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On the Jacobson radical of strongly group graded rings

A.V. Kelarev

Abstract. For any non-torsion group G with identity e, we construct a strongly G-graded
ring R such that the Jacobson radical J(Re) is locally nilpotent, but J(R) is not locally
nilpotent. This answers a question posed by Puczy lowski.
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Several interesting results of ring theory establish the local nilpotency of the
Jacobson radical of some ring constructions (cf. [9]). In this paper we consider
an analogous question for strongly group graded rings. Let G be a group. An

associative ring R =
⊕

g∈G

Rg is said to be strongly G-graded if RgRh = Rgh for

all g, h ∈ G. Strongly group graded rings have been intensively investigated for
several years (cf., for example, [12],[15],[20]). In [18] the following question was
posed: is it true that for every free group G of rank ≥ 2 the Jacobson radical
of each strongly G-graded ring is locally nilpotent? (As it is noted in [18], the
question is also connected with [14], Problem 24, and with a problem on the local
nilpotency of the Jacobson radical of a skew polynomial ring, cf. [19].) It follows
from the results of [6] that the answer is positive in the case when Re satisfies the
ascending chain condition for left annihilators, where e is the identity of G. It is
also known that the answer is positive for group rings of free groups of rank ≥ 2
(cf. [18]). The answer to the analogous question for the rings of polynomials in
at least two non-commuting variables is also positive (cf. [18]).
We shall show that in general the answer is negative. Namely, for an arbitrary

group G, we construct a strongly G-graded ring R such that the Jacobson radical
J(R) is not nil. On the other hand, we shall prove that, for the positive answer
to the question above, it suffices to assume that J(Re) is left T -nilpotent. It will
also be shown that the weaker condition that J(Re) is equal to the Baer radical
B(Re), is not sufficient for the local nilpotency of J(R).
Our proofs are based on the previous results of [7], [10] and [21].

Theorem 1. For each group G, there exists a strongly G-graded ring R such
that the Jacobson radical J(R) is not nil.
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Lemma 1. Let R =
⊕

g∈G

Rg be a G-graded ring, and let h ∈ G. Then there

exists a G-graded ring Q =
⊕

g∈G

Qg such that Q ⊇ R, J(Q) ⊇ J(R), Qg ⊇ Rg and

QgQh ⊇ Rgh for each g ∈ G.

Proof: Let Z be the ring of integers, R1 the ring R with identity 1 adjoined,
Z[x, y] the ring of polynomials with non-commuting variables x, y. Denote by W
the free product of R and Z[x, y]. For w ∈ W , let 〈w〉 be the subring generated
in W by w. Put M = R+Ry+xR+ xRy, S =M + 〈xy〉+ 〈xy〉x+ y〈xy〉+ 〈yx〉.
To simplify the notation, we shall denote by the same letters elements and their
images in the quotient rings which will be introduced. If we factor out the ideal
generated in W by x2, y2, yR, Rx and all r − yxr, r − ryx, where r runs over R,
then the resulting quotient ring Q is equal to Z + 〈x〉 + 〈y〉 + S. Clearly, S and
M are ideals of Q. It is routine to verify that

M =

[

R Ry
xR xRy

]

and

S/M =

[

〈xy〉 〈xy〉x
y〈xy〉 〈yx〉

]

are Morita contexts (cf. [1]). Further, R, xRy ∼= R and Ry, xR ∼= R0, where R0

stands for the ring with zero multiplication defined on the additive group of R.
Since 〈xy〉 and 〈yx〉 are semiprime rings and S/M satisfies the left annihilator con-
dition in the sense of [21], then [21], Lemma 2.6, implies that S/M is semiprime.
Therefore J(S) = J(M).
Take any q ∈ J(Q), say q = a + bx + cy + s, where a, b, c ∈ Z, s ∈ S. If

a 6= 0, then qxy /∈ M and so 0 6= qxy ∈ J(S/M), a contradiction. If a = 0, b 6= 0,
then 0 6= qy ∈ J(S/M) gives a contradiction. Finally, if a = b = 0, c 6= 0, then
0 6= qx ∈ J(S/M), a contradiction again. Therefore a = b = c = 0, that is
q ∈ J(M). Thus J(Q) = J(M).
Denote by I the ideal generated in Q by J(R). Then

I =

[

J(R) J(R)y
xJ(R) xJ(R)y

]

.

