\mathbf{d}(G_n, G) \to 0$ as $n \to \infty$ a.e. So $\mathbf{d}(F_n, G_n) \to \mathbf{d}(F, G)$ as $n \to \infty$ a.e. Hence $\mathbf{d}(F, G)$ is measurable because from Remark 2' $\mathbf{d}(F_n, G_n)$ are measurable for $n \in \mathbf{N}$.

Theorem 2. $M_{Y,\mathbf{d},\varphi}^{o}(I)$ is (C,\mathbf{d},φ) -complete.

PROOF: Let $F_n \in M^o_{Y,\mathbf{d},\varphi}(I)$ for every $n \in \mathbf{N}$, and let the sequence $\{F_n\}$ fulfil the (C, \mathbf{d}, φ) -condition. It is easy to prove that the sequence $\{F_n\}$ fulfils the assumptions of Lemma 1, so there exist a subsequence $\{F_{n_k}\}$ of the sequence $\{F_n\}$ and $F \in M_Y(I)$ such that $\mathbf{d}(F_{n_k}, F) \to 0$ a.e. and $\mathbf{d}(F_n, F)$ are measurable. We have by Fatou Lemma

$$\int_{I} \varphi(t, a\mathbf{d}(F_n, F)(t)) dt \le \varepsilon \text{ for } n > K,$$

so $F_n \xrightarrow{d,\varphi} F$. For every $n \in \mathbf{N}$, $\varepsilon > 0$, a > 0 there exists $F_n^n \in \tilde{M}_{Y,\varphi}^o(I)$ such that $\int_I \varphi(t, \mathbf{ad}(F_n^n, F_n)(t)) dt < \varepsilon$, so we have

$$\int_{I} \varphi(t, \frac{a}{2} \mathbf{d}(F_{n}^{n}, F)(t)) dt \leq \\ \leq \int_{I} \varphi(t, a \mathbf{d}(F_{n}^{n}, F_{n})(t)) dt + \int_{I} \varphi(t, a \mathbf{d}(F_{n}, F)(t)) dt < 2\varepsilon$$

r $n > K$, hence $F \in M^{2}_{2}$, (I) and M^{2}_{2} , (I) is (C, d, ω)-complete

for n > K, hence $F \in M^o_{Y,\mathbf{d},\varphi}(I)$ and $M^o_{Y,\mathbf{d},\varphi}(I)$ is (C,\mathbf{d},φ) -complete.

The spaces $M^1_{Y,\varphi}(I)$ and $M^o_{Y,\mathbf{d},\varphi}(I)$ will be called the Musielak-Orlicz spaces of vector multifunctions.

3. On the operator H

Let $H: I \times Y \to Y$ and let

 $\mathbf{H}(F)(t) = \{H(t, x) : x \in F(t)\} \text{ for every } t \in I, F \in M_Y(I).$

Lemma 2. Let the function H fulfil the following conditions:

- (a) H(s,x) is a strongly measurable function as a function of s for every $x \in Y$,
- (b) there exists L > 0 such that $||H(s, x) H(s, y)||_Y \le L||x y||_Y$ for all $s \in I, x, y \in Y$,
- (c) H(s, o) = o for every $s \in I$,
- (d) if $||x||_Y < ||y||_Y$, then $||H(s,x)||_Y < ||H(s,y)||_Y$ and if $||x||_Y = ||y||_Y$, then $||H(s,x)||_Y = ||H(s,y)||_Y$ for every $s \in I$,
- (e) for every $t \in I$ and every $y \in Y$ there is $x \in Y$ such that y = H(t, x).

Then $\mathbf{H}: M^o_{Y,\varphi}(I) \to M^o_{Y,\varphi}(I)$ and $\mathbf{H}: \tilde{M}^o_{Y,\varphi}(I) \to \tilde{M}^o_{Y,\varphi}(I)$.

