Smooth points of the unit sphere in Musielak-Orlicz function spaces equipped with the Luxemburg norm

Zenon Zbąszyniak

Abstract. There is given a criterion for an arbitrary element from the unit sphere of Musielak-Orlicz function space equipped with the Luxemburg norm to be a point of smoothness. Next, as a corollary, a criterion of smoothness of these spaces is given.

Keywords: Musielak-Orlicz function, Musielak-Orlicz space, support functional, smooth point, smooth space

Classification: Primary 46E30; Secondary 45B20

Introduction

In the following, (T, Σ, μ) denotes a non-atomic σ -finite measure space, \mathbb{R} denotes the set of reals, \mathbb{R}_+ denotes the set of nonnegative reals, \mathbb{N} denotes the set of natural numbers, χ_A stands for the characteristic function of a set $A \in \Sigma$, X denotes a Banach space and X^* denotes its dual space. Their unit balls and spheres are denoted by B(X), $B(X^*)$ and S(X), $S(X^*)$, respectively.

A map $\Phi : T \times \mathbb{R} \to [0, +\infty]$ is said to be a Musielak-Orlicz function if for μ -a.e. $t \in T$, $\Phi(t, \cdot)$ is vanishing and continuous at zero, left-hand side continuous on the whole \mathbb{R}_+ , not identically equal to zero, convex and even and if for any $u \in \mathbb{R}$, $\Phi(\cdot, u)$ is a Σ -measurable function.

For a given Musielak-Orlicz function Φ we define

$$a(t,\Phi) = \sup\{u > 0 : \Phi(t,u) < +\infty\}$$

for any $t \in T$.

We denote by Φ'_{-} and Φ'_{+} the left-hand side and the right-hand side derivatives of Φ with respect to the second variable, respectively. For any $u \in \mathbb{R}$ we define

$$\partial \Phi(t, u) = \begin{cases} \left[\Phi'_{+}(t, u), \Phi'_{-}(t, u) \right] & \text{if } -a(t, \Phi) < u < a(t, \Phi) \\ \left[\Phi'_{-}(t, u), +\infty \right) & \text{if } u = a(t, \Phi) \text{ and } \Phi'_{-}(t, a(t, \Phi)) < +\infty \\ (-\infty, \Phi'_{+}(t, u)] & \text{if } u = -a(t, \Phi) \text{ and } \Phi'_{+}(t, -a(t, \Phi)) > -\infty \\ \{+\infty\} & \text{if } u \ge a(t, \Phi) \text{ and } \Phi'_{-}(t, a(t, \Phi)) = +\infty \\ \{-\infty\} & \text{if } u \le -a(t, \Phi) \text{ and } \Phi'_{+}(t, -a(t, \Phi)) = -\infty \end{cases}$$

I am very much indebted to Professor H. Hudzik for many valuable suggestions

for any $t \in T$ (cf. [GH]). We have for any $u \in \mathbb{R}$:

$$\partial \Phi(t, u) = \left\{ v \in \mathbb{R} : \Phi(t, u) + \Phi^*(t, v) = uv \right\},\$$

where Φ^* is the Musielak-Orlicz function complementary to Φ in the sense of Young, i.e.

$$\Phi^*(t, u) = \sup_{v>0} \{ |u|v - \Phi(t, v) \}$$

for any $t \in T$ and $u \in \mathbb{R}$, under the convention $\Phi^*(t, \pm \infty) = +\infty$.

Denote by $L^0(\mu)$ the space of all (μ -equivalence classes of) Σ -measurable real functions defined on T. Given a Musielak-Orlicz function Φ we can define on $L^0(\mu)$ a convex functional I_{Φ} by the formula

$$I_{\Phi}(x) = \int_T \Phi(t, x(t)) \, d\mu \, .$$

The Musielak-Orlicz space generated by a Musielak-Orlicz function Φ is defined to be the set of all $x \in L^0(\mu)$ for which $I_{\Phi}(\lambda x) < +\infty$ for some $\lambda > 0$ depending on x and it is denoted by $L^{\Phi}(\mu)$. This space endowed with the Luxemburg norm $\| \|_{\Phi}$ defined by

$$\|x\|_{\Phi} = \inf\{\lambda > 0 : I_{\Phi}(x/\lambda) \le 1\}$$

is a Banach space (cf. [M]). In the case when $\Phi(t_1, \cdot) = \Phi(t_2, \cdot)$ for μ -a.e. $t_1, t_2 \in T$, Φ is a usual Orlicz function and $L^{\Phi}(\mu)$ is called an Orlicz space.

