INGO BANDLOW

Abstract. We apply elementary substructures to characterize the space $C_p(X)$ for Corsoncompact spaces. As a result, we prove that a compact space X is Corson-compact, if $C_p(X)$ can be represented as a continuous image of a closed subspace of $(L_{\tau})^{\omega} \times Z$, where Z is compact and L_{τ} denotes the canonical Lindelöf space of cardinality τ with one non-isolated point. This answers a question of Archangelskij [2].

Keywords: function spaces, Corson-compact spaces, elementary substructures *Classification:* Primary 54C

1. Elementary substructures

We begin with a brief exposition of some definitions and facts concerning elementary substructures (see also A. Dow [5], K. Kunen [7]). A non-empty subset \mathcal{M} of a set \mathcal{H} is said to be an elementary substructure of \mathcal{H} , if for any formula $\phi(x_1, \ldots, x_n)$ of the language of set theory with the only free variables x_1, \ldots, x_n and for any $a_1, \ldots, a_n \in \mathcal{M}$ $\phi[a_1, \ldots, a_n]$ is true in \mathcal{M} if and only if it is true in \mathcal{H} .

A frequently used argument is Tarski's Criterion:

A subset \mathcal{M} of \mathcal{H} forms an elementary substructure of \mathcal{H} if and only if for every formula $\phi(x_0, x_1, \ldots, x_n)$ of the language of set theory and every $a_1, \ldots, a_n \in \mathcal{M}$ such that there exists an $a \in \mathcal{H}$ such that $\phi[a, a_1, \ldots, a_n]$ is true in \mathcal{H} , there is a $b \in \mathcal{M}$ such that $\phi[b, a_1, \ldots, a_n]$ is true in \mathcal{H} (and therefore in \mathcal{M}).

The base of all our applications of elementary substructures is the following

Theorem 1.1 (Löwenheim-Skolem-Tarski). For every infinite set \mathcal{H} and each subset $X \subseteq \mathcal{H}$ there exists an elementary substructure \mathcal{M} of \mathcal{H} such that $X \subseteq \mathcal{M}$ and $|\mathcal{M}| = \max\{|X|, \omega\}$.

If θ is a cardinal, then $\mathcal{H}(\theta)$ denotes the collection of all sets hereditarily of cardinality $< \theta$. We will usually be interested in elementary substructures of $\mathcal{H}(\theta)$, where θ is a sufficiently large regular cardinal. The main reason is that for any sentence ϕ there exists a large enough regular cardinal θ such that ϕ is true (in V) if and only if it is true in $\mathcal{H}(\theta)$. In practice, one "chooses" θ without discussion how large it needs to be.

The following fact is well known and useful.

Proposition 1.2. If θ is a regular uncountable cardinal, \mathcal{M} an elementary substructure of $\mathcal{H}(\theta)$ and $A \in \mathcal{M}$ a countable set, then $A \subseteq \mathcal{M}$.

If \mathcal{H} is an uncountable $[\mathcal{H}]^{\omega}$ denotes the set of all countable subsets of \mathcal{H} . $C \subseteq [\mathcal{H}]^{\omega}$ is said to be unbounded if for every $X \in [\mathcal{H}]^{\omega}$ there is a $Y \in C$ with $X \subseteq Y$. We say C is closed if, whenever $X_n \in C$ and $X_n \subseteq X_{n+1}$ for each $n \in \omega$, then $\bigcup \{X_n : n \in \omega\} \in C$. A consequence of Theorem 1.1 is that the family of all countable elementary substructures of \mathcal{H} is closed and unbounded. Remark, that the intersection of two closed unbounded subsets of $[\mathcal{H}]^{\omega}$ is closed unbounded, too.

For the sake of simplicity we shall often write "Let \mathcal{M} be a suitable elementary substructure ... ". This means that all "information" we need to investigate an object, say a topological space, can be found in \mathcal{M} . For example, if X is a dyadic compact space, we suppose that there is a continuous mapping $f: D^{\tau} \to X$, which is an element of \mathcal{M} . Obviously there is always a closed unbounded family of "suitable" countable elementary substructures. On the other hand, " ... if for any suitable countable elementary substructure \mathcal{M} the following condition is satisfied ... " means that the condition is satisfied for all countable substructures from a closed unbounded subset of $[\mathcal{H}(\theta)]^{\omega}$, where θ is a large enough (with respect to the object we investigate) regular cardinal.

2. The main construction

Now we are going to describe a construction for arbitrary uniform spaces. Let $\langle X, \mathcal{U} \rangle$ be a uniform space (see Engelking [6]). If \mathcal{M} is an elementary substructure with $X, \mathcal{U} \in \mathcal{M}$, the equivalence relation on X is defined by

$$x \approx y(\mathcal{M})$$
 iff $|x - y| < V$ for each $V \in \mathcal{U} \cap \mathcal{M}$.