PROOF: We only prove that $\mathbf{H} : M^o_{Y,\varphi}(I) \to M^o_{Y,\varphi}(I)$. The proof that $\mathbf{H} : \tilde{M}^o_{Y,\varphi}(I) \to \tilde{M}^o_{Y,\varphi}(I)$ as analogous is omitted. Let $F \in M^o_{Y,\varphi}(I)$. We prove that there exists $r_{\mathbf{H}(F)} \in L^{\varphi}(I, R), r_{\mathbf{H}(F)}(t) \geq 0$ for every $t \in I$, such that $\mathbf{H}(F)(t) = B(o, r_{\mathbf{H}(F)}(t))$ for every $t \in I$. Let $x \in Y, x \neq o$ be arbitrary. Let now $\xi(t) = xr_F(t)/||x||_Y$ for every $t \in I$. It is easy to see that $\xi \in M(I,Y) \cap F$ and $||\xi(t)||_Y = r_F(t)$ for every $t \in I$. Let $r_{\mathbf{H}(F)}(t) = ||H(t,\xi(t))||_Y$ for every $t \in I$. We have

$$\sup_{z \in \mathbf{H}(F)(t)} \|z\|_{Y} = \sup_{x \in F(t)} \|H(t, x)\|_{Y} \le \|H(t, \xi(t))\|_{Y},$$

for every $t \in I$, so $\mathbf{H}(F)(t) \subset B(o, r_{\mathbf{H}(F)}(t))$ for every $t \in I$. For every a > 0 we have

$$\int_{I} \varphi(t, ar_{\mathbf{H}(F)}(t)) dt = \int_{I} \varphi(t, a \| H(t, \xi(t)) \|_{Y}) dt \leq \int_{I} \varphi(t, aL \| \xi(t) \|_{Y}) dt$$
$$= \int_{I} \varphi(t, aLr_{F}(t)) dt.$$

So $r_{\mathbf{H}(F)} \in L^{\varphi}(I, R)$. Let $t \in I$ be arbitrary, let $y \in B(o, r_{\mathbf{H}(F)}(t))$.

From (e) we obtain that there exists $\overline{x} \in Y$ such that $y = H(t, \overline{x})$. So $||H(t, \overline{x})||_Y \leq ||H(t, \xi(t))||_Y$. Hence from (d) we obtain that $||\overline{x}||_Y \leq r_F(t)$. So $\overline{x} \in F(t)$ and $y \in \mathbf{H}(F)(t)$. Hence $\mathbf{H}(F)(t) = B(o, r_{\mathbf{H}(F)}(t))$ for every $t \in I$.

Remark 5. Let $C(F)(t) = \mathbf{H}(F + (-a_F))(t)$ for every $t \in I$, where $F(t) = B(a_F(t), r_F(t))$ for every $t \in I$. If the assumptions of Lemma 2 hold, then

$$\mathcal{C}: M^1_{Y,\varphi}(I) \to M^o_{Y,\varphi}(I).$$

Remark 6. Let the assumptions of Lemma 2 hold. If

(i) H(s, A) is closed for every nonempty and closed $A \subset Y$ and for a.e. $s \in I$, then $\mathbf{H} : M^o_{Y, \mathbf{d}, \varphi}(I) \to M^o_{Y, \mathbf{d}, \varphi}(I)$.

PROOF: The proof is analogous to that of Theorem 1' in [2] so we give only the sketch of it. First, from the assumptions (b), (c) of Lemma 2 and from the assumption (i) $\mathbf{H} : M_Y(I) \to M_Y(I)$. Second, from the assumption (b) of Lemma 2 we obtain that

(1)
$$\operatorname{dist} \left(\mathbf{H}(F)(t), \mathbf{H}(G)(t) \right) \le L \operatorname{dist} \left(F(t), G(t) \right)$$

for all $F, G \in M_Y(I)$ and $t \in I$ such that F(t), G(t) are nonempty, bounded and closed. Third, from (1) and Lemma 2 we obtain that $\varrho(a\mathbf{d}(\mathbf{H}(F_n), \mathbf{H}(F))) \to 0$ as $n \to \infty$ for every a > 0, where $F \in M^o_{Y,\mathbf{d},\varphi}(I)$, $F_n \in \tilde{M}^o_{Y,\varphi}$, $n \in \mathbf{N}$ and $F_n \xrightarrow{d,\varphi} F$. So $\mathbf{H}(F) \in M^o_{Y,\mathbf{d},\varphi}(I)$ because from Lemma 2 $\mathbf{H}(F_n) \in \tilde{M}^o_{Y,\varphi}(I)$ for every $n \in \mathbf{N}$.

4. On the operators T'_v and T''_v

Let \mathbf{V} be an abstract set of indices and let \mathcal{V} be a filter of subsets of \mathbf{V} .

Definition 4. A function $g : \mathbf{V} \to R$ tends to zero with respect to \mathcal{V} , written $g(v) \xrightarrow{\mathcal{V}} 0$, if for every $\varepsilon > 0$ there is a set $V \in \mathcal{V}$ such that $|g(v)| < \varepsilon$ for every $v \in V$.

Definition 5. Let $F_v \in M_Y(I)$ for every $v \in \mathbf{V}$ and let $F \in M_Y(I)$. We write $F_v \xrightarrow{d,\varphi,\mathcal{V}} F$, if there is $V_o \in \mathcal{V}$ such that $\mathbf{d}(F_v, F)$ are measurable for every $v \in V_o$ and for every $\varepsilon > 0$, every a > 0 there is $V \in \mathcal{V}$ such that

$$\int_{I} \varphi(t, a\mathbf{d}(F_{v}, F)(t)) dt < \varepsilon \text{ for every } v \in V_{o} \cap V.$$

Definition 6. Let $M(I) \subset M_Y(I)$. The family $T = (T_v)_{v \in \mathbf{V}}$ of operators, $T_v : M(I) \to M(I)$ for every $v \in \mathbf{V}$ will be called $(\mathbf{d}, \mathcal{V}, M(I))$ -bounded, if there exist positive constants k_1, k_2 and a function $g : \mathbf{V} \to R_+$ such that $g(v) \xrightarrow{\mathcal{V}} 0$, and for all $F, G \in M(I)$ such that $\mathbf{d}(F, G)$ is measurable there exists a set $V_{F,G} \in \mathcal{V}$ such that $\mathbf{d}(T_v(F), T_v(G))$ are measurable and

$$\int_{I} \varphi(t, a\mathbf{d}(T_{v}(F), T_{v}(G))(t)) dt \leq k_{1} \int_{I} \varphi(t, ak_{2}\mathbf{d}(F, G)(t)) dt + g(v)$$

for every a > 0 and all $v \in V_{F,G}$.

Remark 7. Let the family T be $(\mathbf{d}, \mathcal{V}, M^o_{Y, \mathbf{d}, \varphi}(I))$ -bounded. If $T_v(F) \xrightarrow{d, \varphi, \mathcal{V}} F$ for every $F \in \tilde{M}^o_{Y, \varphi}(I)$, then $T_v(F) \xrightarrow{d, \varphi, \mathcal{V}} F$ for every $F \in M^o_{Y, \mathbf{d}, \varphi}(I)$.

PROOF: Let $a, \varepsilon > 0$ be arbitrary. Let $F \in M^o_{Y,\mathbf{d},\varphi}(I)$ be arbitrary. Let $G \in \tilde{M}^o_{Y,\varphi}$ and $V \in \mathcal{V}$ be such that $\varrho(3a\mathbf{d}(G,F)) < \frac{\varepsilon}{4}$, $\varrho(3ak_2\mathbf{d}(G,F)) < \frac{\varepsilon}{4k_1}$, $\varrho(3a\mathbf{d}(T_v(G),G)) < \frac{\varepsilon}{4}$, $g(v) < \frac{\varepsilon}{4}$ for every $v \in V$, where we may assume that $k_1 \geq 1$. It is easy to see that such G, V exist. We have for every $v \in V \cap V_{F,G}$

$$\varrho(a\mathbf{d}(T_v(F),F)) \leq \\ \leq \varrho(3a\mathbf{d}(T_v(F),T_v(G))) + \varrho(3a\mathbf{d}(T_v(G),G)) + \varrho(3a\mathbf{d}(G,F)) < \varepsilon.$$

Let now I = [0, b) and let us extend φ b-periodically to the whole R.

Definition 7. We shall say that the function φ is τ -bounded, if there are positive constants k_1, k_2 such that

$$\varphi(t-v,u) \le k_1 \varphi(t,k_2 u) + f(t,v)$$
 for all $u,v,t \in R$,

where $f : R \times R \to R_+$ is measurable and *b*-periodic with respect to the first variable and such that writing $h(v) = \int_0^b f(t, v) dt$ for every $v \in R$, we have $M = \sup_{v \in R} h(v) < \infty$ and $h(v) \to 0$ as $v \to 0$ or $v \to b$.

Let now $K_v : [0, b) \to R_+$ for every $v \in \mathbf{V}$ be integrable in [0, b) and singular, i.e.

$$\sigma(v) = \int_0^b K_v(t) \, dt \xrightarrow{\mathcal{V}} 1, \quad \sigma_\delta(v) = \int_\delta^{b-\delta} K_v(t) \, dt \xrightarrow{\mathcal{V}} 0$$

for every $0 < \delta < \frac{b}{2}$, $\sigma = \sup_{v \in \mathbf{V}} \sigma(v) < \infty$. Let us extend K_v b-periodically to the whole R.

Let $q : [0,b) \to R$ be measurable and let us extend q b-periodically to the whole R. We introduce the family of operators $A^1 = (A_v^1)_{v \in \mathbf{V}}$ by the formula:

$$A_v^1(q)(t) = \int_0^b K_v(s-t)q(s) \, ds$$

for every $v \in \mathbf{V}$ and every $t \in [0, b)$.

Let $x : [0, b) \to Y$ be strongly measurable and let us extend x b-periodically to the whole R. We introduce the family of operators $A^2 = (A_v^2)_{v \in \mathbf{V}}$ by the formula:

$$A_{v}^{2}(x)(t) = \begin{cases} \int_{0}^{b} K_{v}(s-t)x(s) \, ds, & \text{if } \int_{0}^{b} K_{v}(s-t)\|x(s)\|_{Y} \, ds < \infty \\ o, & \text{if } \int_{0}^{b} K_{v}(s-t)\|x(s)\|_{Y} \, ds = \infty \end{cases}$$

for every $v \in \mathbf{V}$ and every $t \in [0, b)$.

Let us extend F *b*-periodically to the whole R.

Let $\mathcal{B}_v(F) = \{A_v^2(x) : x \in M([0,b), Y) \cap F\}$ for every $F \in M_Y([0,b))$ and every $v \in \mathbf{V}$.

Remark 8. If $A_v^1 : L^{\varphi}([0,b), R) \to L^{\varphi}([0,b), \overline{R})$, where $\overline{R} = [-\infty, +\infty]$, then $\mathcal{B}_v : M^o_{Y,\varphi}([0,b)) \to M^o_{Y,\varphi}([0,b)).$

PROOF: Let $F \in M^o_{Y,\varphi}([0,b)), v \in \mathbf{V}$. We have for D = [0,b)

$$\sup_{x \in M(D,Y) \cap F} \| \int_0^b K_v(s-t)x(s) \, ds \|_Y \le \sup_{x \in M(D,Y) \cap F} \{ \int_0^b K_v(s-t) \| x(s) \|_Y \, ds \}$$
$$= \int_0^b K_v(s-t)r_F(s) \, ds.$$

On the other hand, for $x(s) = xr_F(s)/||x||_Y$ for every $s \in D$, where $x \in Y$ and $x \neq o$, we have

$$\|\int_{0}^{b} K_{v}(s-t)x(s) \, ds\|_{Y} = \|\frac{x}{\|x\|_{Y}} \int_{0}^{b} K_{v}(s-t)r_{F}(s) \, ds\|_{Y} = \int_{0}^{b} K_{v}(s-t)r_{F}(s) \, ds.$$

Let $0 < \int_{0}^{b} K_{v}(s-t)r_{F}(s) \, ds < \infty$ and let $y \in B(o, \int_{0}^{b} K_{v}(s-t)r_{F}(s) \, ds).$ Let $x_{t}(s) = yr_{F}(s) / \int_{0}^{b} K_{v}(s-t)r_{F}(s) \, ds$

for every $s \in [0, b)$. We have

$$\int_0^b K_v(s-t)x_t(s)\,ds = y \text{ and } x_t \in M([0,b),Y) \cap F$$

because

$$\|x_t(s)\|_Y = \|yr_F(s)/\int_0^b K_v(s-t)r_F(s)\,ds\|_Y \le r_F(s) \text{ for every } s \in [0,b).$$

So $\mathcal{B}(F)(t) = B(o, r_{\mathcal{B}(F)}(t))$ for every $t \in [0, b)$, where

$$r_{\mathcal{B}(F)}(t) = \begin{cases} \int_0^b K_v(s-t)r_F(s)\,ds, & \text{if } A_v^1(r_F)(t) < \infty \\ 0, & \text{if } A_v^1(r_F)(t) = \infty \end{cases}$$

for every $t \in [0, b)$. It is easy to see that $r_{\mathcal{B}(F)} \in L^{\varphi}([0, b), R)$.

Let $F \in M^1_{Y,\varphi}([0,b))$ and let $F(s) = B(a_F(s), r_F(s))$ for every $s \in [0,b)$. We introduce the family of operators $T' = (T'_v)_{v \in \mathbf{V}}$ by the formula:

$$T'_{v}(F)(s) = \begin{cases} B(A_{v}^{2}(a_{F})(s), A_{v}^{1}(r_{F})(s)), & \text{if } A_{v}^{1}(r_{F})(s) < \infty \\ \{A_{v}^{2}(a_{F})(s)\}, & \text{if } A_{v}^{1}(r_{F})(s) = \infty \end{cases}$$

for every $s \in [0, b)$ and every $v \in \mathbf{V}$.

Let $F \in \tilde{M}^o_{Y,\varphi}([0,b))$ and $F(s) = \bigcup_{i=1}^n R(o, r^i_F(s), R^i_F(s))$ for every $s \in [0,b)$, where we receive that if there are $D \subset [0,b), D \in \Sigma$, and m < n such that $F(s) = \bigcup_{i=1}^{m} R(o, \underline{r}_{F}^{i}(s), \underline{R}_{F}^{i}(s)), \ \underline{R}_{F}^{i}(s) < \underline{r}_{F}^{i+1}(s) \text{ for } s \in D, \ i = 1, \dots, m-1$ if m > 1, then we denote $F(s) = \bigcup_{i=1}^{n} (o, r_F^i(s), R_F^i(s))$ for every $s \in D$, where $r_F^i(s) = \underline{r}_F^i(s)$, $R_F^i(s) = \underline{R}_F^i(s)$ for $i = 1, \ldots, m$, $r_F^i(s) = R_F^i(s) = \underline{R}_F^i(s)$ for $i = m + 1, \ldots, n$ for every $s \in D$.