Clearly, I is the largest ideal of M satisfying the property that I ∩R ⊆ J(R) and
I ∩ xRy ⊆ J(xRy) = xJ(R)y. In view of [10], Corollary 1, and [11], Corollary 6,
we conclude I = J(M). Hence I = J(Q). In particular, J(Q) ⊇ J(R).
To make Q a G-graded ring, we put x ∈ Qh, y ∈ Qh−1 , Z ⊆ Qe, and then the

grading naturally comes from R. For example, xRgy ⊆ Qhgh−1h ⊆ Qhg. Since

Rghy ⊆ Qg and x ∈ Qh, we get QgQh ⊇ (Rghy)x = Rgh, as required. �
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Lemma 2. Let R =
⊕

g∈G

Rg be a G-graded ring. Then there exists a G-graded

ring Q =
⊕

g∈G

Qg such that Q ⊇ R, J(Q) ⊇ J(R), Qg ⊇ Rg and QgQh ⊇ Rgh for

all g, h ∈ G.

Proof: Denote by R(h) the ring constructed by R and h in Lemma 1. We may
order the set G, identify the elements of G with ordinal numbers and define an

ascending chain of G-graded rings Tα by putting T1 = R(1), Tα = (
⋃

β<α

Tβ)
(α).

The transfinite induction shows that J(Tα) ⊇ J(R) in view of Lemma 1. However,
G = {α|α ≤ τ} for some τ . Hence a straightforward verification shows that

Q =
⋃

α≤τ

Tα is the desired ring. �

Lemma 3. Let R =
⊕

g∈G

Rg be a G-graded ring. Then there exists a strongly

G-graded ring Q =
⊕

g∈G

Qg such that Q ⊇ R, J(Q) ⊇ J(R), and Qg ⊇ Rg for all

g ∈ G.

Proof: Denote by R′ the ring constructed in Lemma 2, and put R[1] = R′,

R[n+1] = (R[n])′. Then it is routine to verify that Q =

∞
⋃

n=1

R[n] is the required

example. �

Proof of Theorem 1 easily follows from Lemma 3 if we take any quasi-
regular but not nil ring R and make it G-graded with Re = R.
Now we shall give a new condition sufficient for the Jacobson radical of a ring

strongly graded by a free group to be locally nilpotent. In fact, our condition
is applicable not only to free groups, but also to all u.p.-groups. A group G is
called a unique product (u.p.-)group if, for any non-empty subsets X, Y of S, there
exists at least one element uniquely presented in the form xy, where x ∈ X , y ∈ Y
(cf. [16], § 13.1). The radicals of rings graded by u.p.-groups were considered, in
particular, in [6] and [7]. A ring R is said to be left T -nilpotent if, for every
sequence x1, x2, . . . ∈ R, there exists n such that x1 . . . xn = 0. The class of left
T -nilpotent rings lies strictly between the class of nilpotent rings and the Baer
radical class (cf. [5]).

Theorem 2. Let G be a u.p.-group, R =
⊕

g∈G

Rg a strongly G-graded ring. If

J(Re) is left T -nilpotent, then J(R) is locally nilpotent.

