Alessandro Fedeli

Abstract. In this paper, two cardinal inequalities for functionally Hausdorff spaces are established. A bound on the cardinality of the $\tau\theta$ -closed hull of a subset of a functionally Hausdorff space is given. Moreover, the following theorem is proved: if X is a functionally Hausdorff space, then $|X| \leq 2^{\chi(X)wcd(X)}$.

Keywords: cardinal functions, $\tau\theta$ -closed sets, w-compactness degree Classification: 54A25, 54D20

A space X is said to be functionally Hausdorff if whenever $x \neq y$ in X there is a continuous real valued function f defined on X such that f(x) = 0 and f(y) = 1. A well-known Arkhangel'skii's theorem states that if X is a Hausdorff space, then $|X| \leq 2^{\chi(X)L(X)}$ ([1], [6]). Bella and Cammaroto [2] established some cardinal inequalities for Urysohn spaces that improve, for non regular spaces, the Arkhangel'skii's formula. In this paper, a bound on the cardinality of the $\tau\theta$ -closed hull of a subset of a functionally Hausdorff space and a bound on the cardinality of a functionally Hausdorff space are given. We refer the reader to [3] and [4] for notations and definitions not explicitly given. All topological spaces considered here are assumed to be infinite. Let E be a set; the cardinality of E is denoted by |E|, $\mathcal{P}_k(E)$ is the collection of all subsets of E of cardinality $\leq k$. $\chi(X)$ and L(X) denote respectively the character and the Lindelöf degree of a space X.

Definition 1 [5]. Let A be a subset of a space X. A is called τ -open if A is a union of cozero-sets of X. The τ -closure of A, denoted by $cl_{\tau}(A)$, is the set of all points $x \in X$ such that any cozero-set neighbourhood of x intersects A. The τ -interior of A, denoted by $int_{\tau}(A)$, is the set of all x such that there is a cozero-set neighbourhood of x contained in A.

Definition 2. Let X be a topological space and A a subset of X. The $\tau\theta$ -closure of A, denoted by $cl_{\tau\theta}(A)$, is the set of all points $x \in X$ such that $cl_{\tau}(V) \cap A \neq \emptyset$ for every open neighbourhood V of x. A is said to be $\tau\theta$ -closed if $A = cl_{\tau\theta}(A)$.

As pointed to me by S. Watson, the $\tau\theta$ -closure is not in general idempotent.

Definition 3. Let X be a topological space and A a subset of X. The $\tau\theta$ -closed hull of A, denoted by $[A]_{\tau\theta}$, is the smallest $\tau\theta$ -closed subset of X containing A.

Clearly, $[A]_{\tau\theta} = \bigcap \{F : A \subset F \text{ and } \operatorname{cl}_{\tau\theta}(F) = F\}$. For every space X and every $A \subset X$ we have $\overline{A} \subset \operatorname{cl}_{\tau\theta}(A) \subset [A]_{\tau\theta} \subset \operatorname{cl}_{\tau}(A)$. It is obvious that if X is a Tychonoff space, then $\overline{A} = \operatorname{cl}_{\tau\theta}(A) = [A]_{\tau\theta} = \operatorname{cl}_{\tau}(A)$ for any $A \subset X$.

The next result gives some conditions on a functionally Hausdorff space which are equivalent to $cl_{\tau\theta} = cl_{\tau}$.

Proposition 4. For a functionally Hausdorff space X the following conditions are equivalent:

- (i) For each τ -open set V of X, $\overline{V} = cl_{\tau}(V)$.
- (ii) For each open set G of X, $G \subset int_{\tau}(cl_{\tau}(G))$.
- (iii) For each subset A of X, $cl_{\tau\theta}(A) = cl_{\tau}(A)$.
- (iv) For each τ -open subset V of X, $cl_{\tau\theta}(V) = cl_{\tau}(V)$.

