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Large cardinals and Dowker products

CHRrI1s GOOD

Abstract. We prove that if there is a model of set-theory which contains no first count-
able, locally compact, scattered, countably paracompact space X, whose Tychonoff
square is a Dowker space, then there is an inner model which contains a measurable
cardinal.
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In this paper we always take space to mean Hausdorff topological space.
A space is normal if every pair of disjoint closed sets can be separated by disjoint
open sets, and binormal if its product with the closed unit interval is normal.
A space is countably paracompact (metacompact) if every countable open cover
has a locally (point) finite open refinement. In [Dk], Dowker shows that a normal
space is binormal iff it is countably paracompact iff it is countably metacom-
pact. A Dowker space is a normal space that is not countably paracompact. For
a survey of Dowker spaces we refer the reader to [R].

Rudin and Starbird [RS] have shown that for normal, countably paracompact
X and metrizable M, X x M is normal if and only if it is countably paracompact.
They asked whether a product of two normal, countably paracompact spaces could
be a Dowker space. Beslagi¢ constructs various positive answers to this question,
assuming ¢ or CH, in [B1], [B2] & [B3].

In [G] we prove that if there is a model of set theory which contains no first
countable, locally compact, scattered Dowker spaces, then there is a model of
set-theory which contains a measurable cardinal. Here we extend this result by
proving that large cardinals are needed for a model in which there is no first
countable, locally compact, countably paracompact space X with first countable,
locally compact, scattered Dowker square:

1. Theorem. If no inner model of set theory contains a measurable cardinal,
then there is a first countable, locally countable, locally compact, strongly zero-
dimensional, collectionwise normal, countably paracompact, scattered space whose
Tychonoff square is a first countable, locally compact, collectionwise normal, scat-
tered Dowker space.

Notation and terminology are standard—see [E], [K] or [KV]. We regard car-
dinals as initial ordinals, and an ordinal as the set of its predecessors. We use
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the term club set or club to denote a closed, unbounded subset of an ordinal—it
will be clear from the context which particular ordinal we mean. For a function
f: A — B, wedenote by f“C theset {f(z):xz € C C A}. For a subset A of ax 3,
we denote the set {7 : (30)(7,0) € A} by dom A, and the set {0 : (Fy)(v,0) € A}
by ran A. Following [B1], a subset A of kT x k™ is said to be 2-unbounded if
A is not a subset of (k1 x a) U (a x k™) for any a € k*. As usual we use the
following characterization from [Dk]: a space is countably metacompact if and
only if, for every decreasing sequence {Dp, }new of closed subsets of X, which has
empty intersection, there is a sequence {Upy, }new of open sets, Uy, containing D,
for each n, which also has empty intersection.

A stationary subset E of some uncountable cardinal X\ is said to be non-
reflecting if, for every a < A\, aN E is non-stationary in «. If F is a non-reflecting
stationary subset of kT and a € k™, then it is easy to see that there is a club
set H = {7y : A € 0 < a} of « such that H and E are disjoint, and (yx,yr11)
is countable for all A € §. In what follows we shall let E denote a non-reflecting,
stationary subset of T, each member of which has countable cofinality.

2. Definition. &, (F,2) is the assertion that there is a collection {R, ; : Ry C
a, « € ENLM and 4 € 2} such that each R, ; is an w-sequence, cofinal in «,
and {a € E: R,; C X; for both i € 2} is stationary whenever Xy and X; are
unbounded subsets of k1. ]

In [G] we deduce, via [Dv], [DJ] and [F],

3. Lemma. If no inner model of set-theory contains a measurable cardinal, then
&, (E,2) for some k. O

In the construction of the space X, we use the following two consequences of
. (E.2).
4. Definition. &+, .+ (£,2) is the assertion that there is a sequence {S,; :
Sai € axa, o€ ENLM and i € 2} such that S, ; is an w-sequence, cofinal
inaxa,and {a € E:85,; C X; i€ 2} is stationary whenever Xy and X7 are
2-unbounded subsets of KT x k1. (]