Proof: Given that G is a u.p.-group, it follows from [7], Theorem 2.2, that the

Levitzky radical L(R) is homogeneous, i.e. L(R) =
⊕

g∈G

L(R)∩Rg . Since R/L(R)
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is strongly G-graded, we may assume that from the very beginning L(R) = 0.
Suppose to the contrary that J(R) 6= 0. For r ∈ R, g ∈ G, denote by rg the

projection of r on Rg, and put supp (r) = {g ∈ G|rg 6= 0}. Let l(r) = | supp (r)|.
Choose a non-zero element s in J(R) with minimal length l(s), and take any h ∈
supp (s). If shRh−1 = 0, then shRh−1R = 0, and so sh ∈ A = {r ∈ R|rR = 0}.
However, A ⊆ L(R) = 0, because A2 = 0. Thus shRh−1 6= 0. Therefore the
set P = {re|r ∈ J(R), l(r) = l(s)} is non-zero. Given that G is a u.p.-group,
Theorem 3.2 of [7] tells us that P ⊆ J(Re). Denote by I the ideal generated in R
by P . We claim that I is left T -nilpotent.
Suppose that there exists a sequence of elements x1, x2, . . . of I such that

x1 . . . xn 6= 0 for all n. Each xi is a finite sum of elements of the form areb, where
r ∈ J(R), l(r) = l(s), a and b are homogeneous elements of R1. We may assume
that all b belong to R. (Indeed, if b ∈ Z, then we can replace xi by xixi+1, and
consider the sequence x1, . . . , xixi+1, xi+2, . . . .) Denote by S(xi) the set of such
summands of xi. For arbitrarily large n we can pick y1 ∈ S(x1), . . . , yn ∈ S(xn)
such that y1 . . . yn 6= 0. Since all the S(xi) are finite, a standard argument shows
that there exists an infinite sequence y1, y2, . . . where yi ∈ S(xi) and y1 . . . yn 6= 0

for all n. Then yi = a(i)r
(i)
e b(i) where r(i) ∈ J(R), l(r(i)) = l(s), a(i) and b(i) are

homogeneous elements ofR1, and b(i) ∈ R. Given thatR is strongly graded, b(2) ∈

R, and G is a group, it follows that b(2) = c(2)d(2) for some homogeneous elements

c(2), d(2) such that b(1)a(2)r
(2)
e c(2) ∈ Re. Similarly, for any i ≥ 3, there exist

homogenous elements c(i), d(i) such that b(i) = c(i)d(i) and d(i−1)a(i)r
(i)
e c(i) ∈

Re. Let z1 = r
(1)
e , z2 = b(1)a(2)r

(2)
e c(2), and zi = d(i−1)a(i)r

(i)
e c(i) for i ≥ 3.

Then, z1, z2, z3, . . . ∈ P . Since J(Re) is left T -nilpotent and contains P , we get

z1 . . . zn = 0 for some n > 1. Hence y1 . . . yn = a(1)z1 . . . znd(n) = 0.
This contradiction shows that I is left T -nilpotent, and so I ⊆ L(R) = 0.

Therefore J(R) = 0, which completes the proof. �

Let P denote the set of positive integers. The well-known Golod’s example of
a nil but not locally nilpotent ring R is P-graded (cf. [16]). Therefore one cannot
replace strongly graded rings by arbitrary graded rings in Theorem 2. Now we
shall show that the left T -nilpotence cannot be weakened to Baer radicalness,
either.

Theorem 3. Let G be a non-periodic group with identity e. Then there exists
a strongly G-graded ring Q such that J(Qe) = B(Qe) but J(Q) 6= L(Q).

Proof: Let R be the Golod ring. Since R is P-graded, R can easily be made G-
graded with Re = 0. Take any h ∈ G and denote by Q, S, M the rings constructed
by R as in the proof of Lemma 1. It has been proved that J(Q) = J(M). The
same reasoning shows that B(Q) = B(M). Further,

M ∼=

[

R Ry
xR xRy

]

,



On the Jacobson radical of strongly group graded rings 579

whence

Me =

[

Re Rhy
xRh−1 xRey

]

.

Evidently Re and xRey are isomorphic to Re which satisfies J(Re) = B(Re),
because it is zero. It follows from [10], Corollary 1, and [11], Corollary 6, that
J(Me) is equal to the largest ideal I ofMe with the property that I ∩Re ