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The nil radical of an Archimedean partially

ordered ring with positive squares

Boris Lavrič

Abstract. Let R be an Archimedean partially ordered ring in which the square of every
element is positive, and N(R) the set of all nilpotent elements of R. It is shown that
N(R) is the unique nil radical of R, and that N(R) is locally nilpotent and even nilpotent
with exponent at most 3 when R is 2-torsion-free. R is without non-zero nilpotents if and
only if it is 2-torsion-free and has zero annihilator. The results are applied on partially
ordered rings in which every element a is expressed as a = a1 − a2 with positive a1, a2
satisfying a1a2 = a2a1 = 0.
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0. Introduction

In this paper we give some descriptions of the setN(R) of all nilpotent elements
of an Archimedean partially ordered ring R in which the square of every element
is positive. It is shown among other things that N(R) is the unique nil radical of
R, and that N(R) is locally nilpotent and even nilpotent with N(R)3 = {0} when
R is 2-torsion-free. Furthermore, we extend on R some results of Diem [3] and
of Bernau and Huijsmans [1], who have investigated the properties of N(R) for
a lattice-ordered R. In particular, we prove that the index of nilpotency of each
a ∈ N(R) does not exceed 4 (3 when R is 2-torsion-free), and that R is without
non-zero nilpotents if and only if it is 2-torsion-free and has zero annihilator
ann(R). Also an application on partially ordered rings in which every element a
is expressed as a = a1 − a2 with positive a1, a2 satisfying a1a2 = a2a1 = 0 is
given at the end of paper.
For the theory of rings and nil radicals we refer the reader to [4], [7] and [9].

We only recall that an ideal I of a ring R is called a nil radical , if every element
of I is nilpotent and if A/I does not contain non-zero nilpotent ideals.
For the theory of partially ordered rings we refer the reader to [5]. We briefly

review some standard terminology. A ring R is said to be a partially ordered
ring if there is a partial ordering ≤ on R which is compatible with the algebraic
structure of R. The positive cone R+ = {a ∈ R : 0 ≤ a} of a partially ordered
ring R is closed for the addition and the multiplication, and determines on R the
ordering ≤ by a ≤ b if and only if b − a ∈ R+.x A partially ordered ring R is
said to be Archimedean if a = 0 whenever 0 ≤ b + na for some b ∈ R and for
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all integers n. A partially ordered ring R in which the square of every element is
positive will be called a ps-ring.

1. The nil radical

Throughout this section R denotes an associative Archimedean ps-ring, N(R)

the set of all nilpotent elements of R, and Nk(R) = {a ∈ R : ak = 0} the set of
all elements a ∈ N(R) with index of nilpotency not greater than k. An important
role will play also the set T2(R) = {a ∈ R : 2a = 0} of all elements a ∈ R with
torsion 2.
The following description of N2(R) will be useful in our further work.

Lemma 1.1. Let R be an Archimedean ps-ring. Then

(1) N2(R) = {a ∈ R : ab+ ba = 0 for all b ∈ R}.
(2) abc = bac = bca ∈ T2(R) for all a ∈ N2(R), b, c ∈ R.

Proof: If a ∈ N2(R), b ∈ R, then

0 ≤ (b + na)2 = b2 + n(ab+ ba)

holds for all n ∈ Z, hence ab + ba = 0, since R is Archimedean. Conversely, if
a ∈ R satisfies ab + ba = 0 for all b ∈ R, then 2a2 = 0. Since R has positive
squares, this implies a ∈ N2(R), and (1) follows.
To prove (2) let a ∈ N2(R) and b, c ∈ R. Then use three times successively (1)

to get

a(bc) = −(bc)a = −b(ca) = b(ac) = (ba)c = −(ab)c,

which implies (2), so the proof is complete. �

Corollary 1.2. Let m be an arbitrary positive integer. Then the left annihilator
annl(R

m) and the right annihilator annr(R
m) of Rm coincide, so

annl(R
m) = annr(R

m) = ann(Rm).

Proof: If a ∈ N2(R), b ∈ R, then by Lemma 1.1 ab = 0 if and only if ba = 0.
Since annl(R) and annr(R) are contained in N2(R), this implies that annl(R) =

annr(R). We now proceed by induction. Suppose that annl(R
k) = annr(R

k)
for each k ≤ m. Then a ∈ annl(R

m+1) is equivalent to aR ⊂ annl(R
m) =

annr(R
m), which holds if and only if Rma ⊂ annl(R) = annr(R). Since the

latter is equivalent to a ∈ annr(R
m+1), the proof is complete. �

Diem has proved ([3, Theorem 3.9. (ii)]) that the index of a positive nilpotent
element of an Archimedean lattice-ordered ring with positive squares does not
exceed 3. Our next result shows that this is true for every Archimedean ps-ring.
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Proposition 1.3. Let R be an Archimedean ps-ring. Then

(1) N(R) = N4(R) = {a ∈ R : 2a3 = 0}.
(2) N(R) ∩ R+ ⊂ N3(R).