5. Definition. &', (E,2) is the assertion that there is a sequence {Tu,in :
Toin € o, a € ENLM, and ¢ € 2} such that (J,c,, Th,in and each Tp, ; , is
an w-sequence, cofinal in «, Ty ;n N Ty jm is empty whenever i # j or m # n,
and (\ el € E @ Toin € Xip, for both @ € 2} is stationary whenever
{Xin:i€2, new}isa collection of unbounded subsets of £7. O

6. Lemma. If &, (E,2), then &+ .+ (FE,2) and &, (E,2).

PROOF: Let {Rq; : o € ENLIM, i € 2} be a &,.+(F, 2)-sequence. We may assume
that R0 and Rq 1 are disjoint for all o in FNLIM. Let f : kT — kT x kT and
g: kT — kT x w be any bijections. F' = {a: fa=ax a}and G = {a: g“a =
a X w} are both club in k™.
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For o in E'N F' N LIM such that both f“R, ¢ and f“Rq 1 are cofinal in o X «,
define S, ; to be the set f“R, ;. Otherwise, for o in E, let S, ; be an arbitrary
sequence cofinal in a x a. It is easy to see that {Sq; : Sai € a X a, € ENLIM
and ¢ € 2} is a .+ .+ (E, 2)-sequence.

If aisin ENGNLIM, i € 2 and n € w, let T, ; , be the set dom(g“B,; N (a %
{n})). Otherwise, for a in E, let T, ; ,, be arbitrary.

To see that {Tnin : Tain € o, « € ENLIM, and i € 2} is a &2+(E, 2)-

sequence, let {X; ,}ic2 be a collection of unbounded subsets of kT, and let X; =
new

Unew Xin x {n}. S={a € E:Ry; C g 14X;, i € 2} is stationary. If a is in
S, then g“R, ; is a subset of X; and hence S is a subset of (o € E : Ty, C
X, i €2}.

Our construction is similar to that used by Beslagi¢ in [B1]. We define three
normal topologies, 7;, i € 3, on the point set ¥ = T x w. The topologies
7o and 77 both refine 75, which is a Hausdorff topology, hence the diagonal A of
(Y, To) x (Y, T7) is a closed subspace of X2. Our space X is the disjoint topological
sum of (Y,79) and (Y, 71). .+ ,.+(E,2) helps to ensure that the product X2

is normal, and that A is a Dowker space. Since A is closed in X2, X? is also
a Dowker space. We use &!!, (E,2) to ensure that (Y,7;), i € 2 is countably
paracompact (cf §5 [B1]).

7. Example. &,.+(E,2) There is a first countable, locally countable, locally com-
pact, strongly zero-dimensional, collectionwise normal, countably paracompact,
scattered space X, whose Tychonoff square is a first countable locally compact,
collectionwise normal, scattered Dowker space.

PROOF: Let Y be the point set kT x w, let 7 : ¥ — kT be the natural
projection, m((a,n)) = «, and let IT : Y2 — kT2 be the natural projection,
((a,n), (B,m)) = (o, B). Let {Sq; : Sai C axa, o€ ENLM and i € 2}
and {Toin : Tain C o, a € ENLIM, n € w and i € 2} be &+ .+ (F,2)- and

&2+ (E, 2)-sequences respectively. Bearing in mind the proof of Lemma 6, it is not
hard to see that we may assume that | J;co(ran S, ; Udom S, ;) and Jicz Ty ip
new

are disjoint for each o in FNLIM. We may also assume that each w-sequence S, ;
is strictly increasing in both coordinates.

For each o in E'N LIM and each i € 2, partition S, ; into w disjoint sequences
Sajim, Where n € w, each cofinal in a x a. Let B(c,i,n) be the sequence
dom S, ;pn UranS, ;. For each n € w, B(a,i,n) is an w-sequence, cofinal
in a, and the collection {B(«,i,n) : « € ENLM, i € 2} is a &,.+(E,2)-
sequence. Since S, ; is strictly increasing in both coordinates, B(«,i,n) and
B(a,i,m) are disjoint whenever n # m. Let B(a,n) = B(a,0,n) U B(a,1,n)
and let B(a) = U,,c, B(a,n). Enumerate the w-sequence B(«) increasingly as
{Blo ) j € wh.

For i € 2 let C(a,i,n) = Ty iy and let C(a,2,n) = C(a,0,n) U C(a,1,n).
Let C(a) = Upeo C(,2,n). Enumerate the w-sequence C(«) increasingly as
{v(a,j):j € w}.

new
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By assumption B(a) and C(«) are disjoint for all o in E NLIM. Let A(a) =
B(a) UC(a) and index A(«) increasingly as {a(k) : k € w}.

We define the topologies 7; by induction on the lexicographical order on k* x w.
At each stage of the induction (a, n), and for each i € 3, we define a topology 7; o
on Yy = @ X w and then a neighbourhood base NV;(a,n) = {N;((cv,n), k) }peo at
the point (o, n). Our inductive hypotheses are, for v < 8 < o and i € 3:

(1) 7; g is a Hausdorff, conservative extension of 7; ,, and Y, 11 is a 7; g-clopen
subset of Yg;

(2) N;(v,k) is a decreasing neighbourhood base of sets which are clopen, com-
pact and countable under 7; g, and are subsets of Y. 1;

(3) N;((B,n), k) and N;((B,m), k) are disjoint whenever n # m;

(4) No((B,n),k) UN1((B,n), k) is a subset of Na((3,n), k) for all k € w;

(5) if d(n, k) = inf{7“N;((«, n), k) }, then, for all n € w, the sequence
{6(n,k) : k € w} is cofinal in «;

(6) for all 0 < 7 € w, the point (v,0) is a 7 g-limit of each sequence
C(7,0,7) x {r}, a Tq g-limit of each sequence C(v,1,7) x {r}, and a 73 -
limit of both sequences;

(7) if Ny € Np(3,0) and N1 € M1(5,0), then Ng N N1 = {(5,0)};

(8) for all 0 < p < m, the point (8,m + 1) is a 7;-limit of the sequence
B(a,m) x {p}.

If « =0, let 7,0 = @ and let NV;(0,n) = {{(0,n)}} for each i € 3. Suppose
that we have defined N;(8, k) for each i € 3, all § € o and all k € w. Define 7;
to be the topology generated by |J{N;(8,k) : k € w, 8 < a}.

If « = 8+ 1 for some 3, or a is not in E, then we declare the point (a,n) to
be isolated and define NV;(a, n) to be {{(a,n)}} for each i € 3.

Now suppose that « is a limit ordinal in F.

First let us suppose that n = 0. The sequence C(«) is enumerated as {y(«, j) :
Jj € w}. Each y(a,j) in C(a) occurs uniquely in Tp, 4, », for some i; € 2 and
some 7; € w, and is indexed as «(k;) in A(a). By inductive hypotheses (4)
and (5), whenever r; > 0, we can choose a basic open set Na(y(a,j),r;) from
Na(y(ev, j), ;) such that

(1) m“Na(v(e, j),7;) is a subset of the interval (c(k; — 1), (k)] in kT
(by (5)):

For i € 3, and each k € w, define
NZ'((OZ,O), k) = {(OZ,O)}UU{NQ(")/(OZ,]'),T]') : FY(avj) € O(Oé,i,?”j), rj > 0,7 > k}

Now suppose that n = m+1 for some m € w. The sequence B(«) is enumerated
as {A(a,j) : j € w}, and each f(a, j) occurs uniquely in some B(a,r;), and is
indexed in A(c) as a(k;). By (4), (5) and the fact that 73 ,, is Hausdorff, for each
B(a,r;) such that r; = m and for each p < r;, we can choose disjoint basic open
neighbourhoods N;(8(«, j),p) from N;(8(«, ), p), i € 3 of the point (5(w,J),p)
such that N;(6(«,j),p) is a subset of Na(B(«, j),p), for each i € 2, and

(1) 7“Ni(B(a,j),p) is a subset of the interval (a(k; — 1), (k;)] in .
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For i € 3, and each k € w, define
N;((a,n), k) =
= {(a,n)} U J{Ni(B(ev, 5),p) : Blar, §) € B(a,m), p <m, and j > k}.

It is not hard to check that the inductive hypotheses hold.

Let 7; be the topology generated by U(a,n)eYM(a’ n).

Clearly both 7y and 77 refine 73, and it is not hard to check that each (Y, 7;)
is Hausdorff. Moreover, in each of these topologies, a point («,n) of Y is either
isolated or has a neighbourhood homeomorphic to the ordinal space w™ + 1, for
some m < n. Therefore, for each i € 3, (Y,7;) is regular, first countable, locally
countable, locally compact, zero-dimensional and locally metrizable.