PROOF: (i) \Leftrightarrow (ii) Lemma 28 in [9]. (ii) \Rightarrow (iii) Let $A \subset X$ and $x \notin \operatorname{cl}_{\tau\theta}(A)$, then there is an open neighbourhood G of x such that $\operatorname{cl}_{\tau}(G) \cap A = \emptyset$. By hypothesis $G \subset \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(G))$, then there is a cozero set V such that $x \in V \subset \operatorname{cl}_{\tau}(G)$, so $V \cap A = \emptyset$ and $x \notin \operatorname{cl}_{\tau}(A)$. Hence, $\operatorname{cl}_{\tau\theta}(A) = \operatorname{cl}_{\tau}(A)$. (iii) \Rightarrow (iv) is obvious. (iv) \Rightarrow (i) Let V be a τ -open subset of X, by hypothesis $\operatorname{cl}_{\tau\theta}(V) = \operatorname{cl}_{\tau}(V)$. Now let $x \notin \overline{V}$, then there is an open set G such that $x \in G$ and $G \cap V = \operatorname{cl}_{\tau}(V)$. Since V is τ -open, we have $\operatorname{cl}_{\tau}(G) \cap V = \emptyset$, hence $x \notin \operatorname{cl}_{\tau\theta}(V)$. Therefore, $\overline{V} = \operatorname{cl}_{\tau\theta}(V) = \operatorname{cl}_{\tau}(V)$.

Remark 5. A functionally Hausdorff space X is called weakly absolutely closed [8] provided that every τ -open filter base on X has an adherent point. An SW space is a functionally Hausdorff space X such that every point-separating subalgebra of $C^*(X)$ which contains the constants is uniformly dense in $C^*(X)$ [8]. It is worth noting that by Lemma 25 in [9] and Proposition 4, a functionally Hausdorff space X is weakly absolutely closed iff it is an SW space and $cl_{\tau\theta}(A) = cl_{\tau}(A)$ for every $A \subset X$.

The following result gives an upper bound on the $\tau\theta$ -closed hull.

Theorem 6. Let X be a functionally Hausdorff space. If A is a subset of X, then $|[A]_{\tau\theta}| \leq |A|^{\chi(X)}$.

PROOF: Let $m = \chi(X)$ and k = |A|. For each $x \in X$ let $\mathcal{B}(x)$ be a base for X at the point x such that $|\mathcal{B}(x)| \leq m$. If $x \in cl_{\tau\theta}(A)$, choose a point in $cl_{\tau}(U) \cap A$ for every $U \in \mathcal{B}(x)$ and let B_x be the set so obtained. Clearly, $x \in cl_{\tau\theta}(B_x)$ and $|B_x| \leq m$. Let $\mathcal{G}_x = \{cl_{\tau}(U) \cap B_x : U \in \mathcal{B}(x)\}$. For every $U \in \mathcal{B}_x$ we have $x \in cl_{\tau\theta}(cl_{\tau}(U) \cap B_x)$, in fact, if $V \in \mathcal{B}(x)$ let $W \in \mathcal{B}(x)$ such that $W \subset V \cap U$, then

$$\emptyset \neq \mathrm{cl}_{\tau}(W) \cap B_x \subset \mathrm{cl}_{\tau}(V \cap U) \cap B_x \subset \mathrm{cl}_{\tau}(V) \cap (\mathrm{cl}_{\tau}(U) \cap B_x)$$

