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On function spaces of Corson-compact spaces

INGO BANDLOW

Abstract. We apply elementary substructures to characterize the space Cp(X) for Corson-
compact spaces. As a result, we prove that a compact space X is Corson-compact, if
Cp(X) can be represented as a continuous image of a closed subspace of (L;)* X Z,
where Z is compact and L, denotes the canonical Lindel6f space of cardinality 7 with
one non-isolated point. This answers a question of Archangelskij [2].
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1. Elementary substructures

We begin with a brief exposition of some definitions and facts concerning ele-
mentary substructures (see also A. Dow [5], K. Kunen [7]). A non-empty subset
M of a set H is said to be an elementary substructure of H, if for any formula

¢(x1,...,xn) of the language of set theory with the only free variables x1, ...,z
and for any aj,...,an € M ¢[ay,...,an] is true in M if and only if it is true
in H.

A frequently used argument is Tarski’s Criterion:

A subset M of ‘H forms an elementary substructure of H if and only
if for every formula ¢(zg,z1,...,2n) of the language of set theory
and every ai,...,an € M such that there exists an a € H such that
dla,aq, ..., ap] is true in H, there is a b € M such that ¢[b, a1, ..., ap)
is true in H (and therefore in M).

The base of all our applications of elementary substructures is the following

Theorem 1.1 (Léwenheim-Skolem-Tarski). For every infinite set H and each
subset X C H there exists an elementary substructure M of H such that X C M
and |M| = max{| X|,w}.

If @ is a cardinal, then H(f) denotes the collection of all sets hereditarily of
cardinality < 6. We will usually be interested in elementary substructures of
H(8), where 6 is a sufficiently large regular cardinal. The main reason is that
for any sentence ¢ there exists a large enough regular cardinal € such that ¢ is
true (in V) if and only if it is true in (). In practice, one “chooses” 6 without
discussion how large it needs to be.

The following fact is well known and useful.
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Proposition 1.2. If 60 is a regular uncountable cardinal, M an elementary
substructure of H(#) and A € M a countable set, then A C M.

If H is an uncountable [H]“ denotes the set of all countable subsets of H.
C C [H]¥ is said to be unbounded if for every X € [H]¥ there is a Y € C with
X CY. We say C is closed if, whenever X, € C' and X,, C X+ for each n € w,
then | J{X, : n € w} € C. A consequence of Theorem 1.1 is that the family of all
countable elementary substructures of H is closed and unbounded. Remark, that
the intersection of two closed unbounded subsets of [H]* is closed unbounded,
too.

For the sake of simplicity we shall often write “Let M be a suitable elementary
substructure ... 7. This means that all “information” we need to investigate an
object, say a topological space, can be found in M. For example, if X is a dyadic
compact space, we suppose that there is a continuous mapping f : D™ — X,
which is an element of M. Obviously there is always a closed unbounded family

of “suitable” countable elementary substructures. On the other hand, “ ... if
for any suitable countable elementary substructure M the following condition is
satisfied ... ” means that the condition is satisfied for all countable substructures

from a closed unbounded subset of [H(6)]“, where 6 is a large enough (with respect
to the object we investigate) regular cardinal.

2. The main construction

Now we are going to describe a construction for arbitrary uniform spaces. Let
(X,U) be a uniform space (see Engelking [6]). If M is an elementary substructure
with X, U € M, the equivalence relation on X is defined by

zryM) iff |x—y|<V foreach VeldNnM.

If © ~ y(M), we say that z and y are M-equivalent. Let X (M, ) denote the set
of all equivalence classes and ¢/)\(/}Z/{ the canonical mapping of X onto X (M). (For
short, we often write X (M) and (;5/)\(4 and drop the U.) A uniformity U(M) is
given on X (M) by all entourages V of the diagonal in X (M). U(M) is defined
by

|¢ﬁ(w) — ¢5\(4(y)| <Vpm iff |2’ —¢/| <V forall 2/ 4/ € X
such that 2’ ~ (M) and 3 =~ y(M),

where V' is an arbitrary element of U/ N M.

gb/)& is uniformly continuous with respect to the uniformities & and U (M) on X
and X (M) respectively (see Bandlow [3]). Now we shall give some easy assertions
used in the sequel.