We can define in $L^{\Phi}(\mu)$ another norm $\| \|_{\Phi}^{0}$, called the Orlicz norm, by the formula

$$||x||_{\Phi}^{0} = \sup\{|\int_{T} x(t)y(t) d\mu| : I_{\Phi^{*}}(y) \le 1\},\$$

where Φ^* is the Musielak-Orlicz function complementary to Φ in the sense of Young (cf. [M] and in the case of Orlicz spaces also [KR], [L] and [RR]). The Amemiya formula for the Orlicz norm is the following:

$$\|x\|_{\Phi}^{0} = \inf_{k>0} \frac{1}{k} (1 + I_{\Phi}(kx))$$

(cf. [KR] and [RR]).

We say that a Musielak-Orlicz function Φ satisfies the Δ_2 -condition if there exist a constant $K \geq 2$, a set T_0 of measure zero and a Σ -measurable function $h: T \to \mathbb{R}_+$ such that $\int_T h(t) d\mu < +\infty$ and the inequality

$$\Phi(t, 2u) \le K\Phi(t, u) + h(t)$$

holds for any $u \in \mathbb{R}$ and $t \in T \setminus T_0$ (cf.[K] and [M]).

Recall that a functional $x^* \in X^*$ is said to be a support functional at $x \in X$ if $||x^*|| = 1$ and $x^*(x) = ||x||$. The set of all support functionals at x is denoted by $\operatorname{Grad}(x)$. A point $x \in X$ is said to be smooth if $\operatorname{Card}(\operatorname{Grad}(x)) = 1$ (cf. [D] and [P]).

It is known (cf. [HY], [K] and in the case of Orlicz spaces also [A]) that for any finite-valued Musielak-Orlicz function Φ , we have

(1)
$$(L^{\Phi}(\mu))^* = L^{\Phi^*}(\mu) \oplus S$$

where S is the space of all singular functionals over $L^{\Phi}(\mu)$, i.e. functionals which vanish on the subspace $E^{\Phi}(\mu)$ of $L^{\Phi}(\mu)$ defined by

$$E^{\Phi}(\mu) = \{ x \in L^{0}(\mu) : I_{\Phi}(\lambda x) < +\infty \text{ for any } \lambda > 0 \}$$

Equality (1) means that every $x^* \in (L^{\Phi}(\mu))^*$ is uniquely represented in the form

(2)
$$x^* = T_v + \varphi$$

where $\varphi \in S$ and T_v is the functional generated by an element $v \in L^{\Phi^*}(\mu)$ by the following formula

(3)
$$T_{v}(y) = \int_{T} v(t)y(t) d\mu \quad (\forall y \in L^{\Phi}(\mu)).$$

Every functional T_v of the form (3) is said to be a regular functional. It is well known that if $L^{\Phi}(\mu)$ is endowed with the Luxemburg norm, then for every $x^* \in (L^{\Phi}(\mu))^*$ we have

(4)
$$||x^*|| = ||T_v|| + ||\varphi||,$$

where T_v and φ are the regular and singular parts of x^* , respectively (cf. [K] and [A], [N]).

The set of all regular (singular) functionals from $\operatorname{Grad}(x)$ will be denoted by $\operatorname{RGrad}(x)$ (resp. $\operatorname{SGrad}(x)$).

It is worth to recall at this place that smoothness of Musielak-Orlicz sequence spaces was considered in [HY] and [PY]. Moreover, smoothness of Orlicz function spaces equipped with the Orlicz norm was characterized in [C].

Results

We start with some auxiliary lemmas.

