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Cardinal invariants and compactifications

A. GRyzZLOV

Abstract. We prove that every compact space X is a Cech-Stone compactification of
a normal subspace of cardinality at most cl(X)t(X)7 and some facts about cardinal in-
variants of compact spaces.
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The notions of a compactness and of a compactification are very closed. Really,
any compact space is a compactification of any of its dense subsets. But a useful
information can be obtained from this fact only in the case when a compact space
is a compactification of some certain type.

The classic type is the Cech-Stone compactification. When a compact space
is a Cech-Stone compactification of some of its subsets? Theorem 1.1 says that
any compact space X is a Cech-Stone compactification of some normal subspace
B C X such that |B| < d(X)"X), where d(X) is a density of X, t(X) is its
tightness. The case, when |X| < d(X)"X) is trivial, in this case B = X. In the
opposite case the theorem says that “extra” points from X \ B are constructed by
a standard way, as points of Cech-Stone compactification of a “not large” normal
subspace. For example, by this theorem, we can say that Fedorchuk’s compact
space, that is the hereditarily separable, hereditarily normal compact space of
cardinality 2, is a Cech-Stone compactification of a subspace of a cardinality c.
We prove some new facts about cardinal invariants.

The definitions and notations used here are standard, one can find then in [2],
for example.

We use the notation of a sequential extension of a set A, that is a set B,
A C B C[A], |B| <|AJ¥ such that if a countable set B’ C B has a limit point in
X, then there is a limit point of B’ in B. One can construct a sequential extension
by induction.

Theorem 1.1. Let X be a compact space, A be a dense subset of X. Then
X = B, where A C B, |B| < |A|t(X), B is a normal and countably compact
subspace.

PROOF: The case |X| = |A]!(X) is trivial. Let |X| > |A["X). We construct by
induction the family {Bq : @ < w_+ }, where ¢(X) = 7 such that:
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) Bo = 4;

) Bg C By for f < a;

) a sequential extension of By is in Bq41;
)

)

and X = 3B.

Let £(A) be a choice function, defined on the set of all nonempty subsets of X.
Let By = A. Let {Bg : # < a} with conditions (1)-(4) be constructed. Let By,
be a sequential extension of the set (J{Bg: 3 < o} and

Bo = B, U{&([T)x N[T"]x) : T, T" € exp, By}

Then |By| < |A|™ and (1)-(4) hold for {Bg : # < a}. Note that B is a count-
ably compact space. Let us prove that X = gB. Let Fi, F» be disjoint closed
subsets of B. Let ([F1]x N [F2lx)\ B # 0 and =z € ([F1]x N [F2]x) \ B. Since
t(X) = 7, there are F{ C F; and F} C Fy such that F|,F} C B, and |F{| < T,
|Fj| <7, and x € [F]|x N [F4]x. There is & < w,+ such that F], F5 C Bg,. Since
F|, F} are disjoint, closed subsets of B, then [F{]x N[F3]x C ([Fi]x N[F2]x)\B.
Then £([F{]x N[F4]x) € X \ B, a contradiction. So X = 8B. It follows from the
above proof that B is a normal space. The theorem is proved. (|

Recall that a space X is weakly normal if in every closed, countable, discrete
set A C X there is a countable A’ C A C*-embedded in X [3].
We say that X is an h-weakly normal space if X is hereditarily weakly normal.

Definition 1.2. A space X is called d-normal if in every closed, countable, dis-
crete set A C X there is a countable A’ C A with discrete family of neighbor-
hoods. It means that for every point x € A’ there is a neighborhood Ox such
that {Oz : x € A’} is a discrete family.

We say that a space X is hd-normal if X is a hereditarily d-normal.

It is clear that a hd-normal (d-normal) space is h-weakly (weakly) normal, and
a hereditarily normal space is hd-normal as well as it is compact first countable
space or a normal first countable space.

On the other hand, the space N* = BN \ N, the remainder of the Cech-Stone
compactification of a countable discrete space, is an h-weakly normal, but not an
hd-normal space. Really, the h-weakly normality of N* follows from the fact that
[D]n+ is homeomorphic to SN = D for every countable discrete set D C N*.
But for a discrete set D the space X = N*\ ([D]y+ \ D) is not d-normal.

Theorem 1.3. Let X be an hd-normal compact space, or an h-weakly normal
space with countable tightness, and A C X be a dense subset of X. Then X = 3B
where A C B, |B| < |A|!), B is a normal countably compact space such that
every compact space K C X \ B is finite.