Fact 2.1. Let f: (X,U) — (Y,V) be a uniformly continuous mapping, suppose
f € M. Then there exists a uniformly continuous mapping faq : X (M) — Y (M)
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which makes the following diagram commutative:

f

X — Y
(1) ok | |o%
X(M) - Y(M)

Fact 2.2. Let (X,U) be the product of the uniform spaces {(X;,U;) : t € T};
suppose {(X¢,U) : t € T} € M. Then (X (M),U(M)) is uniformly homeomor-
phic to the product of the uniform spaces {(Xi(M),Us(M)) : t € T N M} in
a natural way.

Fact 2.3. If (Y,Uy) is a uniform subspace of (X,U), then Y (M) is uniformly
homeomorphic to ¢§4 (Y) in a natural way.

Fact 2.4. If X is a compact Hausdorff space, there is a unique uniformity &/ on
X which induces the original topology on X. U is generated by all sets of the

form
U, =y file) - fily) <e, i=1,...,n},

where f1,..., fn are arbitrary real-valued continuous functions on X, n € N and
e > 0. Let M be a suitable elementary substructure. It is easy to see that for any
pair of distinct points z,y € X we have ¢/)\(/( (z) # ¢/)6( (y) if and only if there is
a function f € C(X)NM with f(x) # f(y). Consequently, ¢/)6( corresponds to the
mapping which relates each point x € X to ( fx)c( X)nM from the product space
ROCINM = Ay easy consequence is that for each function f € C(X) N M there
is a continuous function fjq : X(M) — R such that f = fp o0 (bi\(/l' IfU e M
is a functionally open subset of X, i.e. if there is a function f € C(X) N M
with U = f£71(0,1), then let Uy, be defined by Upq = fx/tl(O, 1). Remark that
U= (qu)\(/[)_lU ‘M- The family consisting of all open subsets of X (M) of the form

Uy, where U is a functionally open subset of X and belongs to M, is a base for
the topology of X (M).

We now prove that if X is a Lindel6f space, then X (M) as a topological space
does not depend on the uniformity on X.

Proposition 2.5. Let X be a Lindeléf space and let U and V be uniformities on
X, which induces the topology on X. If M is a suitable elementary substructure,
then:
XU XU . o X X . .
(a) ¢y (@) = ¢)y; (v) if and only if (ij’lv(x) = (ij’lv (y) for arbitrary points
zyeX (X(M)=XM,U)=XM,V)).
(b) U(M) and V(M) generate the same topology on X (M).

ProoOF: W.lo.g. we may assume that ¥V C Y. Let xg,yg be a pair of distinct
points of X. Suppose that qS/‘)\(/’tu(xo) + qu\(/’tu(yo), ie. |zg — yo| = U for some
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U eUnNM. We can choose a W € U N M such that 4W C U.

n = {Int B(z,W) : x € X} is an open cover of the space X and belongs to M.
Here B(z,W) denotes the set {y € X : |v —y| < V}. Therefore there exists
a countable subcover ' = {Int B(z,, W) : n = 1,2,3,...} which also belongs
to M. By Proposition 1.2, we may assume that all points z,, n =1,2,3,..., are
elements of M. Hence we can fix 21,29 € X N M such that g € B(z1, W) and
yo € B(z9,W). F =cl(B(z1,W)) and G = cl(B(z2, W)) are elements of M too,
and we have g € F, yp € G and FNG = (). For every point x € F there exists an
entourage V; € V such that B(x,2V;)NG = 0. Similarly as above we consider now
the open cover & = {Int B(z,V,) : x € F'} of F. Since F and G are elements of
M, £ also belongs to M. Let ¢ = {Int B(xp, Vs, )n =1,2,3,...} be a countable
subcover of £. We may assume that ¢ belongs to M and, consequently, that
all x,, and Vg, are elements of M. Hence, there exists a point z € FFN M
and an entourage V € V N M such that zg € B(z,V) and B(z,2V) NG =0, i.e.
|zo—yo| > V and ¢/)\(/}V (xo) # ¢ﬁv (yo). This proves the assertion (a) and we may
identify X (M) = X(M,U) = X(M,V). Let T;; and Ty, denote the topologies on
X (M) generated by U(M) and V(M), respectively. We have to prove that the
(identical) mapping

