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On ω-limit sets of nonautonomous differential equations

Boris S. Klebanov*

Abstract. In this paper the ω-limit behaviour of trajectories of solutions of ordinary
differential equations is studied by methods of an axiomatic theory of solution spaces. We
prove, under very general assumptions, semi-invariance of ω-limit sets and a Poincaré-
Bendixon type theorem.
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1. In the present paper we operate in the framework of an axiomatic theory of
spaces of solutions of ordinary differential equations introduced by V.V. Filippov
(see, e.g. [8]–[13]). The theory deals with families of continuous functions satisfy-
ing one or another set of axioms describing fundamental properties of solutions of
ordinary differential equations. These properties include, for example, the solv-
ability of the Cauchy problem, the uniqueness of its solution, and the compactness
of certain families of solutions. A very small number of basic axioms suffices to
develop a theory which provides substantial results. The methods of verifying the
axiomatic conditions for specific types of differential equations have been worked
out in a series of papers by V.V. Filippov.
Topological structures introduced on the sets of solutions of ordinary differ-

ential equations play a key role in the axiomatic theory. By exploiting these
structures it is often possible to express in the language of convergence informa-
tion which would be classically stated in terms of properties of functions occurring
in the equation.
Results obtained in the framework of the axiomatic theory are applicable to

a wide range of ordinary differential equations with discontinuous terms or other
types of singularities. The theory also enables one to show that many “non-
traditional” types of ordinary differential equations have “traditional” properties.
We add also that the theory’s scope embraces naturally the differential inclusions
and ordinary differential equations with a control.
It should be noted that well before the studies by V.V. Filippov there had been

papers in mathematical literature in which similar axiomatic approaches to the
treatment of ordinary differential equations were used (see [24], [15], [23]). How-
ever, the theories presented in those papers did not demonstrate the full potential
of the axiomatic approach, since they were not extended to cover significantly
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broader types of equations than were already covered by the classical theory. In
particular, a technique for dealing with equations having singularities was not
worked out there. This perhaps explains why these earlier abstract approaches
failed to flourish.
The axiomatic theory considered here leads to new results not only for ordinary

differential equations with singularities but also in the most classical realms. The
following simple example illustrates this. Consider the perturbed autonomous
differential equation y′ = g(y)(1 + t · exp(−t‖y‖)), where y′ = dy/dt, (t, y) ∈ R×
R2, the function g : R2 → R2 is continuous, and g(0, 0) 6= (0, 0). One may expect
that there is a close connection between the solutions of this equation and those
of the autonomous equation y′ = g(y), because the perturbation becomes small as
t→ ∞ if y 6= (0, 0). However, when y = (0, 0) the norm of the perturbation term
increases unboundedly as t → ∞ and has no majorant, depending on t, which
vanishes as t → ∞. This is a serious obstacle to applying traditional techniques
based only upon estimates of functions involved in the equation. On the other
hand, the above perturbed equation can be analyzed without difficulties in the
framework of the theory under review [8, Chapter IX, § 8].

2. The paper is concerned with studying the asymptotic behaviour of solutions to
nonautonomous ordinary differential equations by methods of the axiomatic the-
ory. We examine relations between the solutions of an equation and the solutions
of its limiting equations. There is an appreciable difference between the approach
to this employed in the paper and the traditional one. We compare them below.
For a differential equation y′ = f(t, y) consider the translated equations y′ =

fτ (t, y), where for any real number τ the translate function fτ is defined by
fτ (t, y) = f(t + τ, y). Under the traditional approach, the functions fτ are em-
bedded in a function space endowed with a certain convergence structure, and then
the limit points (functions) gα of the set of translates are identified as τ → ∞.
The equations y′ = gα(t, y) are the limiting equations of the original equation
y′ = f(t, y). They govern the asymptotic behaviour of its solutions as t → ∞
(see, e.g. [20] for details, and also [1]–[4] where limiting equations of a more
general type than ordinary differential equations are considered). Under the ap-
proach used here, the asymptotic behaviour of solutions is studied by passing to
a limit not in a function space containing the translates but directly in the space
of sets of solutions. In this connection a question may arise about how to estab-
lish convergence in the space of sets of solutions; if one had to deal each time
with the right-hand sides of the corresponding differential equations, there would
be no essential advantages in this approach. The answer is as follows: although
for relatively simple equations the convergence of solutions is verified by working
explicitly with the right-hand sides, for more complicated equations (with singu-
larities, etc.) the necessary convergence can be deduced from the convergence of
solutions of related equations with a simpler structure. Indeed the possibility of
applying results iteratively constitutes one of the most valuable features of the
axiomatic approach.
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The paper is organized as follows. In Section 1 we provide a background to the
axiomatic theory and present concepts and ideas necessary for the development of
the theory in subsequent sections. In Section 2 we study invariance properties of
ω-limit sets for trajectories of solutions. The classical Poincaré-Bendixon theorem
for planar autonomous equations is generalized in Section 3 in the case when the
ω-limit set of a trajectory has singular (critical) points.

1. Preliminaries from an axiomatic theory

of ordinary differential equations

The notions and results of this section are preparatory for our main theorems
given in Sections 2 and 3. To make the exposition more or less self-contained we
also present here relevant material from V.V. Filippov’s theory.