We introduce the family of operators $T'' = (T''_v)_{v \in \mathbf{V}}$ by the formula:

$$T_{v}''(F)(s) = \begin{cases} \bigcup_{i=1}^{n} R(o, A_{v}^{1}(r_{F}^{i})(s), A_{v}^{1}(R_{F}^{i})(s)), & \text{if } A_{v}^{1}(R_{F}^{n})(s) < \infty \\ \{o\}, & \text{if } A_{v}^{1}(R_{F}^{n})(s) = \infty \end{cases}$$

every $s \in [0, b)$ and every $v \in \mathbf{V}$.

for every $s \in [0, b)$ and every $v \in \mathbf{V}$.

Remark 9. If $A_v^1 : L^{\varphi}([0,b), R) \to L^{\varphi}([0,b), \overline{R})$, where $\overline{R} = [-\infty, +\infty]$, then $T'_v: M^1_{Y,\omega}([0,b)) \to M^1_{Y,\omega}([0,b)).$

PROOF: Let $F \in M^1_{Y,\varphi}([0,b)), F(s) = B(a_F(s), r_F(s))$ for every $s \in [0,b)$. It is easy to see that

$$B(A_v^2(a_F)(s), A_v^1(r_F)(s)) = B(A_v^2(a_F)(s), 0) \oplus B(o, A_v^1(r_F)(s))$$

for every $s \in [0, b)$ and $A_v^2 : L^{\varphi}([0, b), Y) \to L^{\varphi}([0, b), Y)$, so $T'_v(F) \in M^1_{Y, \varphi}([0, b))$.

Corollary 1. If the assumptions of Lemma 2 and Remarks 5, 8 hold, then $T'_v(\mathcal{C}): M^1_{Y,\omega}([0,b)) \to M^o_{Y,\omega}([0,b)).$

Applying the proofs of Proposition 2 and Theorem 4 in [3], we obtain the following

Theorem 3. Let φ be a convex, τ -bounded φ -function which fulfils the Δ_2 condition, $\int_0^b \varphi(t,c) dt < \infty$ for every c > 0 and let $(K_v)_{v \in \mathbf{V}}$ be singular. Then $\varrho(a(A_n^2x-x)) \xrightarrow{\mathcal{V}} 0$ for every a > 0 and every $x \in L^{\varphi}([0,b),Y)$.

Corollary 2. If the assumptions of Theorem 3 hold, then

$$\Gamma'_v(F) \xrightarrow{d,\varphi,\mathcal{V}} F$$
 for every $F \in M^1_{Y,\varphi}([0,b))$.

PROOF: By the assumptions $T'_v: M^1_{Y,\varphi}([0,b)) \to M^1_{Y,\varphi}([0,b))$. Let $F \in M^1_{Y,\varphi}([0,b))$, $F(s) = B(a_F(s), r_F(s))$ for every $s \in [0, b)$. We have for a > 0

$$\int_0^b \varphi(t, a\mathbf{d}(T'_v(F), F)(t)) dt$$

$$\leq \frac{1}{2} \int_0^b \varphi(t, 2a \mid A_v^1(r_F)(t) - r_F(t) \mid) dt$$

$$+ \frac{1}{2} \int_0^b \varphi(t, 2a \mid A_v^2(a_F)(t) - a_F(t) \mid_Y) dt \xrightarrow{\mathcal{V}} 0.$$

Remark 10. Let $A = \bigcup_{i=1}^{n} [a_i, b_i]$, $B = \bigcup_{i=1}^{n} [c_i, d_i]$, where $[a_i, b_i]$, $[c_i, d_i]$, $i = 1, \ldots, n$, are nonempty and compact segments in R, then dist $(A, B) \leq \sum_{i=1}^{n} \text{dist}([a_i, b_i], [c_i, d_i])$.

Corollary 3. If the assumptions of Theorem 3 hold, then

$$T_v''(F) \xrightarrow{d,\varphi,\mathcal{V}} F$$
 for every $F \in \tilde{M}_{Y,\varphi}^o([0,b))$.