Claim 1. For each i € 3 and all a € k™, the subspace Y, = a x w of (Y, T;) is
metrizable.

ProOOF OF CLAIM 1: Fix ¢ € 3. The proof is by induction, so assume that Yj is
metrizable for all 8 € a.

Since F is a non-reflecting stationary set, each of whose elements has countable
cofinality, if « is a limit ordinal (either in E or not), or a@ < wy, then there is
a sequence {a, : v € 6 < a}, which is both closed, cofinal in «, and disjoint
from E. But then

{(ay,ayq1) xw:y €0} UU{{OL«{} Xw:y€b}

partitions Yy, into disjoint, clopen, metrizable subsets.

Now suppose that a« = G+ 1. Without loss of generality, we may assume
that (3 is a limit ordinal. If § is not in E, then the two sets Y3 and {(5,n) :
n € w} partition Y, into disjoint, clopen, metrizable sets, and we are done.
Assume that ( is an element of E. By construction, {N,};c,, where N; =
N;((8,7),1) € Ni(B,7), forms a disjoint collection of clopen, metrizable subsets
of Yy,. Furthermore, by  and i, if z; is any point of N, then the set {7(z;)}; e
forms an w-sequence, cofinal in 8 (though not necessarily indexed in increasing
order), so the only possible limit point of the sequence {z;} e, is (3, k) for some k
in w, which is impossible. Therefore {N. j} jew is a discrete collection of countable,
clopen sets. But now N = UjEw Nj; and Z =Y, — N partition Yy into disjoint,
clopen, metrizable subspaces, and again Y, is metrizable. (|

Claim 2. Fix i € 3. If H is a subset of (Y,T;) of size kT, then H has a limit
point, and, if C and D are closed subsets of (Y,7T;), both of size k*, then C' and
D are not disjoint.

PROOF OF CLAIM 2: For any subset A of Y let A(n) = AN (kT x {n}).
Suppose that H has size xT, then H(n) also has size x* for some n € w. By
&+ .+ (E,2), Bla,n) x {n} is contained in H(n), for some « in F, so H has
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(a,n+1) as a limit point in k™ x {n + 1}. In fact, since kT is a regular cardinal,
H has k™ limit points in ™ x {n + 1}.

Now let C' and D be closed subsets of (Y,7;) of cardinality . From the
previous paragraph it is clear that |C(n)| = |D(n)| = T, for some n. By
&, + .+ (F,2), there is an « in E for which both B(«,0,n) x {n} is a subset
of C(n), and B(a,1,n) x {n} is a subset of D(n), so C' and D have a common
limit point. O

For each i € 3, the (strong) collectionwise normality of (Y,7;) is immediate
from Claims 1 and 2: Let D be a discrete collection of closed sets. By Claim 2,
D has size less than kT and there is some successor « such that Y, contains all
but at most one of the sets in D. Since Y, is clopen and metrizable we are done.

The strong zero-dimensionality of (Y,7;) also follows from Claims 1 and 2:
Suppose that A and B are subsets of Y which are completely separated by the
function f : (Y,7;) — [0,1] in that f“A = {0} and f“B = {1}. The sets
f~140,1/4] and f~14[3/4,1] are disjoint, closed sets containing A and B respec-
tively, so, as above, there is a successor « such that Y, contains A, say. Y, is
a metrizable, locally compact, zero-dimensional subspace of Y and is, therefore,
strongly zero-dimensional (by 6.2.10 [E]).

Claim 3. (Y,7;) is countably paracompact for each i € 3.

ProoF oF CramM 3: Fix i € 3. Since (Y, 7;) is normal it suffices to show that,
for every decreasing sequence of closed subsets { Dy }new of (V,7;) with empty
intersection, there is a sequence of open subsets {Up, }new with empty intersection
such that U,, contains D,,.