If $x \approx y(\mathcal{M})$, we say that x and y are \mathcal{M} -equivalent. Let $X(\mathcal{M}, \mathcal{U})$ denote the set of all equivalence classes and $\phi_{\mathcal{M}}^{X,\mathcal{U}}$ the canonical mapping of X onto $X(\mathcal{M})$. (For short, we often write $X(\mathcal{M})$ and $\phi_{\mathcal{M}}^X$ and drop the \mathcal{U} .) A uniformity $\mathcal{U}(\mathcal{M})$ is given on $X(\mathcal{M})$ by all entourages $V_{\mathcal{M}}$ of the diagonal in $X(\mathcal{M})$. $\mathcal{U}(\mathcal{M})$ is defined by

$$\begin{aligned} |\phi_{\mathcal{M}}^{X}(x) - \phi_{\mathcal{M}}^{X}(y)| < V_{\mathcal{M}} \quad \text{iff} \quad |x' - y'| < V \quad \text{for all} \quad x', y' \in X \\ \text{such that} \quad x' \approx x(\mathcal{M}) \quad \text{and} \quad y' \approx y(\mathcal{M}), \end{aligned}$$

where V is an arbitrary element of $\mathcal{U} \cap \mathcal{M}$.

 $\phi_{\mathcal{M}}^X$ is uniformly continuous with respect to the uniformities \mathcal{U} and $\mathcal{U}(\mathcal{M})$ on X and $X(\mathcal{M})$ respectively (see Bandlow [3]). Now we shall give some easy assertions used in the sequel.

Fact 2.1. Let $f : \langle X, \mathcal{U} \rangle \to \langle Y, \mathcal{V} \rangle$ be a uniformly continuous mapping, suppose $f \in \mathcal{M}$. Then there exists a uniformly continuous mapping $f_{\mathcal{M}} : X(\mathcal{M}) \to Y(\mathcal{M})$

which makes the following diagram commutative:

(1)
$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} & Y \\ \phi_{\mathcal{M}}^{X} \downarrow & & \downarrow \phi_{\mathcal{M}}^{X} \\ X(\mathcal{M}) & \stackrel{f_{\mathcal{M}}}{\longrightarrow} & Y(\mathcal{M}) \end{array}$$

Fact 2.2. Let $\langle X, \mathcal{U} \rangle$ be the product of the uniform spaces $\{\langle X_t, \mathcal{U}_t \rangle : t \in T\}$; suppose $\{\langle X_t, \mathcal{U}_t \rangle : t \in T\} \in \mathcal{M}$. Then $\langle X(\mathcal{M}), \mathcal{U}(\mathcal{M}) \rangle$ is uniformly homeomorphic to the product of the uniform spaces $\{\langle X_t(\mathcal{M}), \mathcal{U}_t(\mathcal{M}) \rangle : t \in T \cap \mathcal{M}\}$ in a natural way.

Fact 2.3. If $\langle Y, \mathcal{U}_Y \rangle$ is a uniform subspace of $\langle X, \mathcal{U} \rangle$, then $Y(\mathcal{M})$ is uniformly homeomorphic to $\phi_{\mathcal{M}}^X(Y)$ in a natural way.

Fact 2.4. If X is a compact Hausdorff space, there is a unique uniformity \mathcal{U} on X which induces the original topology on X. \mathcal{U} is generated by all sets of the form

$$\mathcal{U}_{f_1,\ldots,f_n}^{\varepsilon} = \left\{ \langle x, y \rangle : |f_i(x) - f_i(y)| < \varepsilon, \quad i = 1,\ldots,n \right\},\$$

where f_1, \ldots, f_n are arbitrary real-valued continuous functions on $X, n \in \mathbb{N}$ and $\varepsilon > 0$. Let \mathcal{M} be a suitable elementary substructure. It is easy to see that for any pair of distinct points $x, y \in X$ we have $\phi_{\mathcal{M}}^X(x) \neq \phi_{\mathcal{M}}^X(y)$ if and only if there is a function $f \in C(X) \cap \mathcal{M}$ with $f(x) \neq f(y)$. Consequently, $\phi_{\mathcal{M}}^X$ corresponds to the mapping which relates each point $x \in X$ to $(fx)_{C(X)\cap\mathcal{M}}$ from the product space $\mathbb{R}^{C(X)\cap\mathcal{M}}$. An easy consequence is that for each function $f \in C(X) \cap \mathcal{M}$ there is a continuous function $f_{\mathcal{M}}: X(\mathcal{M}) \to \mathbb{R}$ such that $f = f_{\mathcal{M}} \circ \phi_{\mathcal{M}}^X$. If $U \in \mathcal{M}$ is a functionally open subset of X, i.e. if there is a function $f \in C(X) \cap \mathcal{M}$ with $U = f^{-1}(0, 1)$, then let $U_{\mathcal{M}}$ be defined by $U_{\mathcal{M}} = f_{\mathcal{M}}^{-1}(0, 1)$. Remark that $U = (\phi_{\mathcal{M}}^X)^{-1}U_{\mathcal{M}}$. The family consisting of all open subsets of $X(\mathcal{M})$ of the form $U_{\mathcal{M}}$, where U is a functionally open subset of X and belongs to \mathcal{M} , is a base for the topology of $X(\mathcal{M})$.

We now prove that if X is a Lindelöf space, then $X(\mathcal{M})$ as a topological space does not depend on the uniformity on X.

Proposition 2.5. Let X be a Lindelöf space and let \mathcal{U} and \mathcal{V} be uniformities on X, which induces the topology on X. If \mathcal{M} is a suitable elementary substructure, then:

(a) φ^{X,U}_M(x) = φ^{X,U}_M(y) if and only if φ^{X,V}_M(x) = φ^{X,V}_M(y) for arbitrary points x, y ∈ X (X(M) = X(M,U) = X(M,V)).
(b) U(M) and V(M) generate the same topology on X(M).