Lemma 1. Let Φ be a Musielak-Orlicz function such that $\Phi(t, u)/u \to +\infty$ as $u \to +\infty$ for μ -a.e. $t \in T$. Then there exists a constant l > 0 such that

(5)
$$||x||_{\Phi}^{0} = \frac{1}{l}(1 + I_{\Phi}(lx))$$

PROOF: It can be proceeded in an analogous way as the proof of Lemma 1 in [GH]. $\hfill \Box$

Lemma 2 (A.Kamińska [Ka]). Let Φ be a Musielak-Orlicz function. Then there exists an increasing sequence (T_i) such that $\mu(T_i) < +\infty$, $\mu(T \setminus \bigcup_{i=1}^{\infty} T_i) = 0$ and $\sup_{t \in T_i} \Phi(t, u) < +\infty$ for every $u \in \mathbb{R}_+$, $i \in \mathbb{N}$.

Lemma 3. Assume Φ is a finite-valued Musielak-Orlicz function, $x \in S(L^{\Phi}(\mu))$ and $I_{\Phi}(\lambda x) < +\infty$ for some $\lambda > 1$. Then every $x^* \in \text{Grad}(x)$ must be regular.

PROOF: In virtue of Lemma 2, we can replay the proof of Lemma 2 in [GH]. \Box

Lemma 4. Assume Φ is a finite-valued Musielak-Orlicz function and $I_{\Phi}(\lambda x/||x||_{\Phi})$ < $+\infty$ for some $\lambda > 1$. Then

1° RGrad $(x) \neq \emptyset$, 2° $x^* \in \operatorname{RGrad}(x)$ if, and only if it is of the form

(8)
$$x^*(y) = T_w(y) = \int_T w(t)y(t) \, d\mu \quad (\forall y \in L^{\Phi}(\mu)),$$

where

(9)
$$w(t) = z(t) / \int_T z(t) (x(t) / ||x||_{\Phi}) \, d\mu$$

and

(10) z is a
$$\Sigma$$
-measurable function such that $z(t) \in \partial \Phi(t, x(t)/||x||_{\Phi})$

for μ -a.e. $t \in T$.

PROOF: We can repeat here the proof of Lemma 3 from [GH].

Lemma 5. Let Φ be a finite-valued Musielak-Orlicz function, $x \in S(L^{\Phi}(\mu))$ and $I_{\Phi}(\lambda x) = +\infty$ for every $\lambda > 1$. Then there are sets $A, B \in \Sigma$ of positive measure such that $\mu(A \cap B) = 0, A \cup B = \text{supp } x$ and

 \Box

$$||x\chi_A||_{\Phi} = ||x\chi_B||_{\Phi} = 1.$$

PROOF: Although Lemma 5 is an analogue of Lemma 6 from [GH], we cannot repeat its proof which was suitable only for Orlicz spaces which are rearrangement invariant spaces. We will present here a completely new proof.

Let $(T_n)_{n=1}^{\infty}$ be the sequence of sets from Lemma 2. Then we have

$$I_{\Phi}(u\chi_{T_n}) < +\infty \quad (\forall u > 0, n \in \mathbb{N}) \,.$$

Let $\lambda_1 > \lambda_2 > \ldots$ and $\lambda_n \to 1$ as $n \to +\infty$. Since $I_{\Phi}(\lambda_1 x) = +\infty$, we can find $n_1 \in \mathbb{N}$ such that the set

$$A_1 = \{t \in T_{n_1} : |x(t)| \le n_1\}$$

satisfies the inequality $I_{\Phi}(\lambda_1 x \chi_{A_1}) \geq 2$.

We have $I_{\Phi}(\lambda_2 x \chi_{T \setminus A_1}) = +\infty$ because of $I_{\Phi}(\lambda_2 x \chi_{A_1}) < +\infty$, and we can find $n_2 \in \mathbb{N}$ such that defining

$$A_2 = \{ t \in (T \setminus A_1) \cap T_{n_2} : |x(t)| \le n_2 \}$$

we get $A_1 \cap A_2 = \emptyset$ and $I_{\Phi}(\lambda_2 x \chi_{A_2}) \ge 2$.

