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The area formula for W
1,n-mappings

Jan Malý

Abstract. Let f be a mapping in the Sobolev space W 1,n(Ω,Rn). Then the change
of variables, or area formula holds for f provided removing from counting into the
multiplicity function the set where f is not approximately Hölder continuous. This
exceptional set has Hausdorff dimension zero.
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1. Introduction

Let Ω ⊂ Rn be an open set. Le f : Ω → Rn be a mapping and S ⊂ Ω. We
define the multiplicity function (Banach indicatrix) N by

N (y, f, S) = ♯{x ∈ S : f(x) = y} .

If f is a Lipschitz mapping on Ω, then f is differentiable a.e. (Rademacher theo-
rem) and the area formula

(1.1)

∫

S
| det∇f(x)| dx =

∫

Rn

N (y, f, S) dy

holds for any measurable set S ⊂ Ω (see [2]). The same is true if f is a continuous
representative of a mapping inW 1,p(Ω,Rn) with p > n (as the Lusin (N)-property
holds, cf. Proposition 1.1 and [1]). There are continuous mappings inW 1,p(Ω,Rn)
with p ≤ n for which the area formula does not hold (see [13], [9] and references
therein). The problem of the area formula for Sobolev mappings is continuously
stimulating. For interesting recent results we refer to [10]. One approach consists
in looking for “partial area formulae”: a set S0 of full measure is found such that

∫

S
| det∇f(x)| dx =

∫

Rn

N (y, f, S ∩ S0) dy

for all measurable S ⊂ Ω.

As shown by Federer [3], for any f which has partial derivatives almost every-
where there are sequences fj of Lipschitz mappings andMj of disjoint measurable
sets such that fj = f onMj and Ω\

⋃

j
Mj has zero measure. The following propo-

sition is then an easy and well known consequence (cf. [10], [5]).
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1.1 Proposition. Let S ⊂ Ω be a measurable set and f ∈ W 1,1
loc (Ω,Rn). Then

the following assertions are equivalent:

(i) “the (N)-property holds for f on S”: |f(E)| = 0 for each E ⊂ S with
|E| = 0,

(ii) “the area formula holds for f on S”:
∫

S′

| det∇f(x)| dx =

∫

Rn

N (y, f, S′) dy

for each measurable set S′ ⊂ S,
(iii) “the change of variables formula holds for f on S”:

∫

S
u(f(x))| det∇f(x)| dx =

∫

Rn

u(y)N (y, f, S) dy

for each nonnegative Borel measurable function u on Rn.

Let f be a function in L1loc defined a.e. in Ω. Then the function

f̃(x) := lim
r→0+

∫

B(x,r)
f .

is defined in Ω except a set of measure zero. The function f̃ is called the Lebesgue
representative of f and we say that f is Lebesgue precise if f = f̃ . If, in addition,
f ∈ W 1,p(Ω) with p > 1, then f̃ is defined up to a set of p-capacity zero and
p-finely continuous except for a set of p-capacity zero (see [14, Section 3.3]),
which means that it is p-quasi-continuous ([6, Theorem 8]). These references
are also recommended for definitions of p-capacity, p-quasi-continuity and p-fine
topology (by the p-capacity capp we understand the Bessel capacity denoted by

B1,p in [14]).
The following theorem gives a good choice of a set of canonical nature for which

the area formula holds ([5], cf. also [4]).

1.2 Proposition. Let f ∈ W 1,1
loc (Ω,Rn) be Lebesgue precise and S be the set of

all points of Ω at which f is approximately differentiable. Then the area formula
holds for f on S.

The aim of this paper is to use a slight refinement of methods from [9] to show
that for f ∈ W 1,n(Ω,Rn) the set to be removed for validity of the area formula
can be found even smaller. The following theorem will be proved in the next
section.

1.3 Theorem. Suppose that f is an n-quasi-continuous representative of a map-

ping inW 1,n
loc (Ω,Rn) and S is the set of all points of Ω at which f is approximately

Hölder continuous. Then the area formula holds for f on S.

The size of the exceptional set is estimated in the following result, proved in
Section 3.
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1.4 Theorem. Suppose that f is an n-quasi-continuous representative of a map-

ping inW
1,n
loc (Ω,Rn) and S is the set of all points of Ω at which f is approximately

Hölder continuous. Then the set Ω \ S has Hausdorff dimension zero.

2. Points of approximate Hölder continuity

Let f be a measurable function on Ω. We say that f is approximately Hölder
continuous at x ∈ Ω if there is α ∈ (0, 1] and a set M such that

lim sup
y→x, y∈M

|f(y)− f(x)|

|y − x|α
< ∞

and the Lebesgue density of M at x is one.
We need the following version of the Gehring oscillation lemma.

