Continuous selections, G_{δ} -subsets of Banach spaces and usco mappings

VALENTIN G. GUTEV

Abstract. Every l.s.c. mapping from a paracompact space into the non-empty, closed, convex subsets of a (not necessarily convex) G_{δ} -subset of a Banach space admits a single-valued continuous selection provided every such mapping admits a convex-valued usco selection. This leads us to some new partial solutions of a problem raised by E. Michael.

Keywords: set-valued mapping, lower semi-continuous, upper semi-continuous, selection, countable-dimensional space

Classification: Primary 54C60, 54C65; Secondary 54F45

1. Introduction

The famous Michael Theorem [2, Theorem 3.2''] tells that every lower semicontinuous (l.s.c.) mapping from a paracompact space into the non-empty, closed, convex subsets of a Banach space admits a single-valued continuous selection. In the present paper we show that, in a more general situation, this is actually equivalent to the existence of "nice" set-valued selections. The following theorem will be proved.

Theorem 1.1. Let X be a paracompact space, E be a Banach space, and let $Y \subset E$ be a G_{δ} -subset. Then, the following two conditions are equivalent:

- (a) every l.s.c. $\varphi: X \to \mathcal{F}_c(Y)$ admits a single-valued continuous selection;
- (b) every l.s.c. $\varphi: X \to \mathcal{F}_c(Y)$ admits a convex-valued usco selection.

Here, $\mathcal{F}_c(Y) = \{S \in \mathcal{F}(Y) : S \text{ is convex}\}$, where $\mathcal{F}(Y) = \{S \in 2^Y : S \text{ is closed in } Y\}$ and $2^Y = \{S \subset Y : S \neq \emptyset\}$. A set-valued mapping $\varphi : X \to 2^Y$ is l.s.c. if $\varphi^{-1}(U) = \{x \in X : \varphi(x) \cap U \neq \emptyset\}$ is open in X for every open $U \subset Y$. A set-valued mapping $\theta : X \to 2^Y$ is upper semi-continuous (u.s.c.) if $\theta^{\#}(U) = \{x \in X : \theta(x) \subset U\}$ is open in X for every open $U \in Y$. A set-valued mapping $\theta : X \to 2^Y$ is called usco provided that it is u.s.c. and compact-valued simultaneously. A map $f : X \to Y$ (resp. $\theta : X \to 2^Y$) is a selection for φ if $f(x) \in \varphi(x)$ (resp. $\theta(x) \subset \varphi(x)$) for every $x \in X$.

Turning to the possible applications of Theorem 1.1, let us especially mention that this result is closely related to the following E. Michael's problem in [6]: **Problem 396.** Let X be paracompact, E be a Banach space, $Y \subset E$ a convex G_{δ} -subset, and let $\varphi : X \to \mathcal{F}_c(Y)$ be l.s.c.; Does there exists a single-valued continuous selection f for φ ?

What is known to this question in all, is that it has an affirmative answer if X is finite-dimensional [3, Theorem 1.2 and Example 2.5] or if Y is such that $\overline{\operatorname{conv}(K)} \subset Y$ for every compact $K \subset Y$ [4, Theorem 1.1] and [2, Propositions 2.6 and 2.3 and Theorem 3.2"]. But, in general, it is still open even if X is a compact metric space (see [6]).

Using Theorem 1.1 we now obtain two further partial results to this problem. First, let us recall that a space X is of countable dimension provided that it is a countable union of finite-dimensional subsets; A space X is strongly countabledimensional provided it is a countable union of closed finite-dimensional subsets.

Corollary 1.2. Let X be a countable-dimensional metric space, E be a Banach space, and let $Y \subset E$ be a G_{δ} -subset. Then every l.s.c. $\varphi : X \to \mathcal{F}_c(Y)$ admits a single-valued continuous selection.