We have again $I_{\Phi}(\lambda_3 x \chi_{T \setminus (A_1 \cup A_2)}) = +\infty$. Repeating this procedure by induction we can find a sequence $(A_n)_{n=1}^{\infty}$ of pairwise disjoint sets such that

 $I_{\Phi}(\lambda_n x \chi_{A_n}) \ge 2 \quad (n = 1, 2, \dots).$

We can now decompose every set A_n into the sum

$$A_n = A'_n \cup A''_n$$

of disjoint and measurable sets such that

$$I_{\Phi}(\lambda_n x \chi_{A'_n}) = I_{\Phi}(\lambda_n x \chi_{A''_n}) = \frac{1}{2} I_{\Phi}(\lambda_n x \chi_{A_n}) \ge 1.$$

Define now disjoint sets

$$A = \bigcup_{n=1}^{\infty} A'_n, \quad B = \bigcup_{n=1}^{\infty} A''_n$$

and the functions

$$y = x\chi_A + \frac{1}{2}x\chi_{T\backslash(A\cup B)},$$

$$z = x\chi_B + \frac{1}{2}x\chi_{T\backslash(A\cup B)}.$$

Obviously, we have x = y + z and we need to prove that $||y||_{\Phi} = ||z||_{\Phi} = 1$. It is evident that $|y(t)| \leq |x(t)| \mu$ -a.e., therefore $I_{\Phi}(y) \leq I_{\Phi}(x) \leq 1$. Let us take an arbitrary $\lambda > 1$. We can find $m \in \mathbb{N}$, such that $\lambda \geq \lambda_m$. Hence

$$I_{\Phi}(\lambda y) \ge I_{\Phi}(\lambda_m y) \ge I_{\Phi}(\lambda_m x \chi_{A'_m}) \ge 1$$
,

which yields together with $I_{\Phi}(y) \leq 1$ that $||y||_{\Phi} = 1$. In the same way we obtain that $||z||_{\Phi} = 1$.

Now, we are ready to prove the main results of this paper.

Theorem 6. Let Φ be a finite-valued Musielak-Orlicz function. A point $x \in S(L^{\Phi}(\mu))$ is smooth if and only if:

- (i) $I_{\Phi}(\lambda x) < +\infty$ for some $\lambda > 1$,
- (ii) Φ is smooth at x(t) for μ -a.e. $t \in T$.

PROOF: It follows by Lemmas 3, 4 and 5 in the same way as Theorem 8 in [GH].

Theorem 7. Let Φ be a finite-valued Musielak-Orlicz function. $L^{\Phi}(\mu)$ is smooth if and only if

- (i) Φ is smooth,
- (ii) Φ satisfies the Δ_2 -condition.

PROOF: Sufficiency. Note that, in virtue of the Δ_2 -condition, $a(t, \Phi) = +\infty$ for μ -a.e. $t \in T$ and $E^{\Phi}(\mu) = L^{\Phi}(\mu)$. Therefore, $\operatorname{Grad}(x) = \operatorname{RGrad}(x)$ for every $x \in S(L^{\Phi}(\mu))$. Thus, condition (i) implies that $\operatorname{Card}(\operatorname{Grad}(x)) = 1$ for every $x \in S(L^{\Phi}(\mu))$ (cf. Lemma 4), which means that $L^{\Phi}(\mu)$ is smooth.

Necessity. Assume that Φ does not satisfy condition (ii). Then there is $x \in S(L^{\Phi}(\mu))$ such that $I_{\Phi}(\lambda x) = +\infty$ for any $\lambda > 1$ (cf. [H]). Therefore, in view of Lemma 5, there exist $A, B \in \Sigma$ such that $\mu(A \cap B) = 0, A \cup B = \operatorname{supp} x$ and $\|x\chi_A\|_{\Phi} = \|x\chi_B\|_{\Phi} = 1$. Therefore, as it was shown on the occasion of the proof of Theorem 6, x is not smooth.

