
Comment.Math.Univ.Carolin. 35,2 (1994)403–408 403

Cardinal invariants and compactifications

A. Gryzlov

Abstract. We prove that every compact space X is a Čech-Stone compactification of
a normal subspace of cardinality at most d(X)t(X), and some facts about cardinal in-
variants of compact spaces.
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The notions of a compactness and of a compactification are very closed. Really,
any compact space is a compactification of any of its dense subsets. But a useful
information can be obtained from this fact only in the case when a compact space
is a compactification of some certain type.
The classic type is the Čech-Stone compactification. When a compact space

is a Čech-Stone compactification of some of its subsets? Theorem 1.1 says that
any compact space X is a Čech-Stone compactification of some normal subspace

B ⊆ X such that |B| ≤ d(X)t(X), where d(X) is a density of X , t(X) is its

tightness. The case, when |X | ≤ d(X)t(X) is trivial, in this case B = X . In the
opposite case the theorem says that “extra” points from X \B are constructed by
a standard way, as points of Čech-Stone compactification of a “not large” normal
subspace. For example, by this theorem, we can say that Fedorchuk’s compact
space, that is the hereditarily separable, hereditarily normal compact space of
cardinality 2c, is a Čech-Stone compactification of a subspace of a cardinality c.
We prove some new facts about cardinal invariants.
The definitions and notations used here are standard, one can find then in [2],

for example.
We use the notation of a sequential extension of a set A, that is a set B,

A ⊆ B ⊆ [A], |B| ≤ |A|ω such that if a countable set B′ ⊆ B has a limit point in
X , then there is a limit point of B′ in B. One can construct a sequential extension
by induction.

Theorem 1.1. Let X be a compact space, A be a dense subset of X . Then

X = βB, where A ⊆ B, |B| ≤ |A|t(X), B is a normal and countably compact
subspace.

Proof: The case |X | = |A|t(X) is trivial. Let |X | > |A|t(X). We construct by
induction the family {Bα : α < ωτ+}, where t(X) = τ such that:
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(1) B0 = A;
(2) Bβ ⊆ Bα for β ≤ α;
(3) a sequential extension of Bα is in Bα+1;
(4) |Bα| ≤ |A|τ for α < ωτ+ ;
(5)

⋃
{Bα : α < ωτ+} = B, where B is a normal, countably compact subspace
and X = βB.

Let ξ(A) be a choice function, defined on the set of all nonempty subsets of X .
Let B0 = A. Let {Bβ : β < α} with conditions (1)–(4) be constructed. Let B′

α

be a sequential extension of the set
⋃
{Bβ : β < α} and

Bα = B′

α ∪ {ξ([T ]X ∩ [T ′]X) : T, T ′ ∈ expτ B′

α}.

Then |Bα| ≤ |A|τ and (1)–(4) hold for {Bβ : β ≤ α}. Note that B is a count-
ably compact space. Let us prove that X = βB. Let F1, F2 be disjoint closed
subsets of B. Let ([F1]X ∩ [F2]X ) \ B 6= ∅ and x ∈ ([F1]X ∩ [F2]X) \ B. Since
t(X) = τ , there are F ′

1 ⊆ F1 and F ′

2 ⊆ F2 such that F ′

1, F
′

2 ⊆ Bα and |F ′

1| ≤ τ ,
|F ′

2| ≤ τ , and x ∈ [F ′

1]X ∩ [F ′

2]X . There is α < ωτ+ such that F ′

1, F
′

2 ⊆ Bα. Since
F ′

1, F
′

2 are disjoint, closed subsets of B, then [F
′

1]X ∩ [F ′

2]X ⊆ ([F1]X ∩ [F2]X )\B.
Then ξ([F ′

1]X ∩ [F ′

2]X) ∈ X \B, a contradiction. So X = βB. It follows from the
above proof that B is a normal space. The theorem is proved. �

Recall that a space X is weakly normal if in every closed, countable, discrete
set A ⊆ X there is a countable A′ ⊆ A C∗-embedded in X [3].
We say that X is an h-weakly normal space if X is hereditarily weakly normal.