PROOF: Suppose $\varphi : X \to \mathcal{F}_c(Y)$ is l.s.c. Since X is countable-dimensional and Y is completely metrizable, by [1, Theorem 2.1], φ admits a finite-valued u.s.c. selection ψ . Setting then $\theta(x) = \operatorname{conv}(\psi(x))$, we get a convex-valued usco selection θ for φ . Finally, Theorem 1.1 completes the proof.

Corollary 1.3. Let X be a strongly countable-dimensional paracompact space, E be a Banach space, and let $Y \subset E$ be a G_{δ} -subset. Then every l.s.c. $\varphi : X \to \mathcal{F}_c(Y)$ admits a single-valued continuous selection.

PROOF: Following the previous proof, it suffices to show that every l.s.c. $\varphi : X \to \mathcal{F}_c(Y)$ admits a finite-valued u.s.c. selection. That this is so, it follows from [9, Theorem 4.5].

A construction of continuous selections avoiding F_{σ} -sets is exhibited in the next Section 2. A proof of Theorem 1.1 is obtained in the last Section 3.

2. A construction of continuous selections avoiding F_{σ} -sets

Throughout this section, (E, d) will denote a Banach space with a metric d generated by the norm of E, and $Y = \bigcap \{V_n : 1, 2, ...\}$ where each $V_n \subset E$ is open. For $\varepsilon > 0$ and $F \in 2^E$, we use $B_{\varepsilon}(F)$ to denote the ε -neighbourhood of F in (E, d). If $\varphi : X \to 2^E$, we shall, for convenience, denote by $\overline{\varphi} : X \to \mathcal{F}(E)$ the mapping defined by $\overline{\varphi}(x) = \overline{\varphi(x)}$ (i.e. the closure of $\varphi(x)$ in E).

Lemma 2.1. Let X be a topological space such that, for every l.s.c. mapping $\varphi : X \to \mathcal{F}_c(Y)$ and every n, there is a continuous selection $f : X \to V_n$ for $\overline{\varphi}$. Then every l.s.c. mapping $\varphi : X \to \mathcal{F}_c(Y)$ admits a single-valued continuous selection.

PROOF: Suppose $\varphi: X \to \mathcal{F}_c(Y)$ is l.s.c.. By our hypotheses, there is a continuous selection $f_1: X \to V_1$ for $\overline{\varphi}$. Define a continuous mapping $r_1: X \to (0, 1]$ by letting

$$r_1(x) = \min\{d(f_1(x), E \setminus V_1), 1\}, x \in X$$

By induction, we shall construct a sequence $\{f_n\}$ of continuous selections $f_n : X \to V_n$ for $\bar{\varphi}$ and a sequence $\{r_n\}$ of continuous maps $r_n : X \to (0, 1]$ such that, for every n and $x \in X$,

- (1) $r_n(x) \leq \min\{d(f_k(x), E \setminus V_k) : k \leq n\}$, and
- (2) $d(f_{n+1}(x), f_n(x)) \le 3^{-n} \cdot r_n(x).$

This will be sufficient because, by (2), $\{f_n\}$ is a Cauchy sequence. So, it must converge to some continuous $f: X \to E$. By (1) and [8, Lemma 6.1.1], $f(x) \notin \bigcup \{E \setminus V_n : n = 1, 2, \ldots\}$. That is, $f: X \to Y$ and therefore f is a selection for φ .