2.1 Lemma. Let f be a quasi-continuous representative of a mapping in
W 1,n(B(x, r),Rm). Then for almost all t ∈ (0, r) the restriction of f to ∂B(x, t)
is a continuous representative of an element of W 1,n(∂B(x, t),Rm) and the in-
equality

(2.1)
(

diam f(∂B(x, t))
)n

≤ c t

∫

∂B(x,t)
|∇f |ndS .

holds.

Proof: The estimate follows from the Sobolev inequality and a similarity argu-
ment if f is C1. In the general case there are C1 mappings fj such that

∑

j

‖fj − f‖p
1,p < ∞ .

Using integration over radii it follows that there is N1 ⊂ (0, r) with |N1| = 0 such
that

∑

j

∫

∂B(x,t)
(|fj − f |p + |∇fj −∇f |p) dS < ∞ .

Since f is n-quasi-continuous and fj → f in W 1,n, we know (after selecting
a subsequence) that fj → f except a set E of n-capacity zero ([12, Theorem 5.4]).
By well known relations between capacity and Hausdorff measure ([12]) it follows
that the linear measure of E is zero, so that there is N2 ⊂ (0, r) with |N2| = 0 such
that fj → f everywhere on ∂B(x, t) for each t ∈ (0, r)\N2. If t ∈ (0, r)\(N1∪N2),
then the Sobolev inequality implies uniform convergence fj → f on ∂B(x, t) and
a routine passage to limit yields (2.1). �

The following tool is essentially Lemma 4.5 of [9].
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2.2 Lemma. Let B be a ball B(x, r) and τ ∈ (0, 1). Suppose f ∈ W 1,n(B,Rn).
Then there is a measurable set A ⊂ B such that

|B \ A| ≤ τ |B|

and

(diam f(A))n ≤ c

∫

A
(1 + |∇f |n) dy ,

c depends only on n and τ .

Proof: Although the proof in fact follows the idea in [9], we present it here, as
in the original the mapping f is assumed to be continuous. Set

ω0 = inf{diam f(∂B(x, t)) : t ∈ [r/2, r]} .

Find t0 ∈ [r/2, r] such that diam f(∂B(x, t0)) < ω0+r and choose z0 ∈ ∂B(x, t0).
Denote

u(y) = |f(y)− f(z0)| ,

λi = i(r + ω0) ,

Ei = {y ∈ B(x, r) : |f(y)− f(z0)| < λi} ,

vi,j = max(min(u, λj), λi) .

First we will derive the estimate

(2.2) ωn
0 ≤ c

∫

B(x,r)∩E3

|∇f |n dy .

If there exists t1 ∈ [r/2, r] such that ∂B(x, t1)∩E2 = ∅, we observe that v1,2 = λ1
on ∂B(x, t0) and v1,2 = λ2 on ∂B(x, t1). It follows

(r + ω0)
n = (λ2 − λ1)

n ≤ c

∫

B(x,r)
|∇v1,2|

n dy ≤ c

∫

E3∩B(x,r)
|∇f |n dy ,

which proves (2.2) in this case. Now we may assume that ∂B(x, t) intersects E2
for all t ∈ [r/2, r]. We write F = {t ∈ [r/2, r] : ∂B(x, t) ⊂ E3}. Using Lemma 2.1
to f and v2,3, for almost all t ∈ [r/2, r] we get

(2.3) t−1ωn
0 ≤ c

∫

E3∩∂B(x,t)
|∇f |n dS .

Indeed, if t ∈ F , we estimate

ωn
0 ≤ (diam f(∂B(x, t)))n ≤ c t

∫

∂B(x,t)
|∇f |n dS

= c t

∫

E3∩∂B(x,t)
|∇f |n dS ,
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while for t ∈ [r/2, r] \ F we have

ωn
0 ≤ (λ3 − λ2)

n ≤ (diam v2,3(∂B(x, t)))n ≤ c t

∫

∂B(x,t)
|∇v2,3|

n dS

≤ c t

∫

E3∩∂B(x,t)
|∇f |n dS .

Integrating (2.3) over t ∈ [r/2, r] we obtain (2.2). Now, if |B \E3| ≤ τ |B|, we are
done. Indeed, setting A = B ∩ E3, we obtain

(diam f(A))n ≤ c(ω0 + r)n ≤ c

∫

A
|∇f |n dy + crn ≤ c

∫

A
(1 + |∇f |n) dy .