PROOF: W.l.o.g. we may assume that $\mathcal{V} \subseteq \mathcal{U}$. Let x_0, y_0 be a pair of distinct points of X. Suppose that $\phi_{\mathcal{M}}^{X,\mathcal{U}}(x_0) \neq \phi_{\mathcal{M}}^{X,\mathcal{U}}(y_0)$, i.e. $|x_0 - y_0| \geq U$ for some

 $U \in \mathcal{U} \cap \mathcal{M}$. We can choose a $W \in \mathcal{U} \cap \mathcal{M}$ such that $4W \subseteq U$. $\eta = \{ \text{Int } B(x, W) : x \in X \}$ is an open cover of the space X and belongs to \mathcal{M} . Here B(x, W) denotes the set $\{y \in X : |x - y| < V\}$. Therefore there exists a countable subcover $\eta' = \{ \text{Int } B(x_n, W) : n = 1, 2, 3, ... \}$ which also belongs to \mathcal{M} . By Proposition 1.2, we may assume that all points x_n , $n = 1, 2, 3, \ldots$, are elements of \mathcal{M} . Hence we can fix $z_1, z_2 \in X \cap \mathcal{M}$ such that $x_0 \in B(z_1, W)$ and $y_0 \in B(z_2, W)$. $F = \operatorname{cl}(B(z_1, W))$ and $G = \operatorname{cl}(B(z_2, W))$ are elements of \mathcal{M} too, and we have $x_0 \in F$, $y_0 \in G$ and $F \cap G = \emptyset$. For every point $x \in F$ there exists an entourage $V_x \in \mathcal{V}$ such that $B(x, 2V_x) \cap G = \emptyset$. Similarly as above we consider now the open cover $\xi = \{ \text{Int } B(x, V_x) : x \in F \}$ of F. Since F and G are elements of \mathcal{M}, ξ also belongs to \mathcal{M} . Let $\xi' = \{ \text{Int } B(x_n, V_{x_n})n = 1, 2, 3, \ldots \}$ be a countable subcover of ξ . We may assume that ξ' belongs to \mathcal{M} and, consequently, that all x_n and V_{x_n} are elements of \mathcal{M} . Hence, there exists a point $z \in F \cap \mathcal{M}$ and an entourage $V \in \mathcal{V} \cap \mathcal{M}$ such that $x_0 \in B(z, V)$ and $B(z, 2V) \cap G = \emptyset$, i.e. $|x_0-y_0| > V$ and $\phi_{\mathcal{M}}^{X,\mathcal{V}}(x_0) \neq \phi_{\mathcal{M}}^{X,\mathcal{V}}(y_0)$. This proves the assertion (a) and we may identify $X(\mathcal{M}) = X(\mathcal{M},\mathcal{U}) = X(\mathcal{M},\mathcal{V})$. Let $T_{\mathcal{U}}$ and $T_{\mathcal{V}}$ denote the topologies on $X(\mathcal{M})$ generated by $\mathcal{U}(\mathcal{M})$ and $\mathcal{V}(\mathcal{M})$, respectively. We have to prove that the (identical) mapping

$$\langle X(\mathcal{M}), T_{\gamma} \rangle \longrightarrow \langle X(\mathcal{M}), T_{\mathcal{U}} \rangle$$

is continuous with respect to these topologies. Suppose $x_0 \in X$ and \mathcal{O} is a neighborhood of $\phi_{\mathcal{M}}^X(x_0)$ in $\langle X(\mathcal{M}), T_{\mathcal{U}} \rangle$. Then there is a $U \in \mathcal{U} \cap \mathcal{M}$ such that $\phi_{\mathcal{M}}^X(B(x_0, u)) \subseteq \mathcal{O}$. It is sufficient to check that there exists a $V \in \mathcal{V} \cap \mathcal{M}$ with $B(x_0, V) \subseteq B(x_0, U)$. To do this we take a $W \in \mathcal{U} \cap \mathcal{M}$ with $2W \subseteq U$ and consider the open cover {Int $B(x, W) : x \in X$ } of $\langle X, T_{\mathcal{U}} \rangle$. For every $x \in X$ there exists a $V_x \in \mathcal{V}$ such that $B(x, 2V_x) \subseteq$ Int B(x, W). One can assume that the open cover of $\langle X, T_{\gamma} \rangle$ {Int $B(x, V_x) : x \in X$ } is an element of \mathcal{M} . Using the same arguments as above we can find a point $z \in X \cap \mathcal{M}$ and an entourage $V \in \mathcal{V} \cap \mathcal{M}$ such that $x_0 \in B(z, V)$ and $B(z, 2V) \subseteq B(z, W)$. Hence, $B(x_0, V) \subseteq B(z, 2V) \subseteq B(z, W) \subseteq B(x_0, 2W) \subseteq B(x_0, U)$. The proof is now complete.

3. Corson-compact spaces

A compact Hausdorff space X is called Corson-compact, if it is homeomorphic to a subset of

$$\sum (\mathbb{R}^T) = \left\{ x \in \mathbb{R}^T : \text{supp}(x) \text{ is countable} \right\},\$$

where $\operatorname{supp}(x) = \{t \in T : x(t) \neq 0\}$ for $x \in \mathbb{R}^T$, for some set T. Corsoncompact spaces have been extensively studied by various authors (for a detailed information see Archangelskij [2], and Negrepontis [8]).