1. Let U be an open set in the product R × L of the real line R and a finite-
dimensional Euclidean space L. Consider the set Cs(U) of continuous functions
defined on finite closed intervals (which could degenerate to a point) of R with
values in the space L, whose graphs are in U . Each function from Cs(U) is
represented by its graph which is a compact subset of U . The Vietoris topology
[7] on the space of closed subsets of U thus induces a topology on Cs(U). This
topology on Cs(U) is metrizable and generated by the Hausdorff metric [7]. It
induces the topology of uniform convergence on any set of functions with a fixed
domain of definition.
For any function z, we denote by dom (z) the domain of definition of z.
Denote by R(U) the set of all subspaces Z of Cs(U) satisfying the following

conditions (1.1) and (1.2):
(1.1) if z ∈ Z and the closed interval I lies in dom (z), then z|I ∈ Z.
(1.2) if the functions zn ∈ Z (n = 1, 2) are defined on closed intervals In with

nonempty intersection and coincide on I1 ∩ I2, then the function z defined on
I1 ∪ I2 by z(t) = zn(t), t ∈ In, also belongs to Z.
If Z ∈ R(U) satisfies the condition:
(1.3) for any compact set K ⊆ U the set of all elements of Z with graphs in K

is compact,
we write Z ∈ Rc(U).
The set of all Z ∈ R(U) satisfying the condition:

(1.4) for any point (t, y) ∈ U there exists a function z ∈ Z defined on an
interval containing t in its interior such that z(t) = y,

is denoted by Re(U). Denote Rce(U) = Rc(U) ∩Re(U).

2. Consider a differential equation y′ = f(t, y) generated by a mapping f : U → L
(or, more generally, a differential inclusion y′ ∈ f(t, y) if f is multi-valued). A
solution of this equation/inclusion is understood to be a generalized absolutely
continuous function [18] which belongs to Cs(U) and has almost everywhere an
approximate derivative [18] satisfying the equation/inclusion. The concept of
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a solution is thus essentially widened, since the solutions are usually assumed to be
continuously differentiable or at least absolutely continuous functions. It should
be noted that this definition does not provide additional solutions in situations
covered by the classical Cauchy-Peano and Carathéodory theorems [5, Theorems
1.1.2 and 2.1.1].
Clearly the set of thus defined solutions to the equation/inclusion satisfies

conditions (1.1) and (1.2), i.e. belongs to R(U). Condition (1.4) corresponds to
the existence theorem for a solution of the Cauchy problem. Condition (1.3)
together with the condition of uniqueness of the solution to the Cauchy problem
is equivalent to the theorem on the continuous dependence of the solution on the
initial values. Conditions (1.3) and (1.4) hold, for example, if the function f is
continuous or satisfies the Carathéodory conditions, or — in the case of differential
inclusions — satisfies the assumptions of Davy’s theorem [6].

3. For Z ⊆ Cs(U) denote by Z
+ (respectively, by Z−) the set of all continuous

mappings z of arbitrary half-open intervals [a, b), a < b ≤ ∞ (respectively, inter-
vals (a, b], −∞ ≤ a < b), to L such that: (1) z|I ∈ Z for every closed interval
I ⊆ dom (z), (2) there are no elements in Z that extend z.
For any point p ∈ U with components t ∈ R, y ∈ L, denote by ΦZ(p) the set of

all mappings z which map arbitrary open intervals (a, b) to L, −∞ ≤ a < b ≤ ∞,
such that a < t < b, z(t) = y, z|(a, t] ∈ Z−, and z|[t, b) ∈ Z+. Define Z−+ =

∪{ΦZ(p) : p ∈ U}. Clearly, for Z ∈ R(U) a function z belongs to Z−+ if and only
if it belongs to ΦZ(p) for every p on the graph of z. For Z ∈ R(U), Z−+ can be
defined as the set of all mappings z : (a, b)→ L having the property: z|[s, t] ∈ Z

for all s, t with a < s ≤ t < b, and such that z cannot be extended to a larger
open interval with this property still holding.
In the following two propositions we slightly modify results of [8, Chapter IX,

§ 2].

Proposition 1.1. Suppose a subspace Z ⊆ Cs(U) satisfies (1.3). Let z ∈ Z+,

dom (z) = [a, b). Then for every compact set K ⊆ U there exists a point c ∈
dom (z) such that for all t ∈ [c, b) the point (t, z(t)) belongs to U \K.

Proposition 1.2. If Z ∈ Re(U) and z ∈ Z∪Z−∪Z+, then there exists a function

in Z−+ extending z.

4. As shown in [8, Chapter IX, § 3], the following concept of convergence of sub-
spaces of Cs(R×L) is adequate for the continuous dependence of a solution to the
Cauchy problem on parameters in the right-hand side of an ordinary differential
equation.

Definition 1.1 (see [8, IX.3.8]). A sequence {Zi : i ∈ N} of subspaces of
Cs(R × L) converges in U to a space Z ⊆ Cs(U) if every sequence of functions
zj ∈ Zij (i1 < i2 < . . . ) with graphs lying in an arbitrary compact set K ⊆ U
has a subsequence convergent to a function belonging to Z.
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We present now an important theorem due to V.V. Filippov ([8, Theorem
IX.3.12]) on convergent sequences of subspaces of Cs(U) (leaving aside superfluous
assumptions made in the original formulation).
Theorem 1.1. Suppose a sequence {Zi : i ∈ N} ⊆ Rc(U) converges in U to
a space Z ⊆ Cs(U) and a sequence {pi : i ∈ N} ⊆ U converges to a point p ∈ U .