Since X is functionally Hausdorff, then $\bigcap \{ cl_{\tau\theta}(cl_{\tau}(U) \cap B_x) : U \in \mathcal{B}(x) \} = \{x\},\$ in fact let $y \neq x$, then there exist open sets G and H such that $x \in G, y \in H$ and $cl_{\tau}(G) \cap cl_{\tau}(H) = \emptyset$, now let $U \in \mathcal{B}(x)$ such that $U \subset G$, then $cl_{\tau}(H) \cap cl_{\tau}(U) = \emptyset$, so $y \notin \bigcap \{ cl_{\tau\theta}(cl_{\tau}(U) : U \in \mathcal{B}(x)) \}$, and, a fortiori, $y \notin \bigcap \{ cl_{\tau\theta}(cl_{\tau}(U) \cap B_x) :$ $U \in \mathcal{B}(x)$ }. So the map $\psi : \operatorname{cl}_{\tau\theta}(A) \to \mathcal{P}_m(\mathcal{P}_m(A))$ defined by $\psi(x) = \mathcal{G}_x$ for every $x \in \operatorname{cl}_{\tau\theta}(A)$, is one to one. Since $|\mathcal{P}_m(\mathcal{P}_m(A))| \leq (k^m)^m = k^m$, then $|\operatorname{cl}_{\tau\theta}(A)| \leq k^m = |A|^{\chi(X)}$. Let $A_0 = A$ and, by transfinite induction, define for every $\alpha < m^+$ sets A_α such that $A_\alpha = \operatorname{cl}_{\tau\theta}(\bigcup\{A_\beta : \beta < \alpha\})$. Clearly $\bigcup\{A_\alpha : \alpha < m^+\} \subset [A]_{\tau\theta}$. Now let $x \in \operatorname{cl}_{\tau\theta}(\bigcup\{A_\alpha : \alpha < m^+\})$, for each $V \in \mathcal{B}(x)$ choose a point in $\operatorname{cl}_{\tau}(V) \cap (\bigcup\{A_\alpha : \alpha < m^+\})$ and let B be the set so obtained, obviously $B \in \mathcal{P}_m(\bigcup\{A_\alpha : \alpha < m^+\})$ and $x \in \operatorname{cl}_{\tau\theta}(B)$. Since m^+ is regular, there is an ordinal $\alpha < m^+$ such that $B \subset A_\alpha$, so

$$x \in cl_{\tau\theta}(B) \subset cl_{\tau\theta}(A_{\alpha}) \subset A_{\alpha+1} \subset \bigcup \{A_{\alpha} : \alpha < m^+\},\$$

therefore $\bigcup \{A_{\alpha} : \alpha < m^+\}$ is $\tau\theta$ -closed. Hence $[A]_{\tau\theta} = \bigcup \{A_{\alpha} : \alpha < m^+\}$. It remains to show that $|A_{\alpha}| \leq k^m$ for each $\alpha < m^+$ (this is equivalent to $|\bigcup \{A_{\alpha} : \alpha < m^+\}| \leq k^m$). Suppose there is an ordinal $\alpha < m^+$ such that $|A_{\alpha}| > k^m$ and let $\gamma = \min\{\alpha : |A_{\alpha}| > k^m\}$. Since $|A_{\alpha}| \leq k^m$ for every $\beta < \gamma$, we have $|\bigcup \{A_{\beta} : \beta < \gamma\}| \leq k^m$. Now $A_{\gamma} = \operatorname{cl}_{\tau\theta}(\bigcup \{A_{\beta} : \beta < \gamma\})$, hence

$$|A_{\gamma}| = |\operatorname{cl}_{\tau\theta}(\bigcup\{A_{\beta}:\beta<\gamma\})| \le |\bigcup\{A_{\beta}:\beta<\gamma\}|^{\chi(X)} \le (k^m)^m = k^m,$$

a contradiction.

Definition 7. Let X be a topological space. The w-compactness degree of X, denoted by wcd(X), is defined as the smallest infinite cardinal number k with the property that for every open cover \mathcal{U} of X there is a subcollection $\mathcal{V} \in \mathcal{P}_k(\mathcal{U})$ for which $X = \bigcup \{ cl_\tau(V) : V \in \mathcal{V} \}.$

For every space X we have $wcd(X) \leq L(X)$ and this inequality can be proper.

Example 8. Let X be any infinite T_3 -space such that every continuous real valued function defined on X is constant. Clearly $wcd(X) = \aleph_0 < L(X)$.