Definition 1.2. A space X is called d-normal if in every closed, countable, dis-
crete set A ⊆ X there is a countable A′ ⊆ A with discrete family of neighbor-
hoods. It means that for every point x ∈ A′ there is a neighborhood Ox such
that {Ox : x ∈ A′} is a discrete family.
We say that a space X is hd-normal if X is a hereditarily d-normal.
It is clear that a hd-normal (d-normal) space is h-weakly (weakly) normal, and

a hereditarily normal space is hd-normal as well as it is compact first countable
space or a normal first countable space.
On the other hand, the space N∗ = βN \ N , the remainder of the Čech-Stone

compactification of a countable discrete space, is an h-weakly normal, but not an
hd-normal space. Really, the h-weakly normality of N∗ follows from the fact that
[D]N∗ is homeomorphic to βN = βD for every countable discrete set D ⊆ N∗.
But for a discrete set D the space X = N∗ \ ([D]N∗ \ D) is not d-normal.

Theorem 1.3. Let X be an hd-normal compact space, or an h-weakly normal
space with countable tightness, and A ⊆ X be a dense subset of X . Then X = βB

where A ⊆ B, |B| ≤ |A|t(X), B is a normal countably compact space such that
every compact space K ⊆ X \ B is finite.

Proof: Again, we suppose that |X | > |A|t(X). Let the set B be as in Theo-
rem 1.1. We prove that every compact space K ⊆ X \B is finite. Let K ⊆ X \B
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be an infinite compact set. There is a countable discrete (as a subspace) sub-
set D ⊆ K. We consider a set B ∪ D. By h-weakly normality (moreover hd-
normality) of X , there is a countable set D′ ⊆ D C∗-embedded in B ∪ D. Then
[D′]X = βD′, so [D′]X is a Čech-Stone compactification of the countable discrete
set. But βD′ = βN is not an hd-normal and the tightness of βD′ is not countable.
This contradiction proves the theorem. �

Theorems 1.1 and 1.3 were announced by the author in [4].

Lemma 1.4. Let X be an h-weakly normal compact space with countable tight-
ness, X = βB for some B ⊆ X . The Φ \ F is a discrete (as a subspace) set for
closed F,Φ ⊆ X such that F ⊆ Φ and F ∩ B = Φ ∩ B.

Proof: Let x ∈ Φ\F . There is a neighborhood Ox of x such that [Ox]X ∩F = ∅.
Therefore, [Ox]X∩Φ = [Ox]X∩(Φ\F ) ⊆ X\B. By Theorem 1.3, the set [Ox]X∩Φ
is finite, and therefore Φ \ F is a discrete set. The lemma is proved. �

Recall that a point x ∈ X is called a b-point if x = F ∩ Φ where F and Φ are
closed sets in X , and x is a limit point for F and Φ [5].

κ-points (limits of sequences of points of X) are b-points as well as points of
non-normality (points x of a normal space X such that X \ {x} is non-normal).

Theorem 1.5. Let X be an h-weakly normal compact space with countable
tightness. Then |{x : x is a b-point in X}| ≤ d(X)ω.

Proof: By Theorem 1.3, X = βB for a normal B such that |B| ≤ d(X)ω and
every compact subset of X \ B is finite. We prove that none of the points of
X \ B is a b-point. Indeed, let x ∈ X be a b-point, that is, x = F ∩ Φ where
F,Φ are closed in X , and x is a limit point for F and Φ. Let F ′ = F ∩ B,
Φ′ = Φ ∩ B. Then x ∈ [F ′]X ∩ [Φ′]X . Really, by Lemma 1.4, the sets F \ [F ′]X
and Φ \ [Φ′]X are discrete and therefore x ∈ [F ′]X , x ∈ [Φ′]X . But X is a Čech-
Stone compactification of the normal space B. This contradiction proves the
theorem. �

Corollary 1.6. Let X be a weakly normal compact space with countable tight-
ness and let all points of X be b-points. Then |X | ≤ d(X)ω .