Assume that, for each i ∈ N, pi belongs to the graph of some function zi ∈ Z−+
i .

Then there exists a function z∗ ∈ Z−+ whose graph contains p and a subsequence
{zik : k ∈ N} such that, if I is any finite interval in dom(z∗), then

(1) I ⊆ dom (zik) for all k large enough;
(2) if I ⊆ dom (zik) for all k ≥ k0, then {zik |I : k ≥ k0} converges to z

∗|I ∈ Z
uniformly as k → ∞.

5. Let V be an open set in L. For any z ∈ Cs(R × V ) with dom (z) = [a, b]
and any τ ∈ R let zτ be a function defined on [a − τ, b − τ ] by the formula
zτ (t) = z(t+ τ). For any Z ⊆ Cs(R× V ) we denote by Zτ the set {zτ : z ∈ Z}.
If Z is the space of solutions of the equation y′ = f(t, y), then Zτ is the space of
solutions of the equation y′ = f(t+ τ, y).
A space Z ⊆ Cs(R × V ) is said to be autonomous, if Zτ = Z for all τ ∈ R.

Clearly, the space of solutions of an autonomous differential equation y′ = f(y)
(more generally, of an inclusion y′ ∈ f(y)) in R× V is autonomous in the sense
of the above definition.
Let a0 ∈ R ∪ {−∞} and U0 = (a0,∞)× V .

Definition 1.2 ([13]). A space X ⊆ Cs(U0) converges in U0 to a family ζ of
subspaces of Cs(U0) as t→ ∞ if for each sequence τi → ∞ the sequence of spaces
{Xτi : i ∈ N} has a subsequence convergent in U0 to a space Z ∈ ζ.
The following two examples related to the above convergence are important for

applications.

Example 1.1. Let f(t, y) be a continuous function defined onR×V such that for
every y, f(t, y) is almost periodic in t, uniformly for y in compact sets (that is, for
any compact set K ⊆ V and any ε > 0 the set {s ∈ R : ‖f(t+ s, y)− f(t, y)‖ ≤ ε
for all t ∈ R and all y ∈ K} is relatively dense in R).
The function f has the following property: for every sequence α = {τi : i ∈ N}

of real numbers there is a subsequence {τik : k ∈ N} and a continuous function
fα(t, y) which is almost periodic in t such that

(1.5) f(t+ τik , y)→ fα(t, y) as k → ∞

uniformly for t ∈ R and y in compact subsets of V (see [17, p. 401], [20, p. 259]).
LetX be the space of solutions of the differential equation y′ = f(t, y) inR×V

and ζ be the family of solution spaces of the equations y′ = fα(t, y), where the
functions fα are described above. It can be easily verified, by employing (1.5),
that for any sequence {τi : i ∈ N} ⊆ R the sequence of spaces {Xτi : i ∈ N} has
a subsequence convergent in R× V to some Z ∈ ζ.
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The family ζ can be indicated more explicitly, for example, in the follow-
ing particular case. Let ϕ(t, y) = ϕ1(t, y) + . . . + ϕk(t, y), where for each
j = 1, . . . , k the function ϕj is continuous on R × V and periodic in t of pe-
riod pj (clearly, ϕ(t, y) is almost periodic in t, uniformly for y in compact sets).

Denote by X0 the space of solutions of the equation y′ = ϕ(t, y), and for any set
{r1, . . . , rk} ⊆ R denote by Z(r1, . . . , rk) the space of solutions of the equa-
tion y′ = ϕ1(t + r1, y) + . . . + ϕk(t + rk, y). Let ζ0 = {Z(r1, . . . , rk) : rj ∈
[0, pj ], 1 ≤ j ≤ k}. For every sequence {τi : i ∈ N} ⊆ R there is a subsequence
of {Xτi

0 : i ∈ N} which converges in R × V to some space from ζ0. Indeed, let
aij ∈ [0, pj) be such that τi − aij is an integral multiple of pj . If r

∗

j is a limit

point of {aij : i ∈ N} for 1 ≤ j ≤ k, then {Xτi

0 : i ∈ N} converges in R × V to
the space Z(r∗1, . . . , r

∗

k) ∈ ζ0.

Example 1.2. Let g : R × V → L be a function satisfying the Carathéodory
conditions, i.e. g(t, y) is measurable in t, continuous in y and for every compact
set B ⊆ V there exists a locally Lebesgue integrable function mB(t) such that
‖g(t, y)‖ ≤ mB(t) for all y ∈ B. Suppose in addition that mB(t) has a uniformly
continuous primitive or, more generally, the function g satisfies Assumption (A)
from [1], [3], [4]. Assume that as t→ ∞ g becomes small in the following sense:
(1.6) for every closed interval [a, b] ⊆ R, whenever the sequence {uk : k ∈ N}

of continuous functions uk : [a, b] → V converges uniformly to a function u and

tk → ∞ as k → ∞, then
∫ b
a
g(tk + t, uk(t))dt → 0.