Proof: If a ∈ R satisfies a2m = 0 for some natural m > 2, then a4m−6 = 0,
hence

0 ≤ (a+ na2m−3)2 = a2 + n(2a2m−2)

holds for all n ∈ Z. Since R is Archimedean and has positive squares, this implies
that a2m−2 = 0. It follows that N(R) = N4(R).
Let now a ∈ N4(R). Then

0 ≤ (a+ na2)2 = a2 + n(2a3)

holds for all n ∈ Z, hence 2a3 = 0. Conversely, 2a3 = 0 implies 2a4 = 0, and
consequently a4 = 0. The proof of (1) is complete, while (2) evidently follows
from (1). �

Lemma 1.4. Let R be an Archimedean ps-ring and let a ∈ N(R). Then

(1) (ab)2 = (ba)2 = 0 for all b ∈ R.
(2) abc = −cab = bca for all b, c ∈ R.
(3) abcd = bacd = bcad = bcda ∈ T2(R) for all b, c, d ∈ R.

Proof: Since by Proposition 1.3 we have a2 ∈ N2(R), Lemma 1.1. (2) implies
2aba2 = 0 for all b ∈ R. Therefore 2(aba)2 = 0 and consequently (aba)2 = 0,
since R has positive squares. It follows that

0 ≤ (b+ naba)2 = b2 + n((ab)2 + (ba)2)

holds for all n ∈ Z, which implies (1).
To prove (2), combine (1) and Lemma 1.1. (1), while to obtain (3), note that

by (1) ab, ba, ad, da ∈ N2(R) for all b, d ∈ R, and then use Lemma 1.1. (2). �

We are prepared to prove a generalization of a result of Diem [3] and Bernau,
Huijsmans [1], Propositions 3.1 and 3.2.

Theorem 1.5. Let R be an Archimedean ps-ring. Then N(R) is an order-convex
ideal of R, satisfying

N(R) = N4(R) = {a ∈ R : abc+ cab = 0 for all b, c ∈ R}

= {a ∈ R : bca+ cab = 0 for all b, c ∈ R}

= {a ∈ R : 2a3 = 0}

= {a ∈ R : 2a ∈ ann(R3)}.

Proof: Combine Proposition 1.3 and Lemma 1.4 to obtain the required equalities
for N(R). The last one implies that N(R) is an ideal, and hence it is convex. �

It can be shown similarly that N2(R) is an order-convex ideal of R.
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Corollary 1.6. Let R be an Archimedean ps-ring and Z(R) its center. Then

(1) N(R)2R = N(R)RN(R) = RN(R)2 ⊂ T2(R);
(2) N2(R) ⊂ Z(R) implies N(R)R2 = RN(R)R = R2N(R) ⊂ T2(R);
(3) R = R2 implies N(R) ⊂ Z(R), N(R) = N2(R), N(R)R = RN(R) ⊂

T2(R).

If R is also 2-torsion-free, then

(4) N(R) = N3(R) = ann(R3);
(5) N2(R) ⊂ Z(R) implies N(R) = ann(R2);
(6) R = R2 implies N(R) = N2(R) = ann(R).

Proof: (1) Use Lemma 1.4. (2) to see that a, b ∈ N(R), c ∈ R implies abc =
−cab = bca = −abc, and the result follows.
(2) If a ∈ N(R), b, c ∈ R, then ab ∈ N2(R) ⊂ Z(R), and therefore abc = cab.

By Lemma 1.4. (2) we have 2abc = abc+ cab = 0, so (2) follows easily.
(3) Lemma 1.4. (2) implies that N(R) ⊂ Z(R), thus by (2) N(R)R = RN(R) ⊂

T2(R). It follows that each a ∈ N(R) satisfies 2a2 = 0, hence a ∈ N2(R), and the
proof is complete.
(4), (5), (6) Use Theorem 1.5 and (1), (2), (3). �

Remark 1.7. An Archimedean ps-ring R with generating cone R+ is torsion-
free. Indeed, if a = a1 − a2 with a1, a2 ∈ R+ satisfies ma = 0 for some m ∈ N,
then it follows that

0 ≤ m(a1 + a2) + na for all n ∈ Z,

which implies that a = 0.

It can be proved, that the set T (R) of all torsion elements of R is an order-
convex ideal of R, and that the quotient ring R/T (R) is an Archimedean torsion-
free ps-ring.