So, it only remains to define these f_n and r_n . Since f_1 and r_1 were defined above, we may suppose that f_1, \ldots, f_n and r_1, \ldots, r_n have already been defined, and we must define f_{n+1} and r_{n+1} . Define a set-valued mapping $\varphi_n : X \to \mathcal{F}_c(Y)$ by letting

$$\varphi_n(x) = \overline{B_{3^{-n} \cdot r_n(x)}(f_n(x)) \cap \varphi(x)}^Y, \quad x \in X.$$

Note, by [7, Lemma 2.2] and [2, Proposition 2.3], φ_n is l.s.c.. Then, by our hypotheses, there is a continuous $f_{n+1}: X \to V_{n+1}$ such that $f_{n+1}(x) \in \overline{\varphi_n(x)} \subset \overline{\varphi(x)}$ for every $x \in X$. Since $f_{n+1}(x) \in \overline{B_{3^{-n} \cdot r_n(x)}(f_n(x))}$, (2) holds. Defining finally $r_{n+1}: X \to (0,1]$ by $r_{n+1}(x) = \min\{d(f_{n+1}(x), E \setminus V_{n+1}), r_n(x)\}$, we finish the proof.

Corollary 2.2. Let Y be such that, for every n and every $K \subset Y$ compact, $\overline{\operatorname{conv}(K)} \cap V_n$ is convex. Then every l.s.c. $\varphi : X \to \mathcal{F}_c(Y)$, with X a paracompact space, admits a single-valued continuous selection.

PROOF: Suppose $\varphi: X \to \mathcal{F}_c(Y)$ is l.s.c. and *n* is a positive integer. Define first a set-valued mapping $\psi: X \to 2^E$ by $\psi(x) = V_n$ for every $x \in X$. Next, define $\theta: X \to 2^E$ by $\theta(x) = \overline{\varphi}(x) \cap \psi(x)$. Notice, that ψ has an open graph in $X \times E$ and $\theta(x)$ is convex and non-empty for all $x \in X$. Then, by [5, Theorem 9.1], θ admits a continuous selection f. That is, there exists a continuous $f: X \to V_n$ which is a selection for $\overline{\varphi}$. Applying finally Lemma 2.1, we complete the proof.

3. Proof of Theorem 1.1.

In preparation for the proof of Theorem 1.1 we begin by proving the following

Lemma 3.1. Let X be a paracompact space, (E, d) a metric space, $\varphi : X \to 2^E$ l.s.c., and let θ be an usco selection for φ . Then, for every open cover \mathcal{W} of X and every map $\delta : X \to (0, +\infty)$ there exist

- (1) a locally-finite open cover \mathcal{U} of X,
- (2) a map $u: \mathcal{U} \to \mathcal{W}$, and
- (3) a map $\varkappa : \mathcal{U} \to X$,

such that

(a)
$$\mathcal{U}' \subset \mathcal{U}$$
 and $\bigcap \mathcal{U}' \neq \emptyset$ implies $\varkappa(\mathcal{U}') \subset \bigcap u(\mathcal{U}') = \bigcap \{u(U) : U \in \mathcal{U}'\},$
(b) $\theta(z) \subset B_{\delta(\varkappa(U))}(\theta(\varkappa(U))), z \in U \in \mathcal{U},$
(c) $\theta(\varkappa(U)) \subset B_{\delta(\varkappa(U))}(\varphi(z)), z \in U \in \mathcal{U}.$

PROOF: Since X is a paracompact space, by [3, Lemma 11.4], there is an open cover \mathcal{V} of X and a map $v: \mathcal{V} \to \mathcal{W}$ such that

(*)
$$\mathcal{V}' \subset \mathcal{V} \text{ and } \bigcap \mathcal{V}' \neq \emptyset \text{ implies } \bigcup \mathcal{V}' \subset \bigcap v(\mathcal{V}').$$

Define, in a natural fashion, a map $S : X \to \mathcal{V}$ such that, for every $x \in X$, $x \in S(x)$. Next, for every $x \in X$, we set

$$G_x = \{ z \in S(x) \cap \theta^{\#}(B_{\delta(x)}(\theta(x))) : \theta(x) \subset B_{\delta(x)}(\varphi(x)) \}.$$