The above results have some connections with the results from [6].

Recall that x ∈ X is an hb-point if x is a b-point in every closed subspace
X ′ ⊆ X , if x is not isolated in X ′ [5].

By Arhangelskii’s theorem [7] and Theorem 1.5 we have

Theorem 1.7. Let X be an h-weakly normal compact space with countable
tightness, χ(X) ≤ 2ω and every non-isolated point in X is an hb-point. Then
|X | ≤ 2ω.
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Proposition 1.8. Let X be a countably compact hd-normal space, A ⊆ X be
a dense subset. Then there is B ⊆ X such that A ⊆ B, |B| ≤ |A|ω , B is countably
compact such that every subset F ⊆ X \ B closed in X is finite.

Proof: It is clear that B is a sequential extension of A. The only thing we have
to explain is the last part. Let F ⊆ X \B be an infinite closed subset of X . There
is a countable discrete (as a subspace) set D ∈ F . By an hd-normality of X there
is a countable set D′ = {xi : i ∈ ω}, D′ ⊆ D with a discrete in B ∪ D family
of neighborhoods {Oxi : i ∈ ω}. But Oxi ∩ B 6= ∅ for every i ∈ ω, so we have
the discrete infinite family in the compact space B. This contradiction proves the
proposition. �

By the same way as Lemma 1.4 we can prove

Lemma 1.9. Let X be an hd-normal space, B ⊆ X be a dense, countably
compact subspace, F,Φ ⊆ X such that F ⊆ Φ, F ∩ B = Φ ∩ B. Then Φ \ F is
a discrete (as a subspace) set, moreover, Φ \ F is a free sequence in X \ F .

Lemma 1.10. Let X be an hd-normal space, B ⊆ X be a countably compact
subspace. Then for every closed set F ⊆ X there is a family π = {OF} of
neighborhoods of F such that |π| ≤ |B|, (

⋂
{[OF ] : OF ∈ π} ∩ [B]) \ F ∩ [B] is

discrete; moreover, if F ∩ B = ∅, then
⋂
{[OF ] : OF ∈ π} ∩ [B] = ∅.

Proof: We consider F ∩ [B]. It is clear that there is a family π = {OF} of
neighborhoods of F such that |π| = |B|,

⋂
{[OF ] : OF ∈ π} ∩ B = F ∩ B. Then

(
⋂
{[OF ] : OF ∈ π} ∩ [B]) \ F ∩ [B] is discrete by Lemma 1.9. If F ∩ B = ∅,

then
⋂
{[OF ] : OF ∈ π} ∩ [B] ⊆ [B] \ B. In the same way as in the proof of

Proposition 1.7 we can prove that
⋂
{[OF ] : OF ∈ π} ∩ [B] is finite. We can add

a finite number of neighborhoods of F to the family π and get what we need. The
lemma is proved. �

Proposition 1.11. Let X be an hd-normal, countably compact space such that

every point x ∈ X is a limit point of a closed set of cardinality at most d(X)t(X).

Then |X | ≤ d(X)t(X).

Proof: By Proposition 1.8 there is a dense, countably compact space B ⊆ X

such that every closed set F ⊆ X \B is finite and |B| ≤ d(X)t(X). Let x ∈ X \B.

There is a closed Fx ⊆ X such that |Fx| ≤ d(X)t(X) and x is a limit point of Fx.
Then by Lemma 1.9, x ∈ [Fx ∩ B]. There is F ′

x ⊆ Fx ∩ B such that |F ′

x| ≤ t(X)

and x ∈ [F ′

x]. Then |X \ B| ≤ |B|t(X) ≤ d(X)t(X). The proposition is proved.
�

Proposition 1.12. Let X be an hd-normal compact space. Then hl(X) ≤
s(X)ω.