PROOF: Let $F \in \tilde{M}^{o}_{Y,\varphi}([0,b))$, $F(s) = \bigcup_{i=1}^{m} R(o, r_{F}^{i}(s), R_{F}^{i}(s)), a > 0, v \in \mathbf{V}$. By the assumptions and by Remark 10 (also, see the proof of Remark 2' and [2, Remark 10]) we have

$$\begin{split} &\int_0^b \varphi(t, a \mathbf{d}(T_v''(F), F)(t)) \, dt \\ &\leq \frac{1}{2m} \sum_{i=1}^m \int_0^b \varphi(t, 2am \mid A_v^1(r_F^i)(t) - r_F^i(t) \mid) \, dt \\ &+ \frac{1}{2m} \sum_{i=1}^m \int_0^b \varphi(t, 2am \mid A_v^1(R_F^i)(t) - R_F^i(t) \mid) \, dt \xrightarrow{\mathcal{V}} 0. \end{split}$$

Let $F \in M_{Y,\mathbf{d},\varphi}^{o}([0,b))$. Let $v \in \mathbf{V}$ be arbitrary. If there exists $G_{v} \in M_{Y,\mathbf{d},\varphi}^{o}([0,b))$ such that $\lim_{n\to\infty} \int_{0}^{b} \varphi(t, \mathbf{ad}(T_{v}''(F_{n}), G_{v})(t)) dt = 0$ for every a > 0and every sequence $\{F_{n}\}$ such that $F_{n} \in \tilde{M}_{Y,\varphi}^{o}([0,b))$ for every $n \in \mathbf{N}$ and $\lim_{n\to\infty} \int_{0}^{b} \varphi(t, \mathbf{ad}(F_{n}, F)(t)) dt = 0$ for every a > 0, then we define $T_{v}(F) = G_{v}$.

Theorem 4. Let the assumptions of Theorem 3 hold and there are $K_1, K_2 > 0$ such that $\varrho(a\mathbf{d}(T''_v(F), T''_v(G))) \leq K_1 \varrho(aK_2\mathbf{d}(F, G))$ for all $F, G \in \tilde{M}^o_{Y,\varphi}([0, b)),$ a > 0 and every $v \in \mathbf{V}$, then $T_v(F) \xrightarrow{d,\varphi,\mathcal{V}} F$ for every $F \in M^o_{Y,\mathbf{d},\varphi}([0, b))$.

PROOF: The proof is analogous to that of Theorem 3' from [2], so we give the sketch of it only. Analogously as in that proof we prove that the family $(T_v)_{v \in \mathbf{V}}$ is $(\mathbf{d}, \mathcal{V}, M^o_{Y,\mathbf{d},\varphi}([0, b))$ -bounded. So we obtain the assertion from Remark 7 and Corollary 3.

Final remarks. The results of [2] can be extended in other ways.

1. Let $x, y \in Y$. By s(x, y) we denote the closed segment joining the points x and y. Let $a \in Y$. Define:

$$Y^{a} = \{\lambda a : \lambda \in R\},$$

$$Y^{a}_{\varphi} = \{F \in M_{Y}(I) : F(t) = s(b_{F}(t), e_{F}(t)) \text{ for every } t \in I, \text{ where}$$

$$b_{F}(\cdot), e_{F}(\cdot) \in L^{\varphi}(I, Y^{a})\},$$

$$Y^{n,a}_{\varphi} = \{F \in M_{Y}(I) : F(t) = \bigcup_{i=1}^{n} s(b_{F}^{i}(t), e_{F}^{i}(t)) \text{ for every } t \in I, \text{ where}$$

$$b_{F}^{i}(\cdot), e_{F}^{i}(\cdot) \in L^{\varphi}(I, Y^{a}), i = 1, \dots, n, \|e_{F}^{i}(t)\|_{Y} \leq \|b_{F}^{i+1}(t)\|_{Y} \text{ for every}$$

