On the existence of weak solutions for degenerate systems of variational inequalities with critical growth

MARTIN FUCHS

Abstract. We prove the existence of solutions to systems of degenerate variational inequalities.

Keywords: variational inequalities, existence

Classification: 49

In this note we give a short proof of the following Theorem obtained in [1] not relying on the partial regularity theory.

Theorem. Suppose that $\Omega \subset \mathbb{R}^n$ is a bounded open set and that $p \in (1, \infty)$ is given. For a continuous function $f : \overline{\Omega} \times \mathbb{R}^N \times \mathbb{R}^{nN} \to \mathbb{R}^N$ we consider the variational inequality

(V)
$$\begin{cases} \text{find } u \in \mathbb{K} \text{ such that} \\ \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla (v-u) \, dx \ge \int_{\Omega} f(\cdot, u, \nabla u) \cdot (v-u) \, dx \\ \text{holds for all } v \in \mathbb{K} \end{cases}$$

where the class \mathbb{K} is defined as $\{v \in H^{1,p}(\Omega,\mathbb{R}^N) : v = u_0 \text{ on } \partial\Omega, v(x) \in K\}$. Here K denotes the closure of a convex bounded open set in \mathbb{R}^N with the boundary of class C^2 and u_0 is a given function in $H^{1,p}(\Omega,\mathbb{R}^N)$ such that $u_0(\Omega) \subset K$. Then, if f satisfies the growth estimate

$$(1) |f(x, y, Q)| \le a \cdot |Q|^p$$

for some constant $a \geq 0$ and if in addition

(2)
$$a < 1/\operatorname{diam} K$$

holds, problem (V) admits at least one solution $u \in \mathbb{K}$.

As shown in [1] we obtain as a

446 M. Fuchs

Corollary. If $u_0 \in H^{1,p}(\Omega, \mathbb{R}^N) \cap L^{\infty}$ is given and if f satisfies (1) as well as $a < \frac{1}{2 \cdot ||u_0||_{\infty}}$, then the Dirichlet problem

$$\left\{ \begin{array}{ll} -\partial_{\alpha} \big(\, |\nabla u|^{p-2}\partial_{\alpha} u \big) = f(\cdot,u,\nabla u) & \text{on } \Omega\,, \\ u = u_0 & \text{on } \partial\Omega \end{array} \right.$$

has at least one weak solution $u \in H^{1,p}(\Omega, \mathbb{R}^N) \cap L^{\infty}$.

In the quadratic case p=2 the above Theorem is due to Hildebrandt and Widman [5] but we did not succeed to extend their method to general p. Our proof (working for all p) is based on a compensated compactness type lemma demonstrated in [2] with basic ideas taken from Landes paper [6].

Lemma. Suppose that we have weak convergence $u_m \to u$ in the space $H^{1,p}(\Omega,\mathbb{R}^N)$. Then there is a subsequence $\{\tilde{u}_m\}$ such that $|\nabla \tilde{u}_m|^{p-2}\nabla \tilde{u}_m \to |\nabla u|^{p-2}\nabla u$ weakly in $L^{\frac{p}{p-1}}(\Omega,\mathbb{R}^{nN})$ and $\nabla \tilde{u}_m \to \nabla u$ pointwise a.e. provided we know

$$\int_{\Omega} |\nabla u_m|^{p-2} \, \nabla u_m \cdot \nabla \varphi \, dx \le c \cdot \|\varphi\|_{\infty}$$

for all $\varphi \in C_0^1(\Omega, \mathbb{R}^N)$ with $0 \le c < \infty$ independent of m and φ .

We now come to the

Proof of the Theorem: For $m \in \mathbb{N}$ let

$$f_m : \overline{\Omega} \times \mathbb{R}^N \times \mathbb{R}^{nN} \to \mathbb{R}^N,$$

$$f_m(x, y, Q) := \begin{cases} f(x, y, Q): & \text{if } |f(x, y, Q)| \leq m \\ \frac{m}{|f(x, y, Q)|} \cdot f(x, y, Q) & \text{else} \end{cases}$$

and consider the approximate problem

$$(V)_m \qquad \begin{cases} \text{ find } w \in \mathbb{K} \text{ such that} \\ \int_{\Omega} |\nabla w|^{p-2} \, \nabla w \cdot \nabla (v-w) \, dx \ge \int_{\Omega} f_m(\cdot, w, \nabla w) \cdot (v-w) \, dx \\ \text{ holds for all } v \in \mathbb{K} \, . \end{cases}$$