Theorem 1.8. Let R be an Archimedean ps-ring. Then N(R) is the unique
nil radical of R. It is locally nilpotent and satisfies N(R)3 ⊂ T2(R). If R is
2-torsion-free, then N(R) is nilpotent with N(R)3 = {0}.

Proof: A nil radical of bounded index is contained in the lower nil radical ([7,
p. 232]), hence by Theorem 1.5 N(R) is the unique nil radical of R. Thus
N(R) equals the Levitzki nil radical L(R) of R, which is locally nilpotent ([9,
Proposition 21.2]). The required inclusion follows by Corollary 1.6 and implies
the remaining part of the theorem. �

It is proved in [3, Theorem 3.9. (v)] that an Archimedean lattice-ordered ring
with positive squares and with zero left or right annihilator has no nonzero positive
nilpotents. The following generalization of this result is a simple consequence of
the last equation of Theorem 1.5.
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Proposition 1.9. If R is an Archimedean ps-ring such that ann(R) = {0}, then
N(R) = T2(R). �

Corollary 1.10. Let R be an Archimedean ps-ring. Then the following state-
ments are equivalent.

(i) R is semiprime.
(ii) R is reduced, i.e. without non-zero nilpotents.
(iii) R is 2-torsion-free and satisfies ann(R) = {0}.

�

Note that by Remark 1.7 a lattice-ordered R is torsion-free, hence the above
characterization of reduced rings R improves [3, Theorem 3.9. (v)].

Corollary 1.11. A unital Archimedean ps-ring is reduced (or semiprime) if and
only if it is 2-torsion-free. �

2. Examples

By Theorem 1.5 an Archimedean ps-ring satisfies N(R) = N4(R). We show
that in general N(R) 6= N3(R).

Example 2.1. Let R = Za⊕Zb⊕Z2c be the ring with multiplication defined by

a2 = b, ab = ba = c, b2 = c2 = bc = cb = ac = ca = 0,

and ordered by the positive cone R+ = Z
+b. It is easy to see that R is an

Archimedean ps-ring with

N3(R) = Z(2a)⊕ Zb ⊕ Z2c

and N4(R) = R, thus N3(R) 6= N(R).

By Theorem 1.8 every nil Archimedean ps-ring R is locally nilpotent, and even
nilpotent with R3 = {0} when R is 2-torsion-free. In the following example we
present a nil Archimedean ps-ring R which is not nilpotent.

Example 2.2. If m ∈ Z
+, let β0(m), β1(m), · · · be the digits in the binary

representation

m =

∞∑

i=0

βi(m)2
i, βi(m) ∈ {0, 1}

of m. Define the function ϕ : Z+ × Z
+ −→ Z

+ by

ϕ(p, q) =

{
0, if βi(p) = βi(q) = 1 for some i

p+ q, otherwise

and consider the ring R = (Z2)
∞ with coordinatewise addition and with the

multiplication defined by

epeq = eϕ(p,q), p, q ∈ N,
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where en = (0, · · · , 1
︸ ︷︷ ︸

n

, 0, · · · ) and e0 = 0 = (0, 0, · · · ).

It is easy to see thatR is an associative ring which satisfiesR = T2(R) = N2(R).
It follows that the positive cone R+ = {0} turn R into a nil Archimedean ps-ring.
Note that for each n ∈ N

e2n−1 = e1e2e4 · · · e2n−1 ∈ Rn,

thus R is not nilpotent.

If R is 2-torsion-free, then by Corollary 1.6 the chain ann(R) ⊂ ann(R2) ⊂ · · ·

is finite and satisfies ann(Rk) = N(R) for all k ≥ 3. Example 2.2 show that
this is not the case in a general situation. Moreover, there exists an Archimedean
ps-ring S with strictly increasing chain ann(S) ⊂ ann(S2) ⊂ · · · .

Example 2.3. Let R be the ring from Example 2.2. For each n ∈ N denote by
Rn the additive subgroup of R generated by elements ek with 1 ≤ k ≤ 2n − 1,
and observe that Rn is a subring of R, since

0 ≤ i, j ≤ 2n − 1 implies ϕ(i, j) ≤ 2n − 1.

Let S be the direct product of all Rn with componentwise defined operations.
Then S is an Archimedean ps-ring with the chain of annihilators

ann(S) ⊂ ann(S2) ⊂ ann(S3) ⊂ · · ·

strictly increasing and contained in N2(S) = S.

It may be asked (see Corollary 1.11) if a unital Archimedean ps-ring is au-
tomatically 2-torsion-free, and therefore reduced. The following example shows
that this is not the case.