Since $\theta(x)$ is compact and since φ is l.s.c., by [3, Lemma 11.3], G_x is a neighbourhood of x. So, $\{G_x : x \in X\}$ is an open cover of X refining \mathcal{V} . Let, then, \mathcal{U} be a locally-finite open cover of X which refines $\{G_x : x \in X\}$. For every $U \in \mathcal{U}$ pick a fixed point $\varkappa(U) \in X$ such that $U \subset G_{\varkappa(U)}$, and then define $u : \mathcal{U} \to \mathcal{W}$ by

$$u(U) = v(S(\varkappa(U))), \quad U \in \mathcal{U}.$$

These \mathcal{U} , u and \varkappa satisfy all our requirements. In fact, we have only to check (a). Suppose $\mathcal{U}' \subset \mathcal{U}$ with $\bigcap \mathcal{U}' \neq \emptyset$. Then $\varkappa(U) \in S(\varkappa(U))$ and $U \subset G_{\varkappa(U)} \subset S(\varkappa(U)), U \in \mathcal{U}'$, implies $\varkappa(\mathcal{U}') \subset \bigcup \{S(\varkappa(U)) : U \in \mathcal{U}'\} \subset \bigcap \{v(S(\varkappa(U))) : U \in \mathcal{U}'\} = \bigcap u(\mathcal{U}')$ (see (*)), which completes the proof. \Box

Having established Lemma 3.1, we now proceed to the proof of Theorem 1.1. In fact, we have only to prove (b) \rightarrow (a). Suppose $Y = \bigcap \{V_n : n = 1, 2, ...\}$, where each $V_n \subset E$ is open. Pick a fixed n, and let $\varphi : X \to \mathcal{F}_c(Y)$ be l.s.c.. By virtue of Lemma 2.1, it suffices to construct a continuous selection $f : X \to V_n$ for $\overline{\varphi}$. Towards this end, let θ be a convex-valued usco selection for φ , which exists by virtue of (b).

Define $\varrho : X \to (0, +\infty)$ by $\varrho(x) = d(\theta(x), E \setminus V_n), x \in X$. Note that this definition is correct because $\theta(x) \subset \varphi(x) \subset V_n$ and because $\theta(x)$ is compact. Next, let \mathcal{W} be a locally-finite open cover of X and let $\eta : \mathcal{W} \to X$ be such that

(3.2)
$$\theta(x) \subset B_{\varrho(\eta(W))}(\theta(\eta(W))) \subset V_n \text{ for every } x \in W \in \mathcal{W}.$$

Such \mathcal{W} and η can be obtained by using, for instance, Lemma 3.1.

Next, define another map $\delta: X \to (0, +\infty)$ by

$$\delta(x) = \min\left\{\frac{1}{2}d(\theta(x), E \setminus B_{\varrho(\eta(W))}(\theta(\eta(W)))) : W \in \mathcal{W}, \ x \in W\right\}, \quad x \in X.$$

This is possible because θ is compact-valued and W is locally-finite. Let us note the following property of δ :

(3.3)
$$B_{2\delta(x)}(\theta(x)) \subset B_{\varrho(\eta(W))}(\varrho(\eta(W)))$$
 for every $x \in W \in \mathcal{W}$.

Let now $\mathcal{U}, u : \mathcal{U} \to \mathcal{W}$ and $\varkappa : \mathcal{U} \to X$ be as in Lemma 3.1 (applied with these particular $\varphi, \theta, \mathcal{W}$ and δ). Because of the paracompactness of X, there is an open cover $\{G_U : U \in \mathcal{U}\}$ of X such that $\overline{G_U} \subset U$ for every $U \in \mathcal{U}$. Whenever $U \in \mathcal{U}$, we define a set-valued mapping $\varphi_U : \overline{G_U} \to 2^E$ by letting

$$\varphi_U(z) = \overline{\varphi(z) \cap B_{\delta(\varkappa(U))}(\theta(\varkappa(U)))}, \quad z \in \overline{G_U}.$$

The following holds:

(3.4)
$$\varphi_U(z) \in \mathcal{F}_c(E)$$

Indeed, by (c) of Lemma 3.1, $\varphi(z) \cap B_{\delta(\varkappa(U))}(\theta(\varkappa(U))) \neq \emptyset$. Then, (3.4) follows from the convexity of $\varphi(z)$ and $\theta(\varkappa(U))$.