It is easy to verify that for any suitable elementary substructure \mathcal{M} , $\phi_{\mathcal{M}}^X$ maps $\operatorname{cl}(X \cap \mathcal{M})$ homeomorphic on $X(\mathcal{M})$. The main result of the previous paper is the following characterization of Corson-compact spaces.

Theorem 3.1 (Bandlow [4]). A compact Hausdorff space X is Corson-compact iff for any suitable countable elementary substructure \mathcal{M} , $\phi_{\mathcal{M}}^X$ maps $\operatorname{cl}(X \cap \mathcal{M})$ homeomorphically on $X(\mathcal{M})$.

4. The construction and $C_p(X)$

Our aim now is to consider the space $C_p(X)$ of all real-valued continuous functions on a completely regular space X in the topology of pointwise convergence. The natural uniformity is given on $C_p(X)$ by all sets of the form

$$\mathcal{U}_{x_1,\ldots,x_n}^{\varepsilon} = \left\{ \langle f,g \rangle : |f(x_i) - g(x_i)| < \varepsilon, \quad i = 1,\ldots,n \right\},\$$

with $x_1, \ldots, x_n \in X$, $n \in \mathbb{N}$ and $\varepsilon > 0$.

It is easy to see that two continuous functions f and g on X are \mathcal{M} -equivalent if and only if $f \mid_{X \cap \mathcal{M}} = g \mid_{X \cap \mathcal{M}}$.

In connection with $C_p(X)$, we consider on X the uniformity generated by all real-valued continuous functions. There is a natural embedding *i* from X into the product space $\mathbb{R}^{C(X)}$ and therefore an embedding $i_{\mathcal{M}}$ from $X(\mathcal{M})$ into $\mathbb{R}^{C(X)\cap\mathcal{M}}$.

Let $\overline{X(\mathcal{M})}$ denote the image of X by the projection mapping onto $\mathbb{R}^{\operatorname{cl}(C(X)\cap\mathcal{M})}$. We get the following diagram:

Lemma 4.1. $\psi_{\mathcal{M}}^X$ is a bijection from $\overline{X(\mathcal{M})}$ onto $X(\mathcal{M})$.

PROOF: Let x and y be a pair of different points of X with $\overline{\phi}_{\mathcal{M}}^X(x) \neq \overline{\phi}_{\mathcal{M}}^X(y)$. Then there exists a function $g \in \operatorname{cl}(C_p(X) \cap \mathcal{M})$ such that $g(x) \neq g(y)$. Let $\varepsilon = |g(x) - g(y)|/2$. Then there is a function $f \in C_p(X) \cap \mathcal{M}$ with $|f(x) - g(x)| < \varepsilon$ and $|f(y) - g(y)| < \varepsilon$. Hence, $g(x) \neq g(y)$ and $\varphi_{\mathcal{M}}^X \neq \phi_{\mathcal{M}}^X(y)$.

Remark 4.2. If X is compact, then $\psi_{\mathcal{M}}^X$ is a homeomorphism and we identify $\overline{X(\mathcal{M})}$ and $X(\mathcal{M})$. It is possible to show that $\psi_{\mathcal{M}}^X$ is a homeomorphism, if X is a Lindelöf *p*-space or pseudocompact.

If $f: X \to Y$ is a continuous mapping, then let $f^*: C(Y) \to C(X)$ denote the mapping induced by f.

Lemma 4.3. $(\overline{\phi}_{\mathcal{M}}^X)^* C_p(\overline{X(\mathcal{M})}) = \operatorname{cl}(C_p(X) \cap \mathcal{M}).$

PROOF: Obviously, we have $C_p(X) \cap \mathcal{M} \subseteq (\phi_{\mathcal{M}}^X)^* C_p(X(\mathcal{M}))$ and $\operatorname{cl}(C_p(X) \cap \mathcal{M}) \subseteq (\overline{\phi}_{\mathcal{M}}^X)^* C_p(\overline{X(\mathcal{M})})$ (see diagram (2)). Since $\psi_{\mathcal{M}}^X$ is a bijection mapping,

 $(\psi_{\mathcal{M}}^X)^* C_p(X(\mathcal{M}))$ is a dense subspace of $C_p(\overline{X(\mathcal{M})})$ and therefore