Otherwise we find k ≥ 3 such that

|B \ Ek+1| ≤ τ |B| < |B \ Ek|

and set A = B∩Ek+1. Since v1,k−λ1 = 0 on ∂B(x, t0), a Poincaré-type inequality
([14, Section 4.5]) yields

(diam f(A))n ≤ (2λk+1)
n ≤ cτ−1r−n

∫

B
(v1,k − λ1)

n dy ≤ cτ−1
∫

B
|∇v1,k|

n dy

≤ cτ−1
∫

A
|∇f |n dy ,

which concludes the proof. �

Proof of Theorem 1.3: We verify the condition (i) of Proposition 1.1. Recall
that S is the set of all points where f is approximately Hölder continuous. Let
E ⊂ S be a set of zero measure. Decomposing E if necessary into a countable
union, we may assume that f is 1/m-Hölder continuous at all x ∈ E for m ∈ N
fixed. Choose an open set G ⊂ Ω containing E. Fix x ∈ E. There are K > 0 and
a set M ⊂ Ω, such that the Lebesgue density of M at x is one and

|f(y)− f(x)| ≤ K|y − x|1/m

for all y ∈ M . Find r0 > 0 such that B(x, r0) ⊂ G and

|B(x, r) \ M | ≤
1

4
|B(x, r)|

for all r ∈ (0, r0). For k = 0, 1, . . . we denote

rk = r02
−k,

Bk = B(x, rk)
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and using Lemma 2.2 we find a measurable set Ak ⊂ Bk such that

|Bk \ Ak| ≤ 2
−n−2|Bk|

and

(2.4) (diam f(Ak))
n ≤ c

∫

Ak

(1 + |∇f |n) dy .

Then (for k ≥ 1)

|Bk \ Ak−1| ≤ 2
−n−2|Bk−1| =

1

4
|Bk|,

|Bk \ Ak| ≤ 2
−n−2|Bk|,

|Bk \ M | ≤
1

4
|Bk|,

and thus there is xk ∈ Ak ∩ Ak−1 ∩ M , xk 6= x. We have

(2.5) |f(xk)− f(x)| ≤ c|xk − x|1/m ≤ c2−k/m .

Choosing b with (1 + 1/b)−1 > 2−1/m we claim that the set

I(x) = {k ∈ N : |f(xk+1)− f(x)| ≤ b|f(xk)− f(xk+1)|}

is infinite. Indeed, assuming that max I(x) = k0, we get

|f(xk)−f(x)| ≤ |f(xk+1)−f(x)|+ |f(xk)−f(xk+1)| ≤ (1+1/b)|f(xk+1)−f(x)|

for each k > k0, which leads to a contradiction with (2.5), as an iteration yields

|f(xk)− f(x)| ≥ c(1 + 1/b)−k .

Denote
Rk(x) = diam f(Ak) + |f(xk+1)− f(x)| .

Since xk, xk+1 ∈ Ak, we have

f(Ak) ⊂ B(f(x), Rk)

and (using (2.4))

Rk(x) ≤ diam f(Ak) + b|f(xk+1)− f(xk)| ≤ (1 + b) diam f(Ak)

≤ c(1 + b)
(

∫

Ak

(1 + |∇f |n) dy
)1/n
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whenever k ∈ I(x). For the next step of the proof we write this estimate in the
form

(2.6) (Rk(x))
n ≤ c

∫

f−1(B(f(x),Rk(x)))
(1 + |∇f |n) dy , k ∈ I(x) .

The balls B(f(x), Rk), x ∈ E, k ∈ I(x), form a Vitali cover of f(E). By the
Vitali covering theorem there is a disjoint subcover B(f(xτ ), Rτ ) such that the
set N := E \

⋃

τ B(f(xτ ), Rτ ) has zero Lebesgue measure. Using (2.6) it follows
that

|f(E)| ≤ |N |+ 2n
∑

τ

Rn
τ

≤ c
∑

τ

∫

f−1(B(f(xτ ),Rn
τ ))
(1 + |∇f |n) dy ≤ c

∫

G
(1 + |∇f |n) dy .

Varying the set G we get the required conclusion |f(E)| = 0. �

3. Size of the exceptional set

3.1 Lemma. Let p > 1. Then the p-fine closure of any open set A ⊂ Rn has the
same p-capacity as A.

Proof: See [11, Proposition 3.2]. �

The following tool is an immediate consequence of Theorem 7 of [8].

3.2 Proposition. Let f be an n-quasi-continuous representative of a mapping
in W 1,n(Ω,Rn), ε > 0 and p < n. Then there is an open set G ⊂ Rn such that
capp G < ε and the restriction of f to Ω \ G is locally Hölder continuous.

Proof of Theorem 1.4: Using Proposition 3.2 we find open sets Gi,j and
pi ր n such that cappi

(Gi,j) < 1/j and f is locally Hölder continuous on Ω\Gi,j .

Denote by Si,j the pi-fine interior ofR
n\Gi,j and S = Ω∩

⋃

i,j Si,j . By Lemma 3.1,

cappi
(Rn \Si,j) < 1/j, and thus the Hausdorff dimension of E is zero (see e.g. [7,

Theorem 2.26]). Consider a point x ∈ S. Then there are i, j such that x ∈ Ω∩Si,j .
Since the set Si,j is pi-finely open and f is locally Hölder continuous on Si,j , it
follows that the Lebesgue density of S at x is one ([14, Section 3.3]) and f is
approximately Hölder continuous at x. �
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