Assume now that Φ satisfies condition (ii) and does not satisfy condition (i), i.e. Φ is not smooth. Thus, there exists a set $K \in \Sigma$, $\mu(K) > 0$, such that $\Phi(t, \cdot)$ have in \mathbb{R}_+ at least one point of nonsmoothness for any $t \in K$. Define a multifunction Γ by

$$\Gamma(t) = \{ u \in \mathbb{R}_+ : \Phi'_-(t, u) < \Phi'_+(t, u) \} \quad (\forall t \in K) \,.$$

The Carathéodory conditions for Φ imply the $\Sigma \times \mathcal{B}$ -measurability of Φ and this implies the $\Sigma \times \mathcal{B}$ -measurability of Φ'_{-} and Φ'_{+} , where \mathcal{B} denotes the Σ -algebra of Borel sets. Now, we can apply Theorem 5.2 from [Hi], because $\operatorname{Grad} \Gamma = \{(t, u) \in T \times \mathbb{R}_{+} : u \in \Gamma(t)\} = \{(t, u) \in T \times \mathbb{R}_{+} : \Phi'_{-}(t, u) < \Phi'_{+}(t, u)\} \in \Sigma \times \mathcal{B}$. We get a measurable function (selector) $a : K \to \mathbb{R}_{+}$, such that $a(t) \in \Gamma(t)$ for μ -a.e. $t \in K$. Take $K_{1} \in \Sigma$, $K_{1} \subset K$ such that $I_{\Phi}(a\chi_{K_{1}}) \leq 1$. Choose a function $b : T \setminus K_{1} \to \mathbb{R}_{+}$ in such a manner that $I_{\Phi}(x) = 1$, whenever x = a + b. Now, we can take two measurable functions $c, d : K_{1} \to \mathbb{R}_{+}$, $c(t), d(t) \in \partial \Phi(t, a(t))$, $c(t) \neq d(t)$ for μ -a.e. $t \in K_{1}$ (we can put for example $c(t) = \Phi'_{-}(t, a(t))$, d(t) = $\Phi'_{+}(t, a(t))$, because the $\Sigma \times \mathcal{B}$ -measurability of $\Phi'_{-}(t, u)$ and $\Phi'_{+}(t, u)$ implies the Σ -measurability of these functions). Take a Σ -measurable function such that $e : T \setminus K_{1} \to \mathbb{R}_{+}$, $e(t) \in \partial \Phi(t, b(t))$ for μ -a.e. $t \in T \setminus K_{1}$. Define two functionals:

$$x^{*}(y) = \frac{\int_{T} (c(t)\chi_{K_{1}}(t) + e(t)\chi_{T\setminus K_{1}}(t))y(t) d\mu}{\int_{T} (c(t)\chi_{K_{1}}(t) + e(t)\chi_{T\setminus K_{1}}(t))x(t) d\mu} \quad (\forall y \in L^{\Phi}(\mu)),$$

$$x^{*}_{1}(y) = \frac{\int_{T} (d(t)\chi_{K_{1}}(t) + e(t)\chi_{T\setminus K_{1}}(t))y(t) d\mu}{\int_{T} (d(t)\chi_{K_{1}}(t) + e(t)\chi_{T\setminus K_{1}}(t))x(t) d\mu} \quad (\forall y \in L^{\Phi}(\mu)),$$

belonging, in view of Lemma 4, to $\operatorname{RGrad}(x)$. Since $x^* \neq x_1^*$, x is not smooth. Therefore, $L^{\Phi}(\mu)$ is not smooth, too. The theorem is proved.

Corollary 8. Let Φ be a finite-valued Musielak-Orlicz function. The space $E^{\Phi}(\mu)$ is smooth if and only if Φ is smooth.

PROOF: The sufficiency follows by the sufficiency part of the proof of Theorem 7 and the fact that the dual of $E^{\Phi}(\mu)$ consists of only regular functionals.

To prove necessity we need to find a point $x \in S(E^{\Phi}(\mu))$ which is not smooth. Define

$$G_{i,n} = \{t \in T_i \cap K : \Phi(t, a(t)) \le n\}$$
 $i, n = 1, 2, \dots$

where T_i are the sets from Lemma 2.