 $(\phi_{\mathcal{M}}^X)^* C_p(X(\mathcal{M}))$ is a dense subspace of $(\overline{\phi}_{\mathcal{M}}^X)^* C_p(\overline{X(\mathcal{M})})$. Now, it is sufficient to show that $C_p(X) \cap \mathcal{M}$ is a dense subset of $(\phi_{\mathcal{M}}^X)^* C_p(X(\mathcal{M}))$. Let g' be an arbitrary continuous function on $X(\mathcal{M})$ and $g = g' \circ \phi_{\mathcal{M}}^X$. Also, let x_1, \ldots, x_n be points of X and ε a positive real number. Choose points y_1, \ldots, y_k of X such that $\phi_{\mathcal{M}}^X(y_i) \neq \phi_{\mathcal{M}}^X(y_j)$ for distinct $i, j \leq k$ and $\phi_{\mathcal{M}}^X\{x_1, \ldots, x_n\} = \phi_{\mathcal{M}}^X\{y_1, \ldots, y_k\}$. It is enough to show that there is a function $f \in C_p(X) \cap \mathcal{M}$ with $|f(y_i) - g(y_i)| < \varepsilon$ for all $i = 1, \ldots, k$. Since $\phi_{\mathcal{M}}^X(y_i) \neq \phi_{\mathcal{M}}^X(y_j)$ for distinct $i, j \leq k$, we find functionally open neighborhoods V_1, \ldots, V_k of y_1, \ldots, y_k , respectively, in \mathcal{M} with $\operatorname{cl}(V_i) \cap \operatorname{cl}(V_j) = \emptyset$ for distinct i, j. There exist functions f_1, \ldots, f_k in $C_p(X) \cap \mathcal{M}$ such that $V_i = f_i^{-1}(0, 1)$ for every $i = 1, \ldots, k$. Fix rational numbers q_1, \ldots, q_k such that $|q_i \cdot f_i(y_i) - g(y_i)| < \varepsilon$ for all $i = 1, \ldots, k$. Remark that all rational numbers are elements of \mathcal{M} . $f = q_1 \cdot f_1 + \cdots + q_k \cdot f_k$ is the desired function. \Box

Corollary 4.4. Let X be a compact Hausdorff space. Then

$$(\phi_{\mathcal{M}}^X)^*C_p(X(\mathcal{M})) = \operatorname{cl}(C_p(X) \cap \mathcal{M}).$$

A characterization of $C_p(X)$ for Corson-compact spaces

Let X be a completely regular space. We consider X with the uniform structure induced by all real-valued continuous functions on X. The following definition plays the decisive role in what follows.

Definition 5.1. One says that the completely regular space X has the property Ω , if for sufficiently large regular cardinals θ there exists a closed unbounded family C of countable elementary substructures of $\mathcal{H}(\theta)$ such that $\phi_{\mathcal{M}}^X \operatorname{cl}(X \cap \mathcal{M}) = X(\mathcal{M})$ for every $\mathcal{M} \in C$.

More briefly $X \in \Omega$, if $\phi_{\mathcal{M}}^X \operatorname{cl}(X \cap \mathcal{M}) = X(\mathcal{M})$ for every suitable countable elementary substructure \mathcal{M} .

It is easy to verify that every compact Hausdorff space satisfies this condition. More generally, we have the following

Proposition 5.2. Every Lindelöf *p*-space has the property Ω .

PROOF: Since $\phi_{\mathcal{M}}^X(X \cap \mathcal{M})$ is always a dense subset of $X(\mathcal{M})$, it is enough to prove that $\phi_{\mathcal{M}}^X$ is a perfect mapping. X is a Lindelöf *p*-space if and only if there is a perfect mapping $g: X \to Y$, where Y has a countable base. By Proposition 2.5 we may assume that g is uniformly continuous. Since $\phi_{\mathcal{M}}^Y$ is a homeomorphism, g can be represented as a composition of $\phi_{\mathcal{M}}^X$ and $g_{\mathcal{M}}$. This implies that $\phi_{\mathcal{M}}^X$ is perfect.

Proposition 5.3. Let X be a Lindelöf space, satisfying Ω . If f is a continuous mapping from X onto a completely regular space Y, then Y satisfies Ω , too.

PROOF: Like in the proof of previous proposition, we assume that f is uniformly continuous and consider the commutative diagram

(3)
$$\begin{array}{cccc} X & \stackrel{f}{\longrightarrow} & Y \\ \phi_{\mathcal{M}}^{X} \downarrow & & \downarrow \phi_{\mathcal{M}}^{Y} \\ & & X(\mathcal{M}) \xrightarrow{f_{\mathcal{M}}} & Y(\mathcal{M}) \end{array}$$

It is easy to see that $f(X \cap \mathcal{M}) = Y \cap \mathcal{M}$ and, consequently, $f(\operatorname{cl}(X \cap \mathcal{M}) \subseteq \operatorname{cl}(Y \cap \mathcal{M}))$. Hence, $Y(\mathcal{M}) = f_{\mathcal{M}}(\phi_{\mathcal{M}}^X \operatorname{cl}(X \cap \mathcal{M})) = \phi_{\mathcal{M}}^Y(\operatorname{cl}(Y \cap \mathcal{M}))$. \Box

Theorem 5.4. If $X \in \Omega$, then each compact subspace of $C_p(X)$ is a Corson-compact space.

PROOF: Let \mathcal{M} be a suitable countable elementary substructure. Set $Z = C_p(X)$. By Theorem 3.1, it suffices to show that $\phi_{\mathcal{M}}^Z(f) \neq \phi_{\mathcal{M}}^Z(g)$ for any pair $f, g \in$ $\operatorname{cl}(C_p(X) \cap \mathcal{M}) = (\overline{\phi}_{\mathcal{M}}^X)^* C_p(\overline{X(\mathcal{M})}), f \neq g$. There exist continuous functions $f', g' \text{ on } \overline{X(\mathcal{M})}$ such that $f = f' \circ \overline{\phi}_{\mathcal{M}}^X$ and $g = g' \circ \overline{\phi}_{\mathcal{M}}^X$. From $X \in \Omega$ it follows that $\overline{\phi}_{\mathcal{M}}^X(X \cap \mathcal{M})$ is a dense subset of $\overline{X(\mathcal{M})}$. Hence, there exists a point $x \in X \cap \mathcal{M}$ with $f'(\overline{\phi}_{\mathcal{M}}^X(x)) \neq g'(\overline{\phi}_{\mathcal{M}}^X(x))$, i.e. $f(x) \neq g(x)$ and therefore $\phi_{\mathcal{M}}^Z(f) \neq \phi_{\mathcal{M}}^Z(g)$.