Example 9. For each $\alpha < \omega_1$ let $I(\alpha) = \{\alpha\} \times$ an open interval in the real line. Set $X = \omega_1 \cup \bigcup \{I(\alpha) : \alpha < \omega_1\}$ and for $x, y \in X$ define x < y if (i) $x, y \in \omega_1$ and x < y in ω_1 , or (ii) $x \in \omega_1, y \in I(\beta)$ and $x \le \beta$ in ω_1 , or (iii) $x \in I(\gamma), y \in \omega_1$ and $\gamma < y$ in ω_1 , or (iv) $x \in I(\alpha), y \in I(\beta)$ and $\alpha < \beta$ in ω_1 , or (v) $x, y \in I(\alpha)$ and x < y in $I(\alpha)$. Let σ be the order topology on X. Let $Y = X \cup \{\omega_1\}$, define $x < \omega_1$ for every $x \in X$ and let ϱ be the order topology on Y. If τ is the topology on Y generated by $\varrho \cup \{Y - L : L$ is the set of limit ordinals in $Y - \{\omega_1\}\}$, then (Y, τ) is a functionally Hausdorff H-closed space which fails to be Lindelöf [7], so $wcd(Y) = \aleph_0 < L(Y)$.

Theorem 10. If X is a functionally Hausdorff space, then $|X| \leq 2^{\chi(X)wcd(X)}$.

PROOF: Let $m = \chi(X)wcd(X)$ and for every $x \in X$ let $\mathcal{B}(x)$ be a base for X at the point x such that $|\mathcal{B}(x)| \leq m$. Construct a family $\{C_{\alpha} : \alpha < m^+\}$ of subsets of X such that

- (1) for any $\alpha < m^+ C_{\alpha}$ is $\tau \theta$ -closed;
- (2) for any $\alpha < m^+ |C_{\alpha}| \le 2^m$;
- (3) if $\alpha < \beta < m^+$, then $\overline{C}_{\alpha} \subset C_{\beta}$;
- (4) for any $\alpha < m^+$, if $\mathcal{U} \subset \bigcup \{\mathcal{B}(x) : x \in \bigcup \{C_\beta : \beta < \alpha\}\}, |\mathcal{U}| \le m$ and $X \bigcup \{\operatorname{cl}_\tau(U) : U \in \mathcal{U}\} \neq \emptyset$, then $C_\alpha \bigcup \{\operatorname{cl}_\tau(U) : U \in \mathcal{U}\} \neq \emptyset$.