- (3.5) $\varphi_U(z) \subset \overline{\varphi}(z)$, which follows immediately from the definition of φ_U .
- (3.6) φ_U is l.s.c. because $\varphi|\overline{G_U}$ is l.s.c. and because $B_{\delta(\varkappa(U))}(\theta(\varkappa(U)))$ is open (see, [2, Propositions 2.3 and 2.4]).

Now, by (3.4) and (3.6), making use of [2, Theorem 3.2"], we get a continuous selection $f_U : \overline{G_U} \to E$ for φ_U . Let $\{g_U : U \in \mathcal{U}\}$ be a partition of unity on X indexed-subordinated to $\{G_U : U \in \mathcal{U}\}$. We finally define $f : X \to E$ by letting

$$f(x) = \sum \{g_U(x) \cdot f_U(x) : U \in \mathcal{U}\},\$$

and let us check that f is the required one. Since φ is convex-valued, by (3.5), f is a selection for $\overline{\varphi}$. So, it only remains to check that $f(X) \subset V_n$. Towards this end, let $x \in X$. Set $\mathcal{U}_x = \{U \in \mathcal{U} : x \in G_U\}$. Note that $g_U(x) \neq 0$ implies $U \in \mathcal{U}_x$. Pick a fixed $W \in u(\mathcal{U}_x)$. Then, by (a) of Lemma 3.1, we get that

$$\varkappa(\mathcal{U}_x) \subset \bigcap u(\mathcal{U}_x) \subset W.$$

Together with (3.3), this leads us to the inclusions

$$f_U(x) \in \overline{B_{\delta(\varkappa(U))}(\theta(\varkappa(U)))} \subset B_{2 \cdot \delta(\varkappa(U))}(\theta(\varkappa(U))) \subset \\ \subset B_{\varrho(\eta(W))}(\theta(\eta(W))), \quad U \in \mathcal{U}_x \,.$$

Therefore,

$$f(x) = \sum \{g_U(x) \cdot f_U(x) : U \in \mathcal{U}\} =$$

=
$$\sum \{g_U(x) \cdot f_U(x) : U \in \mathcal{U}_x\} \subset B_{\varrho(\eta(W))}(\theta(\eta(W))) \subset V_n.$$

Thus, the proof of Theorem 1.1 is completed.

V.G. Gutev

References

- [1] Gutev V., Open mappings looking like projections, Set-valued Analysis 1 (1993), 247–260.
- [2] Michael E., Continuous selections I, Ann. of Math. 63 (1956), 361-382.
- [3] _____, Continuous selections II, Ann. of Math. 64 (1956), 562–580.
- [4] _____, A theorem on semi-continuous set-valued functions, Duke Math. J. 26:4 (1959), 647 - 656.
- [5] _____, Continuous selections avoiding a set, Top. Appl. 28 (1988), 195–213.
 [6] _____, in Open problems in Topology, J. van Mill and J.M. Reed (Editors), Chapter 17, 272–278, North-Holland, Amsterdam 1990.
- _____, Some refinements of a selection theorem with 0-dimensional domain, Fund. Math. [7] _____ **140** (1992), 279–287.
- [8] J. van Mill, Infinite Dimensional Topology, Prerequisites and Introduction, North-Holland, Amsterdam, 1989.
- [9] Nedev S., Selection and factorization theorems for set-valued mappings, Serdica 6 (1980). 291 - 317.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOFIA, SOFIA, BULGARIA mailing address: INSTITUTE OF MATHEMATICS, BULGARIAN ACADEMY OF SCIENCES, 1090 Sofia, Bulgaria

(Received May 28, 1993)