Remark 5.5. A compact subspace of a space $C_p(X)$, where X is an arbitrary compact Hausdorff space, is called an Eberlein space. Every Eberlein space is a Corson-compact space (Amir and Lindenstrauß [1]). Gul'ko proved Theorem 5.4 for Lindelöf Σ -spaces (see Negrepontis [8]), i.e. for continuous images of Lindelöf *p*-spaces.

Theorem 5.6. Let X be a compact Hausdorff space. Then X is a Corsoncompact space if and only if $C_p(X) \in \Omega$.

PROOF: The sufficiency follows from Theorem 5.4 and the easy fact that there is a natural embedding of X into $C_p(C_p(X))$.

To prove the necessity, let X be a Corson-compact space and let \mathcal{M} be a suitable countable elementary substructure. By Theorem 3.1, $\phi_{\mathcal{M}}^X$ maps cl $(X \cap \mathcal{M})$ homeomorphic on $X(\mathcal{M})$. Hence, for every function $f \in C_p(X)$ there is a function $h \in C_p(X(\mathcal{M}))$ such that

$$f \mid_{\mathrm{cl}\,(X \cap \mathcal{M})} = (h \circ \phi_{\mathcal{M}}^X) \mid_{\mathrm{cl}\,(X \cap \mathcal{M})} .$$

Consequently, $\phi_{\mathcal{M}}^Z(f) = \phi_{\mathcal{M}}^Z(h \circ \phi_{\mathcal{M}}^X)$, where $Z = C_p(X)$. Since, by Corollary 4.4, $h \circ \phi_{\mathcal{M}}^X \in \mathrm{cl}(C_p(X) \cap \mathcal{M})$, this proves that $C_p(X) \in \Omega$.

6. Archangelskij's question

Let D_{τ} be the discrete space of cardinality τ . Let L_{τ} denote the space $D_{\tau} \cup \{\xi\}$, where $\xi \notin D_{\tau}$ is the only non-isolated point and every neighborhood of ξ has the form $\{\xi\} \cup D_{\tau} \setminus A$, where A is an arbitrary countable subset of D_{τ} . It is easy to see that L_{τ} is a Lindelöf space.

Theorem 6.1 (R. Pol [9], see Archangelskij [2]). A compact Hausdorff space is Corson-compact if and only if $C_p(X)$ is a continuous image of a closed subspace of $(L_{\tau})^{\omega}$ for some cardinal τ .

It was asked by Archangelskij [2, Problem IV.3.16], whether X is Corsoncompact, if $C_p(X)$ is a continuous image of a closed subspace of $(L_{\tau})^{\omega} \times Z$ for some compact space Z.

Theorem 6.2. Let Z and X be compact Hausdorff spaces; suppose that $C_p(X)$ can be represented as a continuous image of a closed subspace of $(L_{\tau})^{\omega} \times Z$. Then X is Corson-compact.

The idea to prove this theorem is very easy. By virtue of Theorem 5.6 and Proposition 5.3, it suffices to show that every closed subspace $Y \subseteq (L_{\tau})^{\omega} \times Z$ satisfies the condition Ω . Remark that $(L_{\tau})^{\omega}$ is always a Lindelöf space (see Step 3).

Step 1. Set $L = L_{\tau}$. It is easy to see that for every continuous function $f: L \to \mathbb{R}$ there is a neighborhood $O(\xi) = \{\xi\} \cup D_{\tau} \setminus A$, where A is a countable subset of D_{τ} , such that $f(t) = f(\xi)$ for every $t \in O(\xi)$. If \mathcal{M} is a suitable elementary substructure and $f \in \mathcal{M}$, we may assume that $A \in \mathcal{M}$ and, by Proposition 1.2, $A \subset \mathcal{M}$. Hence, by the definition of $\phi_{\mathcal{M}}^L$, $\phi_{\mathcal{M}}^L(\xi) = \phi_{\mathcal{M}}^L(t)$ for every $t \in D_{\tau} \setminus \mathcal{M}$ and $\phi_{\mathcal{M}}^L(t_1) \neq \phi_{\mathcal{M}}^L(t_2)$ for all $t_1, t_2 \in L \cap \mathcal{M}$, $t_1 \neq t_2$. Consequently, we may identify $L(\mathcal{M})$ with $\{\xi\} \cup (D_{\tau} \cap \mathcal{M})$. Here all points from $D_{\tau} \cap \mathcal{M}$ are isolated and the neighborhoods of ξ are of the form $\{\xi\} \cup ((D_{\tau} \cap \mathcal{M}) \setminus A)$, where A is a countable subset of D_{τ} and $A \in \mathcal{M}$.