(XM), Ty) — (X (M), Tyy)

is continuous with respect to these topologies. Suppose zg € X and O is a neigh-
borhood of ¢,(zo) in (X(M),Ty). Then there is a U € U N M such that
¢/)\(/( (B(zg,u)) C O. It is sufficient to check that there exists a V € ¥V N M with
B(zg,V) C B(z,U). To do this we take a W € U N M with 2W C U and
consider the open cover {Int B(xz,W) : © € X} of (X,Ty). For every x € X
there exists a Vi, € V such that B(x,2V;) C Int B(z,W). One can assume
that the open cover of (X,Ty) {Int B(z,V;) : * € X} is an element of M.
Using the same arguments as above we can find a point z € X N M and an en-
tourage V € VN M such that z9 € B(z,V) and B(z,2V) C B(z,W). Hence,
B(zg,V) C B(z,2V) C B(z,W) C B(z,2W) C B(xg,U). The proof is now
complete. O

3. Corson-compact spaces

A compact Hausdorff space X is called Corson-compact, if it is homeomorphic
to a subset of

Z(RT) = {x e RT : supp (z) is countable} ,

where supp (z) = {t € T : x(t) # 0} for x € RT, for some set T. Corson-
compact spaces have been extensively studied by various authors (for a detailed
information see Archangelskij [2], and Negrepontis [8]).

It is easy to verify that for any suitable elementary substructure M, gb/)& maps
cl (X N M) homeomorphic on X (M). The main result of the previous paper is
the following characterization of Corson-compact spaces.
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Theorem 3.1 (Bandlow [4]). A compact Hausdorff space X is Corson-compact
iff for any suitable countable elementary substructure M, ¢/)6( maps cl (X N M)
homeomorphically on X (M).

4. The construction and Cp(X)

Our aim now is to consider the space Cp(X) of all real-valued continuous func-
tions on a completely regular space X in the topology of pointwise convergence.
The natural uniformity is given on Cj,(X) by all sets of the form

u§17___7;(;n = {<fa g> : |f($2) - g($2)| <eg i=1,... 7”}7
with 21,...,2p, € X, n € Nand € > 0.

It is easy to see that two continuous functions f and g on X are M-equivalent
if and only if f [ xqm= 9 | xnm-

In connection with Cp(X), we consider on X the uniformity generated by all
real-valued continuous functions. There is a natural embedding ¢ from X into the
product space RE(X) and therefore an embedding i x4 from X (M) into REX)NM

Let X (M) denote the image of X by the projection mapping onto
We get the following diagram:

2

x ‘. ROX)

% |

(2) X(M) _IM | pel(C(X)NM)

% |
X(M) M RE(X)NM
Lemma 4.1. w/)\(/l is a bijection from X (M) onto X (M).

PrROOF: Let x and y be a pair of different points of X with 55\(4 (z) # 55\(4 (y)-
Then there exists a function g € cl(Cp(X) N M) such that g(xz) # g(y). Let
e = |g(z)—g(y)|/2. Then there is a function f € Cp(X)NM with |f(z)—g(z)| < e

and |f(y) — g(y)| < e. Hence, g(z) # g(y) and pX; # X (y). 0

Remark 4.2. If X is compact, then 1/1/)\(4 is a homeomorphism and we identify

X (M) and X (M). It is possible to show that 1/)/)6( is a homeomorphism, if X is
a Lindelof p-space or pseudocompact.

If f: X — Y is a continuous mapping, then let f*: C(Y) — C(X) denote the
mapping induced by f.