There exist $i_0, n_0 \in \mathbb{N}$ and a measurable subset G of G_{i_0,n_0} such that

$$0 < I_{\Phi}(a\chi_G) = \int_G \Phi(t, a(t)) \, d\mu < 1 \, .$$

Denote $I_{\Phi}(a\chi_G) = \varkappa$ and define

$$H_i = T_i \cap (T \setminus K) \quad i = 1, 2, \dots$$

There exists $i_1 \in \mathbb{N}$ such that $\mu(H_{i_1}) > 0$. By Lemma 2 it follows that $b\chi_{H_{i_1}} \in E^{\Phi}(\mu)$ for every b > 0. The function $f(b) = I_{\Phi}(b\chi_{H_{i_1}})$ is convex and finite-valued, so it is continuous on \mathbb{R}_+ . Moreover, $f(b) \to +\infty$ as $b \to +\infty$, whence it follows that $\operatorname{Image}(f) = \mathbb{R}_+$. Thus, we can find $b_1 > 0$ satisfying $I_{\Phi}(b_1\chi_{H_{i_1}}) = 1 - \varkappa$. Defining x by the formula

$$x(t) = a(t)\chi_G(t) + b_1\chi_{H_{i_1}}(t)$$

we have $I_{\Phi}(x) = 1$. The fact that x is not smooth can be proved in the same way as in Theorem 7.

References

- [A] Ando T., Linear functionals on Orlicz spaces, Nieuw Arch. Wisk. 3,8 (1960), 1–16.
- [C] Chen S., Smoothness of Orlicz spaces, Comment. Math. (Prace Matem.) 27,1 (1987), 49–58.
- [D] Diestel J., Geometry of Banach spaces selected topics, Lecture Notes in Math. 481, Springer-Verlag, 1975.
- [GH] Grzaslewicz R., Hudzik H., Smooth points of Orlicz spaces equipped with the Luxemburg norm, Math. Nachrichten 155 (1992), 31–45.
- [Hi] Himmelberg C.J., Measurable relations, Fund. Math. 87,1 (1975), 53-72.
- [H] Hudzik H., On some equivalent conditions in Musielak-Orlicz spaces, Comment. Math. (Prace Matem.) 24,1 (1984), 57–64.
- [HY] Hudzik H., Ye Y., Support functionals and smoothness in Musielak-Orlicz sequence spaces endowed with the Luxemburg norm, Comment. Math. Univ. Carolinae 31,4 (1990), 661– 684.
- [Ka] Kamińska A., Some convexity properties of Musielak-Orlicz spaces of Bochner type, Supplemento ai Rendiconti del Circolo Mathematico di Palermo, Serie II 10 (1985), 63–73.
- [K] Kozek A., Convex integral functionals on Orlicz spaces, Comment. Math. (Prace Matem.) 21,1 (1980), 109–135.
- [KR] Krasnoselskii M.A., Rutickii Ya.B., Convex functions and Orlicz spaces, Groningen 1961 (translation).
- [L] Luxemburg W.A.J., Banach function spaces, Thesis, Delft 1955.
- [M] Musielak J., Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag 1983.

Z. Zbąszyniak

- [N] Nowak M., Linear functionals on Orlicz sequence spaces without local convexity, Internat. J. of Math. and Math. Sciences 1992.
- [P] Phelps R., Convex functions, monotone operators and differentiability, Lecture Notes in Math. 1364, Springer-Verlag, 1989.
- [PY] Pluciennik R., Ye Y., Differentiability of Musielak-Orlicz sequence spaces, Comment. Math. Univ. Carolinae 30 (1989), 699–711.
- [RR] Rao M.M., Ren Z.D., Theory of Orlicz spaces, Marcel Dekker Inc., New York-Basel-Hong Kong, 1991.

Institute of Mathematics, Technical University of Poznaň, Piotrowo 3a, 60-965 Poznaň, Poland

(Received September 4, 1992)