Step 2. Suppose $\eta \in L^{\omega} \cap \mathcal{M}$. Then, by Proposition 1.2, $\eta(n) \in \mathcal{M}$ for any $n \in \omega$. Hence, $\operatorname{cl}(L^{\omega} \cap \mathcal{M})$ is the following subspace of L^{ω} :

$$(\{\xi\} \cup (D_{\tau} \cap \mathcal{M}))^{\omega}.$$

The family of all subsets of L^{ω} of the form

$$A_{\eta_1,...,\eta_k}^{n_1,...,n_k} = \{ \eta \in L^{\omega} : \eta(n_i) = \eta_i, \quad i = 1,...,k \},\$$

where $n_1, \ldots, n_k \in \omega$ and $\eta_1, \ldots, \eta_k \in (\{\xi\} \cup (D_\tau \cap \mathcal{M}))$, is a network for cl $(L^{\omega} \cap \mathcal{M})$ in L^{ω} . This means that for any $\eta \in \text{cl}(L^{\omega} \cap \mathcal{M})$ and any open set $W \subseteq L^{\omega}$ with $\eta \in W$ there exists a set $A^{n_1,\ldots,n_k}_{\eta_1,\ldots,\eta_k}$, such that $\eta \in A^{n_1,\ldots,n_k}_{\eta_1,\ldots,\eta_k} \subseteq W$. Remark that $A^{n_1,\ldots,n_k}_{\eta_1,\ldots,\eta_k} \in \mathcal{M}$.

By Proposition 2.1, $L^{\omega}(\mathcal{M}) \simeq L(\mathcal{M})^{\omega}$ and $\phi_{\mathcal{M}}^{L^{\omega}}(\eta) = (\phi_{\mathcal{M}}^{L}(\eta(n)))_{n \in \omega}$ for every $\eta \in L^{\omega}$. For short, we write ϕ instead of $\phi_{\mathcal{M}}^{L^{\omega}}$. Remark that $\phi(\operatorname{cl}(L^{\omega} \cap \mathcal{M})) = L^{\omega}(\mathcal{M})$.

Step 3. Now we are going to prove that L^{ω} is a Lindelöf space for every cardinal τ (see also Archangelskij [2]). Let γ be an open cover of L^{ω} . W.l.o.g. we can assume that $\gamma \in \mathcal{M}$. We can also assume that every element of γ is a finite intersection of sets of the form

$$V(n,t) = \left\{ \eta \in L^{\omega} : \eta(n) = t \right\},\$$

where $n \in \omega$ and $t \in D_{\tau}$, or of the form

$$W(m, A) = \{ \eta \in L^{\omega} : \eta(m) \in \{\xi\} \cup D_{\tau} \setminus A \},\$$

where $m \in \omega$ and A is a countable subset of D_{τ} . If $V(n,t) \in \mathcal{M}$, then $t \in \mathcal{M}$ and, analogously, if $W(m,A) \in \mathcal{M}$ and, by Proposition 1.2, $A \subset \mathcal{M}$. Consequently, $(\phi)^{-1}\phi V(n,t) = V(n,t)$ and $(\phi)^{-1}\phi W(n,t) = W(n,t)$. Hence, $(\phi)^{-1}\phi U = U$ for every $U \in \gamma \cap \mathcal{M}$.

Now we claim that $\gamma \cap \mathcal{M}$ is a countable subcover of γ . By the result of Step 2, there exists a system σ of subsets of L^{ω} satisfying the following conditions:

- (a) $\sigma \subset \mathcal{M}$,
- (b) $\operatorname{cl}(L^{\omega} \cap \mathcal{M}) \subseteq \cup \sigma$,
- (c) for every $A \in \sigma$ there exists a $U \in \gamma \cap \mathcal{M}$ with $A \subseteq U$.

Hence, $\cup(\gamma \cap \mathcal{M}) = \cup\{(\phi)^{-1}\phi U : U \in \gamma \cap \mathcal{M}\} = (\phi)^{-1}\phi(\cup(\gamma \cap \mathcal{M})) = L^{\omega}.$

Step 4. Let Z be a compact Hausdorff space and let Y be a closed subspace of $L^{\omega} \times Z$. Since $L^{\omega} \times Z$ is a Lindelöf space, Y is Lindelöf, too. By Proposition 2.3, we may think Y with the uniform structure induced by the uniform structure on $L^{\omega} \times Z$. Let \mathcal{M} be a suitable countable elementary substructure and let h denote the product of the mappings ϕ and $\phi_{\mathcal{M}}^Z$:

$$h: L^{\omega} \times Z \longrightarrow L(\mathcal{M})^{\omega} \times Z(\mathcal{M}).$$

It suffices to prove that $h(cl(Y \cap \mathcal{M})) = h(Y)$ (see Fact 2.3).

Step 5. Let $x = \langle \eta, z \rangle$ be a point of $Y \subseteq L^{\omega} \times Z$. We define a point $\overline{\eta} \in L^{\omega}$ by setting $\overline{\eta}(n) = \eta(n)$, if $\eta(n) \in \mathcal{M}$, and $\overline{\eta}(n) = \xi$, if $\eta(n) \notin \mathcal{M}$. Set $A_z = (\phi_{\mathcal{M}}^Z)^{-1}\phi_{\mathcal{M}}^Z(z)$. Remark that $h(\overline{\eta}, z') = h(\eta, z)$ for every $z' \in A_z$. Now, it is enough to prove that $\{\overline{\eta}\} \times A_z \cap \operatorname{cl}(Y \cap \mathcal{M}) \neq \emptyset$.

(a) At first, we prove that $\{\overline{\eta}\} \times A_z \cap Y \neq \emptyset$.