The construction is done by transfinite induction. Let $p \in X$ and $C_0 = \{p\}$. Let $0 < \alpha < m^+$ and assume that C_β has been constructed for every $\beta < \alpha$. Let $\mathcal{B}_{\alpha} = \bigcup \{ \mathcal{B}(x) : x \in \bigcup \{ C_{\beta} : \beta < \alpha \} \}$, clearly $|\mathcal{B}_{\alpha}| \leq 2^{m}$. For any $\mathcal{U} \subset$ \mathcal{B}_{α} such that $|\mathcal{U}| \leq m$ and $X - \bigcup \{ \operatorname{cl}_{\tau}(U) : U \in \mathcal{U} \} \neq \emptyset$, choose a point in $X - \bigcup \{ \operatorname{cl}_{\tau}(U) : U \in \mathcal{U} \}$ and let A be the set so obtained, obviously $|A| \leq 2^{m}$. Let $C_{\alpha} = [A \cup (\bigcup \{C_{\beta} : \beta < \alpha\})]_{\tau\theta}, C_{\alpha}$ satisfies (1), (3), (4) and, by Theorem 6, also (2). The set $C = \bigcup \{C_{\alpha} : \alpha < m^+\}$ is $\tau \theta$ -closed, in fact let $x \in cl_{\tau \theta}(C)$, for every $V \in \mathcal{B}(x)$ choose a point in $cl_{\tau}(V) \cap C$ and let K be the set so obtained, clearly $|K| \leq m$, therefore there exists an $\alpha < m^+$ such that $K \subset C_{\alpha}$, then $x \in cl_{\tau\theta}(K) \subset cl_{\tau\theta}(C_{\alpha}) = C_{\alpha} \subset C$. Obviously $|C| \leq 2^m$, so to complete the proof it suffices to show that C = X. Let us suppose that $y \in X - C$, since X is functionally Hausdorff, then for any $x \in C$ there is a $U_x \in \mathcal{B}(x)$ such that $y \notin \mathrm{cl}_{\tau}(U_x)$; for every $x \in X - C$ let $U_x \in \mathcal{B}(x)$ such that $\mathrm{cl}_{\tau}(U_x) \cap C = \emptyset$ (C is $\tau\theta$ -closed). $\{U_x\}_{x\in X}$ is an open cover of X, since $wcd(X) \leq m$ there is a $B \subset X$ such that $|B| \leq m$ and $X = \bigcup \{ cl_{\tau}(U_x) : x \in B \}$, clearly $C \subset$ $|\{c|_{\tau}(U_x) : x \in B \cap C\}$. Since $|B \cap C| \leq m$, there is an $\alpha < m^+$ such that $B \cap C \subset C_{\alpha}. \text{ Let } \mathcal{U} = \{ U_x : x \in B \cap C \}, \mathcal{U} \subset \bigcup \{ \mathcal{B}(x) : x \in \bigcup \{ C_{\beta} : \beta < \alpha + 1 \} \},$ $|\mathcal{U}| \le m, y \in X - \bigcup \{ \operatorname{cl}_{\tau}(U_x) : U_x \in \mathcal{U} \} \text{ and } C_{\alpha+1} - \bigcup \{ \operatorname{cl}_{\tau}(U_x) : U_x \in \mathcal{U} \} = \emptyset,$ a contradiction. Hence C = X and the proof is complete. \square

Remark 11. Let X be a functionally Hausdorff space and let wX be the completely regular space which has the same points and continuous real valued functions as those of X. Clearly $L(wX) \leq wcd(X)$ for every functionally Hausdorff space X. On the other hand, there exist functionally Hausdorff spaces X such that $\chi(X) < \chi(wX)$ (see e.g. [9, Example 36]). I do not know if $\chi(wX)L(wX) \leq \chi(X)wcd(X)$ for every functionally Hausdorff space X; if this is the case, then Theorem 10 is a consequence of the Arkhangel'skii's inequality quoted at the beginning.

References

- Arkhangel'skii A.V., The power of bicompacta with the first axiom of countability, Soviet Math. Dokl. 10 (1969), 951–955.
- [2] Bella A., Cammaroto F., On the cardinality of Urysohn spaces, Canad. Math. Bull. 31 (2) (1988), 153-158.
- [3] Engelking R., General Topology. Revised and completed edition, Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin, 1989.
- [4] Hodel R., Cardinal Functions I, in Handbook of Set-Theoretic Topology (K. Kunen and J.E. Vaughan, eds.), Elsevier Science Publishers, B.V., North Holland, 1984, pp. 1–61.
- [5] Ishii T., On the Tychonoff functor and w-compactness, Topology Appl. 11 (1980), 173–187.
- [6] Pol R., Short proofs of two theorems on cardinality of topological spaces, Bull. Acad. Polon. Sci. Ser,. Math. Astr. Phys. 22 (1974), 1245–1249.

- [7] Stephenson R.M., Jr., Spaces for which the Stone-Weierstrass theorem holds, Trans. Amer. Math. Soc. 133 (1968), 537–546.
- [8] _____, Product spaces for which the Stone-Weierstrass theorem holds, Proc. Amer. Math. Soc. 21 (1969), 284–288.
- [9] _____, Pseudocompact and Stone-Weierstrass product spaces, Pacific J. Math. 99 (1) (1982), 159–174.

DIPARTIMENTO DI MATEMATICA PURA ED APPLICATA, UNIVERSITÁ, 67100 L'AQUILA, ITALY

(Received July 27, 1993)