(This type of convergence was considered in [1], [3], [4]). Condition (1.6) holds,
for example, if for every compact set B ⊆ V there exists a real-valued function
γB(t) defined on [t0,∞) such that ‖g(t, y)‖ ≤ γB(t) for all y ∈ B and t ≥ t0, and
either γB(t)→ 0 as t→ ∞, or

∫
∞

t0
γB(t)dt <∞.

Let X∗ be the space of solutions of the differential equation y′ = f(t, y)+g(t, y)
in R×V where f(t, y) is as in Example 1.1. The space X∗ belongs to Rce(R×V )
and converges in R×V to the family ζ from the previous example as t→ ∞ (see
[10]–[13]).
Remark. The convergence of X∗ to ζ in Example 1.2 holds under more general
assumptions. It follows from the treatment in [10], [11] that f(t, y) may be as-
sumed, for instance, to be discontinuous on a countable closed set, and g(t, y)
need not have a majorant (or satisfy the Assumption (A) mentioned above) on
all compact sets B ⊆ V .

6. We denote the set of values of a function z by Im (z). The set Im (z) will be
called the trajectory, or orbit of z.
The following definitions generalize corresponding concepts related to solutions

of differential equations (see [21], [3]).

Definition 1.3. A set M ⊆ L is semi-invariant with respect to a space Z ⊆
Cs(U) if for every y ∈ M there exists a function z ∈ Z−+ such that y ∈ Im (z)
and Im (z) ⊆M .
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Definition 1.4. Suppose that F ⊆ Cs(U)
+∪Cs(U)

−+. Let sup {t : t ∈ dom (z)}
= T ≤ ∞ for all z ∈ F . The generalized ω-limit set Ω(F ) of F consists of those
points y ∈ L for which there exist sequences zj ∈ F and tj ∈ dom(zj) such that
tj → T and zj(tj)→ y as j → ∞.
It is clear that Ω(F ) is closed in L. If F consists of a single function z, we

write Ω(z) for Ω({z}).

Remark. Let U0 = (a0,∞)× V , where a0 ∈ R ∪ {−∞} and V is an open subset
of L. It follows from Proposition 1.1 that if a subspace Z ⊆ Cs(U) satisfies (1.3),
z ∈ Z+ and Ω(z) ∩ V is nonempty, then sup {t : t ∈ dom (z)} =∞.

It is not difficult to verify the following proposition (cf. [14, Theorem VII.1.1]).

Proposition 1.3 ([11]). If z ∈ Cs(U)
+ ∪ Cs(U)

−+ and Ω(z) is compact, then
Ω(z) is connected.

2. Semi-invariance of generalized ω-limit sets

Invariance properties of ω-limit sets for trajectories of solutions of ordinary
differential equations are of major significance and were studied in numerous
papers (for a survey see [21], [1] and the references therein). The following theorem
demonstrates the semi-invariance of generalized ω-limit sets in a very general
setting.
Let V be an open set in L, let a0 ∈ R ∪ {−∞} and U0 = (a0,∞)× V .

Theorem 2.1. Suppose X ∈ Rce(U0), ζ is a family of subspaces of Cs(U0) and
X converges in U0 to ζ as t → ∞. Let F ⊆ X+, dom(z) = [α,∞) for all z ∈ F ,
and y ∈ V ∩ Ω(F ). Then for every a > a0 there exists a space Z ∈ ζ and
a function z∗ ∈ Z−+ such that z∗(a) = y and Im (z∗) ⊆ Ω(F ). If, moreover,
Ω(F ) is a compact subset of V , then dom (z∗) = (a0,∞).
Remark. Theorem 2.1 is a generalization of a theorem due to V.V. Filippov [8,
Theorem IX.6.10]. In his theorem ζ consists of one autonomous space and F
consists of a single function.

Proof: Since y ∈ Ω(F ), there exist sequences {xi : i ∈ N} ⊆ F and {ti :
i ∈ N} ⊆ (a0,∞) such that ti → ∞ and xi(ti) → y as i → ∞. By virtue of
Proposition 1.2, for each i there exists a function ui ∈ X−+ extending xi.
Let a > a0 be given. Denote ti − a by τi and X

τi ∩ Cs(U0) by Xi. The
assumption X ∈ Rce(U0) implies that Xi ∈ Rce(U0) for all i ∈ N. Since X
converges in U0 to ζ as t → ∞, without loss of generality we may assume (by
passing to a subsequence) that the sequence {Xi : i ∈ N} converges in U0 to
some space Z ∈ ζ. Denote by zi the restriction of u

τi

i to (a0,∞) (we recall that

uτ (t) = u(t + τ)). One easily verifies that zi ∈ X−+
i . Since zi(a) = ui(ti) =

xi(ti), zi(a) → y as i → ∞. The sequence of points pi ∈ U0 with components
a, zi(a) converges in U0 to the point p with components a, y.
We can now apply Theorem 1.1 to the sequence of spaces {Xi : i ∈ N} conver-

gent to Z ∈ ζ, the points pi → p and the functions zi ∈ X−+
i . Thus we obtain



274 B.S. Klebanov

a function z∗ ∈ Z−+ and a subsequence {zik : k ∈ N} such that z∗(a) = y, any
point t ∈ dom (z∗) belongs to dom (zik) for k large enough, and

(2.1) zik(t)→ z∗(t) as k → ∞.