Lemma 4.3. (¢r)*Cp(X(M)) = cl (Cp(X) N M).
PROOF: Obviously, we have Cp(X) N M C (¢X))*Cp(X(M)) and cl (Cp(X) N
M) C @ﬁ)*cp(X(M)) (see diagram (2)). Since 1%, is a bijection mapping,

ReL(C(X)NM)
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(1/1/)\(4)*OP(X(M)) is a dense subspace of Cp(X(M)) and therefore

(gb/)\(/()*Op(X(./\/l)) is a dense subspace of (aﬁ)*Op(X(M)) Now, it is sufficient
to show that Cp(X) N M is a dense subset of (¢/)6()*Cp(X(M)). Let ¢’ be an
arbitrary continuous function on X (M) and g = ¢’ o ¢/)\{/(' Also, let x1,...,z, be
points of X and ¢ a positive real number. Choose points y1, ..., yg of X such that
gb%/l(y,) + gb%/l(yj) for distinct 7, j < k and ¢5\(4{$1, R gb%/l{yl, ooyt It
is enough to show that there is a function f € Cp(X)NM with |f(y;) — g(vi)| <
g for all ¢ = 1,...,k. Since ¢/)\(A(yl) # ¢/)\(A(yj) for distinct 7,5 < k, we find
functionally open neighborhoods V1,..., Vi of y1,. .., yg, respectively, in M with
cl(V;)Nel (V}) = 0 for distinct ¢, j. There exist functions f1,..., f in Cp(X)NM
such that V; = fi_l(O, 1) for every ¢ = 1,..., k. Fix rational numbers qi,...,qx
such that |q; - fi(y;) — g(y;)| < € for all ¢ = 1,..., k. Remark that all rational
numbers are elements of M. f =gq1-f1+-- -+ qx - fi is the desired function. O

Corollary 4.4. Let X be a compact Hausdorff space. Then

(634)*Cp(X (M) = el (Cp(X) N M).

A characterization of Cp(X) for Corson-compact spaces

Let X be a completely regular space. We consider X with the uniform structure
induced by all real-valued continuous functions on X. The following definition
plays the decisive role in what follows.

Definition 5.1. One says that the completely regular space X has the prop-
erty €, if for sufficiently large regular cardinals 6 there exists a closed unbounded
family C' of countable elementary substructures of H(#) such that ¢/)6( (X N
M) = X (M) for every M € C.

More briefly X € Q, if gb%/l cl (X N M) = X (M) for every suitable countable
elementary substructure M.

It is easy to verify that every compact Hausdorff space satisfies this condition.
More generally, we have the following

Proposition 5.2. Every Lindel6f p-space has the property €.

PROOF: Since gb/)\(/( (X N M) is always a dense subset of X (M), it is enough to
prove that (bﬁ is a perfect mapping. X is a Lindel6f p-space if and only if there is
a perfect mapping g : X — Y, where Y has a countable base. By Proposition 2.5
we may assume that g is uniformly continuous. Since ‘b}\//l is a homeomorphism,
g can be represented as a composition of gb/)\(/( and gaq. This implies that gb/)\(/( is
perfect. (I

Proposition 5.3. Let X be a Lindeldf space, satisfying 2. If f is a continuous
mapping from X onto a completely regular space Y, then Y satisfies €2, too.
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PRrOOF: Like in the proof of previous proposition, we assume that f is uniformly
continuous and consider the commutative diagram

f

X — Y
(3) ok | e
X(M) —— Y(M)

It is easy to see that f(X N M) =Y N M and, consequently, f(cl(X NM) C
cl (Y N M)). Hence, Y (M) = far(¢X,cl(X NM)) = ¢ (cl (Y N M)). O
Theorem 5.4. If X € Q, then each compact subspace of Cp(X) is a Corson-
compact space.

PROOF: Let M be a suitable countable elementary substructure. Set Z = Cp(X).
By Theorem 3.1, it suffices to show that ¢/Zvl(f) #+ qﬁf/t (g9) for any pair f,g €
c(Cp(X)NM) = (Eﬁ)*Cp(m), f # g. There exist continuous functions
f!, ' on X (M) such that f = f’oaj\(,l and g = g’oaj\(,l. From X € Q it follows that
Eﬁ (X N M) is a dense subset of X (M). Hence, there exists a point z € X N M

with f’(aj\{/t(:v)) + g'@/‘)\(/‘ (x)), i.e. f(z) # g(x) and therefore ¢/Zvl(f) + (b/%t(g). _

Remark 5.5. A compact subspace of a space Cp(X), where X is an arbitrary
compact Hausdorff space, is called an Eberlein space. Every Eberlein space is
a Corson-compact space (Amir and Lindenstrauf} [1]). Gul’ko proved Theorem 5.4
for Lindelof X-spaces (see Negrepontis [8]), i.e. for continuous images of Lindelof
p-spaces.