PROOF: Again, we suppose that |X| > [A*(X). Let the set B be as in Theo-
rem 1.1. We prove that every compact space K C X \ B is finite. Let K C X \ B
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be an infinite compact set. There is a countable discrete (as a subspace) sub-
set D C K. We consider a set BU D. By h-weakly normality (moreover hd-
normality) of X, there is a countable set D' C D C*-embedded in B U D. Then
[D']x = BD’, so [D']x is a Cech-Stone compactification of the countable discrete
set. But 3D’ = AN is not an hd-normal and the tightness of 3D’ is not countable.
This contradiction proves the theorem. (I

Theorems 1.1 and 1.3 were announced by the author in [4].

Lemma 1.4. Let X be an h-weakly normal compact space with countable tight-
ness, X = B for some B C X. The ®\ F is a discrete (as a subspace) set for
closed F,® C X such that F C ® and FN B =®NB.

PROOF: Let z € ®\ F. There is a neighborhood Oz of x such that [Oz]x NF = ().
Therefore, [Oz]xN® = [Oz] xN(P\F) C X\ B. By Theorem 1.3, the set [Ox] x NP
is finite, and therefore ® \ F' is a discrete set. The lemma is proved. (]

Recall that a point x € X is called a b-point if x = F'N ® where F and ® are
closed sets in X, and x is a limit point for F' and @ [5].

»-points (limits of sequences of points of X) are b-points as well as points of
non-normality (points z of a normal space X such that X \ {z} is non-normal).

Theorem 1.5. Let X be an h-weakly normal compact space with countable
tightness. Then |[{x : x is a b-point in X }| < d(X)“.

PRrROOF: By Theorem 1.3, X = 3B for a normal B such that |B| < d(X)“ and
every compact subset of X \ B is finite. We prove that none of the points of
X \ B is a b-point. Indeed, let z € X be a b-point, that is, x = F N ® where
F,® are closed in X, and z is a limit point for F and ®. Let F/ = F N B,
® = ®N B. Then z € [F']x N[®]x. Really, by Lemma 1.4, the sets F'\ [F']x
and @ \ [®'] x are discrete and therefore z € [F']x, » € [®]x. But X is a Cech-
Stone compactification of the normal space B. This contradiction proves the
theorem. O

Corollary 1.6. Let X be a weakly normal compact space with countable tight-
ness and let all points of X be b-points. Then |X| < d(X)¥.

The above results have some connections with the results from [6].

Recall that z € X is an hb-point if x is a b-point in every closed subspace
X' C X, if z is not isolated in X' [5].

By Arhangelskii’s theorem [7] and Theorem 1.5 we have

Theorem 1.7. Let X be an h-weakly normal compact space with countable
tightness, x(X) < 2% and every non-isolated point in X is an hb-point. Then
| X| <2v.
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Proposition 1.8. Let X be a countably compact hd-normal space, A C X be
a dense subset. Then there is B C X such that A C B, |B| < |A|“, B is countably
compact such that every subset F C X \ B closed in X is finite.

PROOF: It is clear that B is a sequential extension of A. The only thing we have
to explain is the last part. Let ' C X \ B be an infinite closed subset of X. There
is a countable discrete (as a subspace) set D € F. By an hd-normality of X there
is a countable set D' = {z; : i € w}, D' C D with a discrete in B U D family
of neighborhoods {Oz; : i € w}. But Ox; N B # () for every i € w, so we have
the discrete infinite family in the compact space B. This contradiction proves the
proposition. 0

By the same way as Lemma 1.4 we can prove

Lemma 1.9. Let X be an hd-normal space, B C X be a dense, countably
compact subspace, F,® C X such that F C ®, FNB =®NB. Then ®\ F is
a discrete (as a subspace) set, moreover, ® \ F is a free sequence in X \ F'.

Lemma 1.10. Let X be an hd-normal space, B C X be a countably compact
subspace. Then for every closed set F' C X there is a family 7 = {OF} of
neighborhoods of F such that |r| < |B|, (W{[OF]: OF € n} N[B])\ FN[B] is
discrete; moreover, if F N B =, then ({[OF]: OF € #} N[B] = 0.