$$t \in I, i = 1, \dots, n-1 \text{ if } n > 1\},$$

$$\tilde{Y}^{a}_{\varphi} = \bigcup_{i=1}^{\infty} Y^{n,a}_{\varphi},$$

$$Y^{a}_{\mathbf{d}} = \{F \in M_{Y}(I) : \mathbf{d}(F_{n}, F) \to 0 \text{ a.e. for some } F_{n} \in \tilde{Y}^{a}_{\varphi}, n \in \mathbf{N}\},$$

$$Y^{a}_{\mathbf{d},\varphi} = \{F \in Y^{a}_{\mathbf{d}} : \int_{I} \varphi(t, \lambda \mathbf{d}(F_{n}, F)(t)) dt \to 0 \text{ as } n \to \infty \text{ for every } \lambda > 0$$
for some $F_{n} \in \tilde{Y}^{a}_{\varphi}, n \in \mathbf{N}\}.$

The results of [2] will be in force if we replace R by Y, the space $X_{\mathbf{d},\varphi}$ by $Y^a_{\mathbf{d},\varphi}$ and if we introduce the other evident changes.

2. Let $Y = \mathbb{R}^n$. By $\Pi^n(a_i, b_i)$ we denote the Cartesian product of the *n* closed segments $[a_i, b_i]$, where $a_i, b_i \in \overline{R}$. Define

$$Y_{\varphi}^{\Pi^{n}} = \{F \in M_{Y}(I) : F(t) = \Pi^{n}(a_{i}^{F}(t), b_{i}^{F}(t)) \text{ for every } t \in I, \\ a_{i}^{F}(\cdot), b_{i}^{F}(\cdot) \in L^{\varphi}(I, Y) \text{ for } i = 1, \dots, n\}, \\ D(F, G)(t) = \max_{1 \leq i \leq n} \mathbf{d}([a_{i}^{F}, b_{i}^{F}], [a_{i}^{G}, b_{i}^{G}])(t) \text{ for all } F, G \in Y^{\Pi^{n}}, t \in I.$$

We easily obtain that the space $\langle Y^{\Pi^n}, \mathbb{D} \rangle$ is a complete space. For all $F \in Y^{\Pi^n}$, $v \in \mathbf{V}, t \in [0, b)$ we define:

$$T_v^n(F)(t) = \Pi^n(A_v^1(a_i^F)(t), A_v^1(b_i^F)(t)).$$

We easily obtain the following :

Theorem 5. If the assumptions of Theorem 3 hold, then

$$T_v^n(F) \xrightarrow{D,\varphi,\mathcal{V}} F$$
 for every $F \in Y_{\varphi}^{\Pi^n}, n \in \mathbf{N}$.

References

- Kasperski A., Modular approximation in X

 ^φ by a filtered family of dist-sublinear operators and dist-convex operators, Mathematica Japonica 38 (1993), 119–125.
- [2] _____, Notes on approximation in the Musielak-Orlicz spaces of multifunctions, Commentationes Math., in print.
- [3] Musielak J., Modular approximation by a filtered family of linear operators, Functional Analysis and Approximation, Proc. Conf. Oberwolfach, August 9-16, 1980; Birkhäuser Verlag, Basel, 1981, pp. 99–110.
- [4] _____, Orlicz spaces and Modular spaces, Lecture Notes in Mathematics Vol. 1034, Springer-Verlag, Berlin, 1983.
- [5] Wisła M., On completeness of Musielak-Orlicz spaces, Chin. Ann. of Math. 10B (3) (1989), 292–300.

INSTITUTE OF MATHEMATICS, SILESIAN TECHNICAL UNIVERSITY, KASZUBSKA 23, 44-100 GLIWICE, POLAND

(Received January 14, 1993, revised June 25, 1993)