Proof: We prove that χ(F, X) ≤ s(X)ω for every closed F ⊆ X . Really, for
a closed F ⊆ X there is a family π = {OF} of neighborhoods of F such that
|π| ≤ s(X) and d(

⋂
{[OF ] : OF ∈ π} \ F ) ≤ s(X) (this is well known, see for
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example [5]). By Proposition 1.8 there is a set B ⊆
⋂
{[OF ] : OF ∈ π} such

that |B| ≤ s(X)ω, B is countably compact, [B] ⊇ (
⋂
{[OF ] : OF ∈ π}) \ F

and every subset of B closed in X is finite. By Lemma 1.9 there is a family
π′ = {UF}, |π′| ≤ s(X)ω of neighborhoods of F such that (

⋂
{[UF ] : UF ∈

π}∩ [B]) \F ∩ [B] is discrete and therefore has cardinality at most s(X). Finally,
χ(F, X) ≤ s(X)ω · s(X) = s(X)ω. The proposition is proved. �

Recall that a free sequence of cardinality τ is a set ξ{xα : α < τ} such that for
all β < τ [{xα : α < β}] ∩ [{xα : α ≥ β}] = ∅ (see [6]).
Define A(X) = sup{τ : τ is cardinality of a free sequence in X}, ̺A(x, X) =

A(X \ {x}), ̺A(X) = sup{̺A(x, X) : x ∈ X}. A. Arhangelskii proved that
t(X) = A(X) for compact spaces [7]; moreover,

t(X) = A(X) ≤ ̺A(X) ≤ s(X).

Note that for Alexandroff’s double circle s(X) = 2ω, ̺A(X) = A(X) = ω. The
same construction with Fedorchuk’s compact space gives the space with s(X) = 2c

and ̺A(X) = ω.

Theorem 1.13. Let X be an hd-normal compact space. Then χ(x, X) ≤
̺A(x, X)ω .

Proof: Let there be a point x ∈ X such that ̺A(x, X)ω < χ(x, X). Define
̺A(x, X) = τ . By induction we construct a set D = {yα : α < ωτ+}, a family
{Bα : α < ωτ+}, |Bα| ≤ τω of neighborhoods of x such that ([{yα : α < δ}] ∩⋂
{[Ox] : Ox ∈ Bδ}) \ {x} = ∅, δ < ωτ+ . Let y0 ∈ X , B0 = {Ox}, where
[Ox] 6∋ y0. Let {yα : α < δ} and {Bα : α < δ} be constructed. If x /∈ [{yα : α, δ}],
let Bδ =

⋃
{Bα : α < δ} ∪ {Ox}, where Ox ∩ {yα : α < δ} = ∅. We choose yδ in

the set
⋂
{[Ox] : Ox ∈ Bδ} \ {x}. If x ∈ [{yα : α < δ}], we use Proposition 1.6

and Lemma 1.9. Since |{yα : α < δ}| ≤ τ , let us consider a family π = {Ox} of
neighborhoods of x, |π| ≤ τω such that T = (

⋂
{[Ox] : Ox ∈ π}) ∩ [{yα : α <

δ}] \ {x} is empty or is a free sequence in X \ {x}, and |T | ≤ ̺A(x, X). Hence,
there is a family π′ of neighborhoods of x of cardinality at most τω such that
(
⋂
{[Ox] : Ox ∈ π} ∩ [{yα : α < δ}]) \ {x} = ∅. Let Bδ

⋃
{Bα : α < δ} ∪ π′, and

choose yδ from
⋂
{[Ox] : Ox ∈ Bδ} \ {x}. If we continue until ωτ+ , we get a free

sequence of cardinality τ+. But this contradicts ̺A(x, X) = τ . The theorem is
proved. �
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