Example 2.4. Denote by J the principal ideal of Z4 generated by 2, and consider
its unitization ring R = J ⊕ Z ordered by the positive cone R+ = {0} ⊕ Z

+.
It is easy to see that R is a unital Archimedean ps-ring satisfying

T2(R) = N(R) = J ⊕ {0},

thus R is not 2-torsion-free.

3. An application

We shall need a result on quotient ring R/N(R).

Lemma 3.1. Let R be an Archimedean ps-ring. Then R/N(R) is a reduced
Archimedean ps-ring.

Proof: Since by Theorem 1.5 N(R) is an order-convex ideal of R, the quotient
ring R/N(R) is partially ordered by the positive cone π(R+), where π denotes
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the canonical projection of R onto R/N(R). A simple verification shows that
R/N(R) is a reduced ps-ring.
The proof will be complete by proving that R/N(R) is Archimedean. To this

end suppose that elements π(a), π(b) ∈ R/N(R) satisfy 0 ≤ π(b) + nπ(a) for all
n ∈ Z. Then there exist elements an ∈ N(R), n ∈ Z such that

0 ≤ b+ na+ an.

Multiplying this inequality by 2a4 and observing that 2a4an = 0 we get

0 ≤ 2a4b+ n(2a5)

for all n ∈ Z. Since R is Archimedean this implies 2a5 = 0. It follows that
a ∈ N(R), hence π(a) = 0, as required. �

Recall that a partially ordered ring R is said to be an f -ring if it is lattice-
ordered and if a, b ∈ R with a ∧ b = 0 implies ac ∧ b = ca ∧ b = 0 for all c ∈ R+.
It is well known that an Archimedean f -ring is commutative. Let us apply our
results on partially ordered rings which are closely related to f -rings.
We shall say that a partially ordered ring R is f -decomposable, if every element

a ∈ R is expressed as a = a1 − a2 with a1, a2 ∈ R+ and a1a2 = a2a1 = 0.
Observe that an Archimedean f -decomposable ring is a ps-ring with generating

cone R+, and therefore torsion-free by Remark 1.7.

Theorem 3.2. Let R be an Archimedean f -decomposable partially ordered ring.
Then

(1) R/N(R) is an Archimedean f-ring;
(2) all triples of elements of R commute, that is

a1a2a3 = aσ(1)aσ(2)aσ(3) for all a1, a2, a3 ∈ R, σ ∈ S3.

Proof: The quotient ring R/N(R) is reduced and f -decomposable, hence (1)
follows by [6] and Lemma 3.1.
To prove (2) note that R satisfies

N2(R) = R+ ∩ N2(R)− R+ ∩ N2(R),

which by Lemma 1.1. (1) implies thatN2(R) = ann(R). It follows by Corollary 1.6
that N(R) = ann(R2), hence

N(R) ∩ R2 ⊂ N2(R) = ann(R).

The commutativity of the Archimedean f -ring R/N(R) implies that ab − ba ∈
N(R) ∩ R2 ⊂ ann(R), therefore (2) follows. �

Applying Proposition 1.9 we get



238 B.Lavrič

Corollary 3.3. Let R be an Archimedean f -decomposable partially ordered ring.

(1) If ann(R) = {0}, then R is an Archimedean semiprime f -ring.
(2) If R = R2, then R is commutative. �

Let R be an Archimedean f -decomposable ring. It can be seen (using for
example [1, Proposition 1.3]) that if R is lattice-ordered then it is an almost f -
ring, thus Corollary 3.3. (1) generalizes [1, Theorem 1.11 (ii)]. Moreover, in this
case R is commutative by [1, Theorem 2.15], and it might be interesting to know
whether R is commutative also in general case.
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[3] Diem J.E., A radical for lattice-ordered rings, Pacific J. Math. 25 (1968), 71–82.
[4] Divinsky N., Rings and Radicals, Allen, London, 1965.
[5] Fuchs L., Partially Ordered Algebraic Systems, Pergamon Press, Oxford-London-New York-
Paris, 1963.

[6] Hayes A., A characterization of f-rings without non-zero nilpotents, J. London Math. Soc.
39 (1964), 706–707.

[7] Jacobson N., Structure of Rings, Colloquium Publication 37, Amer. Math. Soc., Providence,

1956.
[8] Steinberg S.A., On lattice-ordered rings in which the square of every element is positive,
J. Austral. Math. Soc. Ser. A 22 (1976), 362–370.

[9] Szász F.A.,Radicals of Rings, Akademiai Kiado – John Wiley & Sons, Budapest-Chichester-
New York-Brisbane-Toronto, 1981.

Department of Mathematics, University of Ljubljana, Jadranska 19, 61000 Ljubl-

jana, Slovenia

(Received August 18, 1993)