Theorem 5.6. Let X be a compact Hausdorff space. Then X is a Corson-
compact space if and only if Cp(X) € Q.

PRrROOF: The sufficiency follows from Theorem 5.4 and the easy fact that there is
a natural embedding of X into Cp(Cp(X)).

To prove the necessity, let X be a Corson-compact space and let M be a suit-
able countable elementary substructure. By Theorem 3.1, (bj& maps cl (X N M)
homeomorphic on X (M). Hence, for every function f € Cp(X) there is a function
h € Cp(X(M)) such that

Flaxom= (o dX0) laxom) -

Consequently, ¢jZ\A ()= gb%/l (hoqﬁf&), where Z = C)p(X). Since, by Corollary 4.4,
ho ¢ € cl(Cp(X) N M), this proves that Cp(X) € Q. O
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6. Archangelskij’s question

Let D7 be the discrete space of cardinality 7. Let L denote the space D U{¢},
where £ ¢ D, is the only non-isolated point and every neighborhood of £ has the
form {{} U D7\ A, where A is an arbitrary countable subset of D. It is easy to
see that L, is a Lindelof space.

Theorem 6.1 (R. Pol [9], see Archangelskij [2]). A compact Hausdorff space is
Corson-compact if and only if C,(X) is a continuous image of a closed subspace
of (L)% for some cardinal 7.

It was asked by Archangelskij [2, Problem IV.3.16], whether X is Corson-
compact, if Cp(X) is a continuous image of a closed subspace of (L;)¥ x Z for
some compact space Z.

Theorem 6.2. Let Z and X be compact Hausdorff spaces; suppose that Cp(X)
can be represented as a continuous image of a closed subspace of (L)% x Z. Then
X is Corson-compact.

The idea to prove this theorem is very easy. By virtue of Theorem 5.6 and

Proposition 5.3, it suffices to show that every closed subspace Y C (L;)¥ x Z
satisfies the condition 2. Remark that (L;)“ is always a Lindelof space (see
Step 3).
Step 1. Set L = L;. It is easy to see that for every continuous function f : L — R
there is a neighborhood O(§) = {¢} U D \ A, where A is a countable subset of
Dy, such that f(t) = f(§) for every t € O(§). If M is a suitable elementary
substructure and f € M, we may assume that A € M and, by Proposition 1.2,
A C M. Hence, by the definition of ¢§’VI, ¢/Lv( ¢ = ¢/Lv( (t) for every t € D \ M
and qﬁjL\A(tl) % ¢§\’4(t2) for all t1,to € L N M, t1 # t9. Consequently, we may
identify L(M) with {£} U (D7 N M). Here all points from D N M are isolated
and the neighborhoods of ¢ are of the form {£} U ((Dr N M)\ A), where A is
a countable subset of D, and A € M.

Step 2. Suppose n € LY N M. Then, by Proposition 1.2, n(n) € M for any
n € w. Hence, cl (LY N M) is the following subspace of L¥:
(& U (DrnM))*.
The family of all subsets of L“ of the form
At~ (e L in(ng) =i, 0= 1., k),

where n1,...,n, € wand n1,...,m, € ({£}U(DrNM)), is a network for cl (LN
M) in L¥. This means that for any n € cl(L* N M) and any open set W C L¥
with n € W there exists a set Ay’ ’pk, such that n € Ayl 7pk C W. Remark
that Ayl k€ M.