PrOOF: We consider F' N [B]. It is clear that there is a family 7 = {OF} of
neighborhoods of F such that |7| = |B|, ({[OF]: OF € 71} N B = FN B. Then
(N{[OF] : OF € n} N [B]) \ F N [B] is discrete by Lemma 1.9. If FN B = 0,
then N{[OF] : OF € n} N [B] C [B] \ B. In the same way as in the proof of
Proposition 1.7 we can prove that ({[OF] : OF € 7} N [B] is finite. We can add
a finite number of neighborhoods of F' to the family 7 and get what we need. The
lemma is proved. (Il

Proposition 1.11. Let X be an hd-normal, countably compact space such that
every point z € X is a limit point of a closed set of cardinality at most d(X)X).
Then | X| < d(X)1X),

ProoF: By Proposition 1.8 there is a dense, countably compact space B C X
such that every closed set ' C X \ B is finite and |B| < d(X)"X). Let z € X\ B.
There is a closed i C X such that |F| < d(X)!X) and z is a limit point of F.
Then by Lemma 1.9, z € [F;; N B|. There is F), C F;, N B such that |F,| < t(X)
and z € [F/]. Then |X \ B| < |B[*X) < d(X)"¥X). The proposition is proved.

(]
Proposition 1.12. Let X be an hd-normal compact space. Then hl(X) <
s(X)v.

PROOF: We prove that x(F, X) < s(X)“ for every closed FF C X. Really, for
a closed F C X there is a family 7 = {OF} of neighborhoods of F' such that
|7] < s(X) and d(N{[OF] : OF € n} \ F) < s(X) (this is well known, see for
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example [5]). By Proposition 1.8 there is a set B C ({[OF] : OF € w} such
that |B| < s(X)¥, B is countably compact, [B] 2 (N{[OF] : OF € ©})\ F
and every subset of B closed in X is finite. By Lemma 1.9 there is a family
' = {UF}, |7'| < s(X)“ of neighborhoods of F such that (N{[UF] : UF €
7} N[B])\ FN[B] is discrete and therefore has cardinality at most s(X). Finally,
X(F, X) < s(X)¥-s(X) = s(X)“. The proposition is proved. O

Recall that a free sequence of cardinality 7 is a set £{zq : & < 7} such that for
all 3 <7 {za:a<BHN[{zq:a>F} =0 (see [6]).

Define A(X) = sup{7 : 7 is cardinality of a free sequence in X}, pA(z, X) =
A(X \ {z}), 0A(X) = sup{eA(z,X) : x € X}. A. Arhangelskii proved that
t(X) = A(X) for compact spaces [7]; moreover,

#H(X) = A(X) < 0A(X) < s(X).

Note that for Alexandroft’s double circle s(X) = 2%, pA(X) = A(X) = w. The
same construction with Fedorchuk’s compact space gives the space with s(X) = 2¢
and pA(X) = w.

Theorem 1.13. Let X be an hd-normal compact space. Then x(z,X) <
oAz, X)¥.

PROOF: Let there be a point € X such that pA(z, X)*¥ < x(z,X). Define
0A(xz,X) = 7. By induction we construct a set D = {yo : @ < w,+}, a family
{Ba : @ < wy+}, |Bal < 7 of neighborhoods of x such that ([{ya : @ < d}] N
N{[0z] : Oz € Bs})\ {2z} =0, 6§ < w_+. Let yg € X, By = {Ox}, where
[Oz] # yo. Let {ya : @ < ¢} and {Bq : & < 0} be constructed. If x ¢ [{yq : v, §}],
let By = | U{Bq : @ < 6} U{Oz}, where Oz N {yq : a < §} = 0. We choose y; in
the set ({[Oz] : Ox € Bs} \ {z}. If v € [{ya : & < &}], we use Proposition 1.6
and Lemma 1.9. Since |{yq : & < 0} < 7, let us consider a family 7 = {Oz} of
neighborhoods of z, || < 7% such that T' = (({[Ox] : Oz € 7}) N {ya : a <
0} \ {z} is empty or is a free sequence in X \ {z}, and |T| < pA(x, X). Hence,
there is a family 7' of neighborhoods of x of cardinality at most 7% such that
(N{[Oz] : Oz € 7} N [{ya : @ < 3}]) \ {z} = 0. Let Bs\J{Ba : « < 6} Un’, and
choose ys from ({[Oz] : Oz € Bs} \ {z}. If we continue until w_+, we get a free
sequence of cardinality 7. But this contradicts pA(z, X) = 7. The theorem is
proved. O
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