As shown in [1] the existence of solutions u_m to $(V)_m$ can be deduced from Schauder's fixed point theorem. Recalling (1), (2) and the definition of f_m we infer

$$(1 - a \cdot \operatorname{diam} K) \cdot \int_{\Omega} |\nabla u_m|^p dx \le \int_{\Omega} |\nabla u_m|^{p-1} \cdot |\nabla u_0| \cdot dx$$

so that $\sup_m \|u_m\|_{H^{1,p}(\Omega)} < \infty$. Thus we may assume

$$u_m \to u$$
 in $H^{1,p}(\Omega, \mathbb{R}^N)$

at least for a subsequence. In order to proceed further we linearize the variational inequality $(V)_m$ making use of the fact that ∂K is of class C^2 . As in [3, Theorem 2.1, 2.2] we get for all $\psi \in C_0^1(\Omega, \mathbb{R}^N)$

(3)
$$\begin{cases} \int_{\Omega} (|\nabla u_m|^{p-2} \nabla u_m \cdot \nabla \psi - f_m(\cdot, u_m, \nabla u_m) \cdot \psi) dx \\ = \int_{\Omega \cap [u_m \in \partial K]} \psi \cdot \mathcal{N}(u_m) b_m(\cdot, u_m, \nabla u_m) dx \end{cases}$$

where $\mathcal{N}(y)$ is the interior normal field of ∂K and $b_m(\cdot, u_m, \nabla u_m)$ has the properties

$$b_m(\cdot, u_m, \nabla u_m) \ge 0$$
 a.e. on $[u_m \in \partial K]$,
 $b_m(\cdot, u_m, \nabla u_m) \le \tilde{a} \cdot |\nabla u_m|^p$

with $\tilde{a} \geq 0$ independent of m. Now we are in the position to apply the Lemma and deduce

(4)
$$\int_{\Omega} |\nabla u_m|^{p-2} \nabla u_m \cdot \nabla \psi \, dx \to \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \psi \, dx$$

(after selecting a suitable subsequence). We claim

(5)
$$\int_{\Omega} f_m(\cdot, u_m, \nabla u_m) \cdot \psi \, dx \to \int_{\Omega} f(\cdot, u, \nabla u) \cdot \psi \, dx.$$

To prove this we observe

$$(x, u_m(x), \nabla u_m(x)) \rightarrow (x, u(x), \nabla u(x))$$

for almost all $x \in \Omega$, especially

$$f(\cdot, u_m, \nabla u_m) \to f(\cdot, u, \nabla u)$$
 a.e.

But for points $x \in \Omega$ with the property that a finite limit $\lim_{m\to\infty} f(x, u_m(x), \nabla u_m(x))$ exists, we clearly have

$$f_m(x, u_m(x), \nabla u_m(x)) = f(x, u_m(x), \nabla u_m(x))$$

for m >> 1, in conclusion $f_m(\cdot, u_m, \nabla u_m) \to f(\cdot, u, \nabla u)$ a.e. On the other hand the uniform growth estimate $|f_m(x, y, Q)| \leq a \cdot |Q|^p$ combined with the smallness condition (2) implies Caccioppli's inequality

$$\int_{B_R/2} |\nabla u_m|^p \, dx \le \mu \cdot R^{-p} \int_{B_R} |u_m - (u_m)_R|^p \, dx$$

448 M. Fuchs

for any ball $B_R \subset \Omega$ with μ independent of m. From this we easily get

$$\sup_{m} \|\nabla u_m\|_{L^q(\Omega')} < \infty$$

for any subregion $\Omega' \subset\subset \Omega$ and with q slightly larger as p. After passing to a subsequence we may therefore assume

$$f_m(\cdot, u_m, \nabla u_m) \rightarrow : g$$

weakly in the space $L_{\text{loc}}^{q/p}(\Omega, \mathbb{R}^N)$ for some function g. Using Egoroff's Theorem we find $g = f(\cdot, u, \nabla u)$ which proves (5).

Next we look at the remaining integral

$$\int_{[u_m \in \partial K]} \psi \cdot \mathcal{N}(u_m) \cdot b_m(\cdot, u_m, \nabla u_m) \, dx := I_m$$

and specialize $\psi = v - u$ where $v \in \mathbb{K}$ is arbitrary but with the property spt $(v - u) \subset\subset \Omega$. (Note that (4), (5) remain valid). We have

$$I_{m} = \int_{[u_{m} \in \partial K] \cap \operatorname{spt}(v-u)} (v - u_{m}) \cdot \mathcal{N}(u_{m}) \cdot b_{m}(\cdot, u_{m}, \nabla u_{m}) dx$$

$$+ \int_{[u_{m} \in \partial K] \cap \operatorname{spt}(v-u)} (u_{m} - u) \cdot \mathcal{N}(u_{m}) \cdot b_{m}(\cdot, u_{m}, \nabla u_{m}) dx$$