By Proposition 2.1, L* (M) >~ L(M)% and (bﬂ (n) = ((bﬁ/l (n(n)))new for every
n € L*. For short, we write ¢ instead of gbf(:{. Remark that ¢(cl (LY N M)) =
LY(M).
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Step 3. Now we are going to prove that L is a Lindeldf space for every cardinal 7
(see also Archangelskij [2]). Let v be an open cover of L*. W.l.o.g. we can assume
that v € M. We can also assume that every element of v is a finite intersection
of sets of the form

V(n,t)={ne€L*:n(n) =t},

where n € w and t € D, or of the form
W(m,A) ={ne€ L¥:n(m) € {{}UD:\ A},

where m € w and A is a countable subset of D. If V(n,t) € M, then t € M and,
analogously, if W(m, A) € M and, by Proposition 1.2, A C M. Consequently,
(#) "LV (n,t) = V(n,t) and (¢)"L¢W (n,t) = W (n,t). Hence, (¢p) " L¢U = U for
every U € yN M.

Now we claim that vN .M is a countable subcover of v. By the result of Step 2,
there exists a system o of subsets of L“ satisfying the following conditions:

(a) o C M,

(b) cl(L¥ N M) C Ug,

(c) for every A € o there exists a U € yN M with A CU.
Hence, U(y N M) = U{(¢)"1oU : U € yN M} = (¢)"Ld(U(y " M)) = L¥.

Step 4. Let Z be a compact Hausdorff space and let Y be a closed subspace of
L¥ x Z. Since L¥ x Z is a Lindeldf space, Y is Lindeldf, too. By Proposition 2.3,
we may think Y with the uniform structure induced by the uniform structure on
L¥ x Z. Let M be a suitable countable elementary substructure and let A denote
the product of the mappings ¢ and ¢>JZ\41

h:L¥ x Z — L(M)“ x Z(M).

It suffices to prove that h(cl (Y N M)) = h(Y) (see Fact 2.3).

Step 5. Let & = (n,2) be a point of Y C L¥ x Z. We define a point 7j € L¥
by setting 77(n) = n(n), if n(n) € M, and 7(n) = &, if n(n) ¢ M. Set A, =
(%) 0% (2). Remark that h(7,2') = h(n,2) for every 2’ € A.. Now, it is
enough to prove that {7} x A, Ncl(Y N M) # 0.

(a) At first, we prove that {77} x A, NY # 0.

Assume, on the contrary, that {77} x A,NY = 0. Since {77} x A is compact, there
exist opensets W C LY and V C Zsuchthat 7€ W, A, CV and WxVNY = (.
We may assume that V' € M (see Fact 2.4). Further, assume that W is a member
of the canonical base for L*. Then there is a natural number n such that W
depends only on the coordinates i < n. Let {i1,...,i} = {i < n:7(i) = &},
where i1 < ig < -+ < <mn. Ifien\{i1,..., i}, then 7(i) = n(i) = a; € M.
For every j € {1,...,k}, we can fix a countable set A; C D, such that (w.l.o.g.)
W is the set of all £ € L¥ such that £(i) = a; for all ¢ < n, ¢ ¢ {i1,...,ix}, and
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£(ij) ¢ Aj for all j € {1,...,k}. Let H denote the set of all countable subsets
of D;. For the sake of simplicity, we define for every collection By,...,B, € H

W(Bi1,...,By)={§€ LY :¢(i) =a; for i <mn, i¢ {i1,..., i}
and {(i;) ¢ B; for j=1,... k}.
The following assertion is true:
(3B1,...,By e H) (W(B1,...,B) xVNnY =0).

Since n,i1,...,i;,V and Y are elements of M, we find By,...,B, € HN M
satisfying this condition. If Ej € M, then Fj C M. Since, by the definition
of 7, n(i;) ¢ Dy N M, n(ij) ¢ Bj for every j € {1,...,k}. Now, it is easy
to see that n € W(By,...,B},). Hence, z € W(By,...,B}) x V, contradicting
W(El,...,Ek) xVNY =0.

(b) Now, we are going to prove that {77} x A, Ncl(Y N M) # (. In assuming
that the intersection is empty, we find open sets W C LY and V C Z, V € M,
such that 7€ W, A, CV and W x V Nel (Y N M) = (. There exists a natural
number n such that

C={0el¥:¥(1)=7@G) for i=1,...,n} CW.

Remark that C' € M and7 € C. From C C W it follows that C'x VN (Y NM) = ().
Since C,V and Y are elements of M, this implies that C x V NY = (. Hence,
{7} x A, NY = 0, contradicting the result of (a). This completes the proof of
Theorem 6.2.
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