Let {Dp}new be such a sequence of closed sets. Suppose that each D, has
size kT, then, with the notation used above, Claim 2 implies that D,,(k) has size
kT for all k greater than some k, € w. By relabelling and adding repetitions
if necessary, we may assume that Djp(n) has size kT for all n larger than some
ng > 0. Now, by &Q+(E, 2),

S=(V{a€E:TyinC Du(n),ic2}

new

is a stationary set, and therefore non-empty. By the construction of the topology
7;, if ais in S, then («,0) is in Dy, for all n € w, and so (| Dy, is not empty—
a contradiction.

Pick ng such that |Dy| < & for all n > ng. By Claim 1 there is a successor «
such that D,, is a subset of Y, for n > ng. The claim follows since Y, is clopen
and metrizable. We are done. [l

Claim 4. Fori,j €2, (Y, T;) x (Y,7;) is normal.

PROOF OF CLAIM 4: Let C and D be disjoint closed subsets of (Y, 7;) x (Y, 7;),
and recall that IT: (kT x w)? — kT x kT is the natural projection.
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Suppose that both II1“C' and II1“D are 2-unbounded in kT x k7. There are
integers m, n, j,k € w such that G, . = {(v,9) : ((7,n),(0,k)) € C} and Dy, ; =
{(n,0) : ((v,m),(6,7)) € D} are both 2-unbounded. Let s=n+m+j+k+1,
so that s is strictly greater than n, m, j and k. By &+ .+ (F,2), there is some
a in E such that S, o is a subset of C),  and Sy 1 is a subset of Dy, ;. By the
definition of the sequence B(a, 0, s)

On,k ﬂ (BCV,O,S X B(O[, 07 S))
is infinite and cofinal in («, ). By the definition of the topologies 7; and 7;

7
C'N((B(a,0,s) x {n}) x (Ba,,s x {k}))
is cofinal in ((a,s), (o, s)), which is therefore a limit point of C. Similarly
((e, 8), (v, 8)) is a limit point of D, and C and D are not disjoint.
So suppose that I1“C' is not 2-unbounded. Choose v not in F such that C' is
a subset of
K=(y*xw)x (kT xw)U((rT xw) x (7 xw)).
Since v is not in E, K is a clopen subset of (Y,7;) x (Y,7;). Since E is a non-
reflecting stationary set, there is a club set H of v, enumerated as {yy : A € 8 < 7},
which misses E and such that G = {« : 7\ < @ < )41} is countable. Now
) x w}regU{G A X w}ygp partitions Yy into countable, metrizable, 7;-clopen
subsets of Y, for i = 0 or 1. Lemma 2.8 of [B1] states that, for normal, countably
paracompact space X and a countable metric space M, X x M is normal. It is
easy to see, then, that K is normal. Since K is clopen, (Y,7;) x (Y, 7}) is now,
itself, seen to be normal—proving the claim. (I

The proof that (Y,7;) x (Y, 7;) is collectionwise normal is similar.

Now, let X be the disjoint topological sum of (Y,7g) and (Y,7;). From the
above, it is clear that X satisfies the properties listed in the statement of the
Theorem 1, except that it remains to show that X2 is not countably paracompact:

Claim 5. The closed subspace A = {((a,n), (a,n)) : @ € K+, n € w} of (Y, Ty) X
(Y, 71) is not countably metacompact.

PRrROOF OF CLAIM 5: Let Dy, = {((a,7),(a,5)) : @ € kT, j > n}, and let U,
be any open subset of A containing Dy,. {Dp}new is a decreasing sequence of
closed subsets of A with empty intersection, so it is enough to show that (U, is
non-empty.

Notice that, since the sequences C(«,0) and C(a, 1) are disjoint, the point
((«,0), (r, 0)) is isolated for each o € T (by hypothesis (7)). However, if «
is a limit in F, then (a,n + 1) is both a 7yp- and a 7;-limit of the sequence
B(a,n) x {n}. So, as {B(a,i,n)}ic2 " is a .+ (E, 2)-sequence, the proof of

ackEN
Claim 2 is, almost verbatim, a proof of:

* If H is a subset of A of size kT, then H has a limit point in A, and, if
C and D are closed subsets of A, both of size kT, then C and D are not
disjoint.
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D,, and A — Uy, are disjoint closed subsets. Dy, has cardinality xT, so, by *,

|A — Up| < k. Hence |(,e, Un)l = £ and in particular A is not countably
metacompact. This completes the proof of the Theorem. ([
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