Fix any t ∈ dom (z∗). Take k0 ∈ N sufficiently large so that, whenever k ≥ k0,
t ∈ dom(zik ) and sk := t+ tk − a ≥ α. Then for k ≥ k0 we have

(2.2) zik(t) = uik(sk) = xik(sk).

It follows from (2.1) and (2.2) that xik (sk)→ z∗(t) as k → ∞. Since sk → ∞
as k → ∞, we conclude that z∗(t) ∈ Ω(F ). Thus, Im (z∗) ⊆ Ω(F ), and the first
statement of the theorem is proved.
Suppose now that Ω(F ) is a compact subset of V . Let dom(z∗) = (c, d),

a0 ≤ c < d ≤ ∞. Let us prove that d =∞.
Assume on the contrary that d is finite. Since z∗ ∈ Z−+, the function w =

z∗|[m,d) belongs to Z
+ for a point m ∈ (c, d). Let {dl : l ∈ N} be a sequence

of points in (m, d) which tends to d as l → ∞. Let a compact set C ⊆ V be
the closure of some ε-neighbourhood of Ω(F ). Recall that the functions zik were
chosen according to Theorem 1.1. Using the fact that Im (z∗) lies in the interior
of C, one can deduce from Theorem 1.1 that there is a subsequence {ψl : l ∈ N}
of {zik : k ∈ N} such that [m, dl] ⊆ dom (ψl) and ψl(t) ∈ C for all t ∈ [m, dl].
Denote by wl the restriction of ψl to the closed interval [m, dl]. The graph of
any function wl lies in the compact set C × [m, d]. Since {Xi : i ∈ N} converges
in U0 to the space Z, this implies that there is a subsequence of {wl : l ∈ N}
convergent to some function v ∈ Z with dom (v) = [m, d]. It follows from (2.1)
that v(t) = z∗(t) = w(t) for all t ∈ [m, d), so v is an extension of the function w.
But this is impossible, since w ∈ Z+. The contradiction obtained implies that
d =∞.
One can prove similarly that c = a0. Hence dom (z

∗) = (a0,∞). The proof is
completed. �

We now present a definition of a stationary point of a subspace of Cs(U) which
is analogous to that related to differential equations.

Definition 2.1 (see [8, IX.6.6]). A point y ∈ L is called a stationary point of
a space Z ⊆ Cs(U) if there is a function z ∈ Z−+ with Im (z) = {y}.

Theorem 2.1 implies the following corollary which is a generalization of [14,
Corollary VII.1.1].

Corollary 2.1. Suppose a space X ∈ Rce(U0) converges in U0 to a family ζ of
subspaces of Cs(U0) as t → ∞. Let x ∈ X+ and Ω(x) consist of a single point
y ∈ V . Then y is a stationary point of some space Z ∈ ζ and x(t)→ y as t→ ∞.
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Theorem 2.2. Let X ∈ Rce(U0) and Z ⊆ Cs(U0). Suppose that there exists
a sequence {ti : i ∈ N} → ∞ such that {Xti : i ∈ N} converges in U0 to Z.
Assume further that x ∈ X+ and Ω(x) is a nonempty compact subset of V . Then
there exists a function z ∈ Z−+ such that Im (z) ⊆ Ω(x) and dom (z) = (a0,∞).

Proof: Since Ω(x) is nonempty and compact, the set Im (x) is precompact.
Therefore the sequence {x(ti) : i ∈ N} has a subsequence convergent to a point
y ∈ Ω(x). The rest of the proof follows along the lines of the proof of Theorem 2.1
(for F = {x}) and is omitted. �

Remarks. 1. Theorems 2.1 and 2.2 are similar to results due to Artstein ([1, Theo-
rems 7.2 and 7.3]) applicable to ordinary differential equations y′ = f(t, y) with f
satisfying the Carathéodory conditions and a certain equicontinuity assumption.
Our theorems are of a more general form and obtained by using an approach
different from that in [1]. It should be noted that a generalization in another
direction, namely over ordinary integral-like operator equations, was given in [1,
Section 13].
2. As Example 1.2 shows, the theorems of this section may be applied to

perturbed almost periodic differential equations. In relation to these equations
Theorem 2.1 generalizes a result of Miller [17].

3. On the structure of ω-limit sets containing singular points

It cannot be overemphasized how important the Poincaré-Bendixon theory is
to the study of the geometry of solutions of autonomous differential equations
on the plane. We recall briefly two key results of this theory which describe ω-
limit sets of trajectories of solutions of these equations ([14, Theorems VII.4.1
and VII.4.2]).
Consider the autonomous differential equation

(A) y′ = f(y),

where f(y) is a continuous function on an open plane set V . Suppose that z is
a maximally extended solution of (A), the orbit of z has no self-intersections, and
the ω-limit set Ω of z is a nonempty compact subset of V . According to classical
results due to Poincaré and Bendixon:

(*) if Ω contains no stationary points of (A), then it is an orbit of a periodic
solution of (A);

(**) if Ω is not a point and contains a finite set F of stationary points of
(A), then Ω is the union of F and at most a denumerable set of orbits of
solutions to (A) joining points from F .

Markus proved in [16] a theorem similar to (*) for asymptotically autonomous
differential equations on a plane. We present below a stronger version of Markus’
theorem given in [1].
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Consider in R× V the equation

(E) y′ = f(y) + g(t, y),

where f(y) is as in (A) and g(t, y) as in Example 1.2 (for L = R2).