$$=: I_{m}^{1} + I_{m}^{2},$$

 $I_m^1 \geq 0$ an account of $(v - u_m) \cdot \mathcal{N}(u_m) \geq 0$ a.e. on $[u_m \in \partial K] \cap \operatorname{spt}(v - u)$ (due to the convexity of K) and

$$|I_m^2| \le \int_{\operatorname{spt}(u-v)} \tilde{a} \cdot |\nabla u_m|^p |u_m - u| dx$$

$$\le \tilde{a} \cdot \left(\int_{\operatorname{spt}(u-v)} |\nabla u_m|^q dx \right)^{p/q} \cdot \left(\int_{\operatorname{spt}(u-v)} |u_m - u|^{\frac{q}{q-p}} dx \right)^{1-p/q}$$

$$\xrightarrow[m \to \infty]{} 0,$$

since $\|\nabla u_m\|_{L^q(\operatorname{spt}(u-v))}$ is uniformly bounded and

$$\int_{\operatorname{spt}(u-v)} |u_m - u|^{\frac{q}{q-p}} dx \le \operatorname{const}(q, p, \operatorname{diam} K) \cdot \int_{\operatorname{spt}(u-v)} |u_m - u|^p dx \longrightarrow 0.$$

Putting together our results we arrive at

(6)
$$\int_{\Omega} |\nabla u|^{p-2} \, \nabla u \cdot \nabla (v-u) \, dx \ge \int_{\Omega} f(\cdot, u, \nabla u) \cdot (v-u) \, dx$$

for all $v \in \mathbb{K}$ such that spt $(u - v) \subset\subset \Omega$. We have to remove the support condition on $v \in \mathbb{K}$. To this purpose consider an arbitrary function $v \in \mathbb{K}$. Then $v - u \in \overset{\circ}{H}^{1,p}(\Omega,\mathbb{R}^N)$ so that there is a sequence $w_m \in C_0^{\infty}(\Omega,\mathbb{R}^N)$ such that $w_n \to v - u$ in the strong topology of the space $H^{1,p}(\Omega,\mathbb{R}^N)$. Let $F : \mathbb{R}^N \to K$ denote the projection onto the set K. Then $v_m := F(u + w_m)$ belongs to the class \mathbb{K} , moreover (6) is valid for v_m . It is easy to check that

$$v_m \rightarrow F(v) = v$$

weakly in $H^{1,p}(\Omega, \mathbb{R}^N)$, hence

$$\int_{\Omega} |\nabla u|^{p-2} \, \nabla u \cdot \nabla (v_m - u) \, dx \to \int_{\Omega} |\nabla u|^{p-2} \, \nabla u \cdot \nabla (v - u) \, dx.$$

After passing to a subsequence we may assume $v_m \to v$ a.e. on Ω and since

$$|f(\cdot, u, \nabla u)| \cdot |v_m - u| \le a \cdot \text{diam } K \cdot |\nabla u|^p \in L^1(\Omega)$$

we deduce from dominated convergence that

$$\int_{\Omega} f(\cdot, u, \nabla u) \cdot (v_m - u) dx \to \int_{\Omega} f(\cdot, u, \nabla u) \cdot (v - u) dx$$

so that u is a solution of the variational inequality (V).

From [4] we get in addition

Corollary. Let u denote the solution of (V) obtained in the Theorem. Then there is a relatively closed set $\Sigma \subset \Omega$ such that $u \in C^{1,\alpha}(\Omega - \Sigma)$ for some $0 < \alpha < 1$ and $\mathcal{H}^{n-p}(\Sigma) = 0$.

References

- [1] Fuchs M, Existence via partial regularity for degenerate systems of variational inequalities with natural growth, Comment. Math. Univ. Carolinae 33 (1992), 427–435.
- [2] _____, The blow up of p-harmonic maps, Manus. Math. 81 (1993), 89-94.
- [3] _____, p-harmonic obstacle problems, Annali di Mat. Pura Appl. 156 (1990), 127–180.
- [4] ______, Smoothness for systems of degenerate variational inequalities with natural growth, Comment. Math. Univ. Carolinae 33 (1992), 33–41.
- [5] Hildebrandt S., Widman K.-O., Variational inequalities for vector-valued functions, J. Reine Angew. Math. 309 (1979), 181–220.
- [6] Landes R., On the existence of weak solutions of perturbed systems with critical growth, J. Reine Angew. Math. 393 (1989), 21–38.

UNIVERSITÄT DES SAARLANDES, FACHBEREICH MATHEMATIK, D-6600 SAARBRÜCKEN, GERMANY

(Received July 29, 1993)