Assume, on the contrary, that $\{\overline{\eta}\} \times A_z \cap Y = \emptyset$. Since $\{\overline{\eta}\} \times A_z$ is compact, there exist open sets $W \subseteq L^{\omega}$ and $V \subseteq Z$ such that $\overline{\eta} \in W$, $A_z \subseteq V$ and $W \times V \cap Y = \emptyset$. We may assume that $V \in \mathcal{M}$ (see Fact 2.4). Further, assume that W is a member of the canonical base for L^{ω} . Then there is a natural number n such that W depends only on the coordinates $i \leq n$. Let $\{i_1, \ldots, i_k\} = \{i \leq n : \overline{\eta}(i) = \xi\}$, where $i_1 < i_2 < \cdots < i_k \leq n$. If $i \in n \setminus \{i_1, \ldots, i_k\}$, then $\overline{\eta}(i) = \eta(i) = a_i \in \mathcal{M}$. For every $j \in \{1, \ldots, k\}$, we can fix a countable set $A_j \subseteq D_{\tau}$ such that (w.l.o.g.) W is the set of all $\xi \in L^{\omega}$ such that $\xi(i) = a_i$ for all $i \leq n$, $i \notin \{i_1, \ldots, i_k\}$, and

I. Bandlow

 $\xi(i_j) \notin A_j$ for all $j \in \{1, \ldots, k\}$. Let H denote the set of all countable subsets of D_{τ} . For the sake of simplicity, we define for every collection $B_1, \ldots, B_k \in H$

$$W(B_1, \dots, B_k) = \{ \xi \in L^{\omega} : \xi(i) = a_i \text{ for } i \le n, i \notin \{i_1, \dots, i_k\} \\ \text{and } \xi(i_j) \notin B_j \text{ for } j = 1, \dots, k \}.$$

The following assertion is true:

$$(\exists B_1, \ldots, B_k \in H) \ (W(B_1, \ldots, B_k) \times V \cap Y = \emptyset).$$

Since n, i_1, \ldots, i_k, V and Y are elements of \mathcal{M} , we find $\overline{B}_1, \ldots, \overline{B}_k \in H \cap \mathcal{M}$ satisfying this condition. If $\overline{B}_j \in \mathcal{M}$, then $\overline{B}_j \subset \mathcal{M}$. Since, by the definition of $\overline{\eta}, \eta(i_j) \notin D_{\tau} \cap \mathcal{M}, \eta(i_j) \notin \overline{B}_j$ for every $j \in \{1, \ldots, k\}$. Now, it is easy to see that $\eta \in W(\overline{B}_1, \ldots, \overline{B}_k)$. Hence, $x \in W(\overline{B}_1, \ldots, \overline{B}_k) \times V$, contradicting $W(\overline{B}_1, \ldots, \overline{B}_k) \times V \cap Y = \emptyset$.

(b) Now, we are going to prove that $\{\overline{\eta}\} \times A_z \cap \operatorname{cl}(Y \cap \mathcal{M}) \neq \emptyset$. In assuming that the intersection is empty, we find open sets $W \subseteq L^{\omega}$ and $V \subseteq Z$, $V \in \mathcal{M}$, such that $\overline{\eta} \in W, A_z \subset V$ and $W \times V \cap \operatorname{cl}(Y \cap \mathcal{M}) = \emptyset$. There exists a natural number n such that

$$C = \{ \vartheta \in L^{\omega} : \vartheta(i) = \overline{\eta}(i) \text{ for } i = 1, \dots, n \} \subseteq W.$$

Remark that $C \in \mathcal{M}$ and $\overline{\eta} \in C$. From $C \subseteq W$ it follows that $C \times V \cap (Y \cap \mathcal{M}) = \emptyset$. Since C, V and Y are elements of \mathcal{M} , this implies that $C \times V \cap Y = \emptyset$. Hence, $\{\overline{\eta}\} \times A_z \cap Y = \emptyset$, contradicting the result of (a). This completes the proof of Theorem 6.2.

References

- Amir D., Lindenstrauß J., The structure of weakly compact sets in Banach spaces, Ann. Math. Ser. 2 88:1 (1968).
- [2] Archangelskij A.V., Topologicheskie prostranstva funkcij (in Russian), Moscow, 1989.
- [3] Bandlow I., A construction in set theoretic topology by means of elementary substructures, Zeitschr. f. Math. Logik und Grundlagen d. Math. 37 (1991).
- [4] _____, A characterization of Corson-compact spaces, Comment. Math. Univ. Carolinae 32 (1991).
- [5] Dow A., An introduction to applications of elementary submodels to topology, Topology Proceedings, vol. 13, no. 1, 1988.
- [6] Engelking R., General Topology, Warsaw, 1977.
- [7] Kunen K., Set Theory, Studies in Logic 102, North Holland, 1980.
- [8] Negrepontis S., Banach spaces and topology, Handbook of set-theoretic topology, North Holland, 1984, 1045–1042.
- [9] Pol R., On pointwise and weak topology in function spaces, Preprint Nr 4/84, Warsaw, 1984.

ERNST-MORITZ-ARNDT UNIVERSITÄT GREIFSWALD, FACHBEREICH MATHEMATIK, JAHNSTRASSE 15 A, 17489 GREIFSWALD, GERMANY

(Received January 16, 1992, revised November 2, 1993)