Theorem (Markus). Let z be a maximally extended solution of (E). Suppose
that the ω-limit set Ω of z does not contain stationary points of (A), is compact
and lies in V . Assume that the Cauchy problem for (A) has a unique solution for
each initial value. Then Ω is the union of closed orbits of solutions to (A).

Note that under the assumptions of Markus’ theorem the orbit of z may self-
intersect (which is not permitted in (*)). This mildness of suppositions has as
a result that Markus’ theorem does not cover (*) even if the uniqueness of a so-
lution for the Cauchy problem for (A) is assumed.
An extension of (**) for asymptotically autonomous planar ordinary differen-

tial equations was given recently by Thieme [22, Theorem 1.6]. As Markus did,
Thieme does not forbid the trajectory of a solution to have self-intersections but
this again, as in case of Markus’ theorem, makes the description of the ω-limit
set less precise than in (**).
In the framework of an axiomatic theory of ordinary differential equations,

V.V. Filippov proved a generalization of (*) (see [8, Theorem IX.8.4]) which is
applicable to perturbed autonomous planar ODEs and differential inclusions (as
in (*), it is assumed in his theorem that the trajectory should not self-intersect).
V.V. Filippov’s approach to the Poincaré-Bendixon theorem (*) was developed
in [19]. In recent papers [12], [13] V.V. Filippov presented a further generaliza-
tion of (*) involving the convergence indicated in Definition 1.2. We use in this
section V.V. Filippov’s technique to prove (see Theorem 3.1 below) a generaliza-
tion of (**). Our theorem also employs the concept of convergence described in
Definition 1.2. The theorem has applications, for example, to planar ordinary
differential equations of the type indicated in Example 1.2. Before formulating
the theorem we will give first auxiliary definitions and results.
Let M ⊆ L, Z ⊆ Cs(U) and {z ∈ Z : Im (z) ⊆M} 6= ∅.

Definition 3.1 (see [8, IX.6.2]). The diameter diamZ M of the set M with re-
spect to the space Z is a d ∈ R ∪ {∞} defined by d = sup {b − a : [a, b] =
dom (z), Im (z) ⊆M}.

The following definition deals with some geometric properties of trajectories of
functions belonging to a subspace of Cs(U). It is motivated by the assumptions
of Theorem 10 in [12].

Definition 3.2. We say that a point y ∈ L is an R-point for a space Z ⊆ Cs(U) if
there exists a neighbourhoodNy of y such that the following properties (R1)–(R3)
hold:
(R1) diamZ Ny is finite;
(R2) in Ny there are no closed orbits of functions from Z;
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(R3) there exits a neighbourhood Gy of y such that the closure K of Gy lies in
Ny and is homeomorphic to a disk, the boundary ∂K of K contains two disjoint
closed arcs l1 and l2 such that if z ∈ Z, Im (z) ⊆ K, c ∈ [a, b] = dom(z),
z(c) = y and z(a), z(b) ∈ ∂K, then z(a) ∈ l1, z(b) ∈ l2.
The behaviour of trajectories of functions from Z ⊆ Cs(U) in the neighbour-

hood Ny of y which is an R-point for Z is similar to that of solutions of a planar
autonomous ordinary differential equation near its regular (i.e. non-stationary)
point. Indeed, it follows from the treatment carried out in [8, Chapter IX, § 6, § 8]
that the regular points of a planar equation y′ = f(y) with a continuous function
f are exactly the R-points for the space of its solutions.
A point y ∈ L is said to be an S-point for Z ⊆ Cs(U) if it is not an R-point for

it. S-points are analogues to stationary points of ordinary differential equations.
Consider the following assumptions:
(3.1) V is an open set in the plane, a0 ∈ R ∪ {−∞} and U0 = (a0,∞)× V ;
(3.2) a space X ∈ Rce(U0) converges in U0 to a family ζ of subspaces of Cs(U0)

as t→ ∞;
(3.3) a function z belongs to X+, and the orbit of z does not intersect itself,

i.e. z(s) 6= z(t) for all s, t ∈ dom(z) with s 6= t.

Let ∪ζ denote the set ∪{Z : Z ∈ ζ}.

Lemma 3.1. Suppose (3.1)–(3.3) hold, and let a point y ∈ Ω(z) ∩ V be an R-
point for ∪ζ. Then there exists a neighbourhood Oy of y and a function z∗ ∈ ∪ζ
such that Oy ∩Ω(z) = Oy ∩ Im (z∗) and this intersection is homeomorphic to an
open interval.

This lemma is analogous to [8, Proposition IX.8.3] and can be proved in a sim-
ilar way. We will outline its proof omitting some details which are not difficult to
verify. The proof employs the following auxiliary result (cf. [8, Lemma IX.8.2])
which can be proved using (3.2).

Lemma 3.2. Under the assumptions of Lemma 3.1 there exists an ε-neighbor-
hood Oy of y and a number T ∈ dom (z) such that

(1) Oy ⊆ Gy, where Gy is a neighbourhood of y satisfying Definition 3.2 for
Z = ∪ζ;

(2) there exist two disjoint closed arcs s1 and s2 on ∂K (K is the closure
of Gy) having the property: for any closed interval [a, b] ⊆ dom (z) with
a > T , if z([a, b]) ∩ Oy 6= ∅, z([a, b]) ⊆ K and z(a), z(b) ∈ ∂K, then
z(a) ∈ s1, z(b) ∈ s2.

We now proceed to the proof of Lemma 3.1.
Choose Oy, T, s1 and s2 according to Lemma 3.2. The set {t ∈ R : t >

T, z(t) ∈ Gy} can be represented as a countable union of its maximal connected
subsets (which are disjoint open intervals). Let γ be the family consisting of those
of the intervals that intersect the set z−1(Oy). One can verify that no subfamily of
γ can accumulate to a point inR. Let us enumerate the intervals in γ according to



278 B.S. Klebanov

their location inR in increasing order: I1, I2, . . . . Let In = {t ∈ R : an < t < bn}.
Clearly, z(an) and z(bn) lie in ∂K, so that, by Lemma 3.2, z(an) ∈ s1 and
z(bn) ∈ s2.

Making use of the assumption that the orbit of z does not intersect itself, one
can prove that the points z(a1), z(a2), . . . are situated on s1 monotonically: any
point z(an+1) is between z(an) and z(an+2). The points z(b1), z(b2), . . . are
also situated on s2 monotonically, and if z(a1), z(a2), . . . are located on s1, say,
clockwise, then z(b1), z(b2), . . . are located on s2 anticlockwise. For any n ∈ N
denote by Ln the arc of ∂K with z(an) and z(bn) as its endpoints, which does
not contain the points z(ak) and z(bk) for k > n. It is clear that, for every n, the
curve z(t), an < t < bn, lies in the interior of the region bounded by Ln+1 and
the curve z(t), an+1 ≤ t ≤ bn+1.

Let Ny be a neighbourhood of y satisfying Definition 3.2 for Z = ∪ζ. Since
K ⊆ Ny, it follows from (R2) that diam∪ζ K is finite. We can therefore apply (3.2)
to find for an arbitrary a ∈ dom (z) a subsequence of the sequence of functions
{(z|[an,bn])

an−a : n ∈ N} (we recall that zτ (t) = z(t + τ)) converging to some

function z∗ ∈ ∪ζ. One easily verifies, using results of the analysis carried out
in the previous paragraph, that the set Im (z∗) coincides with the set of limit
points of all sequences of the form {z(tn) : n ∈ N}, where tn is an arbitrary
point from [an, bn]. Hence Oy ∩ Ω(z) = Oy ∩ Im (z∗). Since Im (z∗) ⊆ K ⊆ Ny
and Ny satisfies (R2), the orbit of z∗ has no self-intersections, so Oy ∩ Im (z∗) is
homeomorphic to an open interval. The lemma is proved. �

Remark. The proof of Lemma 3.1 shows that the orbit of z has no points in
common with Ω(z) in Oy.

Theorem 3.1. Suppose (3.1)–(3.3) hold. Assume that the set Ω(z) ⊆ V consists
of more than one point, is compact and that the S-points for ∪ζ contained in
Ω(z) are a non-empty finite set, F . Then for every point y0 ∈ Ω(z) \ F there
exists a function z0 ∈ ∪{Z−+ : Z ∈ ζ} such that

(i) dom (z0) = (a0,∞) and y0 = z0(a) for some a ∈ dom(z0);
(ii) Im (z0) ⊆ Ω(z);
(iii) if z0(t) does not belong to F for any t ∈ [a,∞) (respectively, t ∈ (a0, a]),

then the limit of z0(t) as t → ∞ (respectively, as t → a0) exists and lies
in F , and z0(t1) 6= z0(t2) for all distinct t1, t2 from [a,∞) (respectively,
from (a0, a]).

Proof: 1. By Proposition 1.3 the compact set Ω(z) is connected and by assump-
tion it is not a point. Therefore Ω(z) cannot consist of a finite number of points,
and so Ω(z)\F 6= ∅. Take any y0 ∈ Ω(z)\F . By Theorem 2.1 there exists a space
Z0 ∈ ζ and a function z0 ∈ Z−+

0 with dom(z0) = (a0,∞) such that y0 = z0(a)
for some a ∈ dom(z0) and Im (z0) ⊆ Ω(z). Thus (i) and (ii) are verified.
We will prove (iii) for the case when z0(t) /∈ F for all t ∈ [a,∞). The other

case is treated similarly.
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Denote by z0 the restriction of z0 to [a,∞). We may assume that z
0 ∈ Z+

0

(in fact, for any b ∈ dom (z0) the restriction of z0 to [b,∞) belongs to Z
+
0 ). By

assumption, z0(t) /∈ F for all t ∈ dom(z0), so that z0(t) is an R-point for ∪ ζ for
all t ∈ [a,∞). 2. Assume that Ω(z0) contains an R-point for ∪ζ. We will show
that this assumption leads to a contradiction.
We will prove first that the assumption implies that there is a closed interval

I ⊆ dom (z0) such that the trajectory of the function u = z0|I is a Jordan curve.
Let y ∈ Ω(z0) be an R-point for ∪ζ. Since the orbit of z0 lies in the compact

set Ω(z), Ω(z0) ⊆ Ω(z), so that y ∈ Ω(z). We apply now Lemma 3.1 to the
function z and the point y to obtain a neighbourhood Oy and a function z∗ as
described in the lemma. The point y being an R-point for ∪ζ, one may assume
without loss of generality that diam∪ζ Oy is finite.

Since y ∈ Ω(z0), the orbit of z0 must enter Oy. As this orbit lies in Ω(z)
and Oy ∩ Ω(z) = Oy ∩ Im (z∗), we have Oy ∩ Im (z0) ⊆ Oy ∩ Im (z∗); the
latter intersection is homeomorphic to an open interval. One readily sees that
the behaviour of the orbit of z0 is as follows: it enters Oy and goes there along
a curve lying in the orbit of z∗, leaves Oy (because Oy is of finite diameter with
respect to ∪ζ), then enters Oy again (since y ∈ Ω(z0)), goes along a subset of
Im (z∗), leaves Oy, and so on. But then the orbit of z0 should self-intersect in
Oy, so that z0(α) = z0(β) for some β > α ≥ a.
We claim that the real number δ = inf{t−s : s, t ∈ [α, β], s < t, z0(s) = z0(t)}

is positive. Otherwise, for each n ∈ N there are numbers σn, τn ∈ [α, β], σn < τn,
such that z0(σn) = z0(τn) and τn − σn < 1/n. Without loss of generality one
may assume that the sequences σn and τn converge to some t0 ∈ [α, β] as n→ ∞.
By (iii), the point x = z0(t0) is an R-point for ∪ζ, so x has a neighbourhood
Ox satisfying (R2) for Z = ∪ζ. The continuity of z0 implies that the orbit of
zn = z

0|[σn, τn] lies in Ox for n large enough. As zn(σn) = zn(τn), zn ∈ Z0 (since

z0 ∈ Z+
0 ), and Z0 ∈ ζ, this contradicts (R2). The claim is proved.

Thus, for each n ∈ N there are t∗n and t
∗∗
n in [α, β], t∗n < t∗∗n , such that

z0(t∗n) = z0(t∗∗n ) and t
∗∗
n − t∗n tends to δ from above as n → ∞. Without loss of

generality we may assume that the sequences {t∗n : n ∈ N} and {t∗∗n : n ∈ N}
converge to some points c and d, respectively (d = c+ δ). Clearly z0(c) = z0(d)
and z0(s) 6= z0(t) for c ≤ s < t ≤ d. Therefore the trajectory of u = z0|[c,d] is

a Jordan curve.

3. We claim that Im (u) contains an S-point for ∪ζ.
Assume the contrary. Then, since Ω(z) contains S-points for ∪ζ and Im (u)

does not, the set A = Ω(z) \ Im (u) is nonempty. Since Ω(z) is connected, A
cannot be closed, so that there is a y∗ ∈ Im (u) which is a limit point of A. By
the assumption of this paragraph y∗ is an R-point for ∪ζ.
Apply now Lemma 3.1 to the point y∗ and the function z to obtain a neighbour-

hood Oy∗ of y∗ and a function z̃ ∈ ∪ζ such that the set Oy∗∩Ω(z) = Oy∗∩Im (z̃)
is homeomorphic to an open interval. Shrinking Oy∗ if necessary, one may assume
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that Oy∗ satisfies (R1)–(R2) for Z = ∪ζ. We have

(3.4) Oy∗ ∩ Im (u) ⊆ Oy∗ ∩ Ω(z) = Oy∗ ∩ Im (z̃),

so that the orbit of u goes in Oy∗ along the orbit of z̃. Taking into account that
Oy∗ satisfies (R1)–(R2), that Im (u) is a Jordan curve and that Oy∗ ∩ Im (z̃) is
homeomorphic to an open interval, one deduces from (3.4) that Oy∗ ∩ Im (u) =
Oy∗ ∩ Im (z̃). It now follows from (3.4) that Oy∗ ∩ Ω(z) = Oy∗ ∩ Im (u). Hence
y∗ cannot be a limit point of A. The contradiction obtained proves that in Im (u)
there is an S-point for ∪ζ.
The claim proved yields that Im (u) ∩ F 6= ∅. Since Im (u) ⊆ Im (z0), this

implies that Im (z0) ∩ F is nonempty, i.e. that z0(t) ∈ F for some t ≥ a. This
contradicts what was assumed in (iii).
Thus the assumption that in Ω(z0) there is an R-point for ∪ζ (see the beginning

of Part 2 of the proof) leads to a contradiction. Therefore the set Ω(z0) = Ω(z
0)

contains only S-points for ∪ζ.

4. As the set Ω(z0) lies in Ω(z) and consists only of S-points for ∪ζ, Ω(z0) is
contained in the finite set F . But Ω(z0) is connected, so it is a point from F .
Since the ω-limit set of a trajectory of z0 consists of a single point, the trajectory
tends to this point as t→ ∞.
The assertion that the orbit of the restriction of z0 to [a,∞) has no self-

intersections now easily follows from Lemma 3.1 (by (iii), any point on this orbit
is an R-point for ∪ζ). The theorem is proved. �

Remark. Let M be the set of orbits of functions z0 related to all y0 ∈ Ω(z) \ F .
Making use of Lemma 3.1 and the Remark following its proof, one can prove,
employing arguments analogous to those in [14, Theorem VII.4.2], that M is
countable.
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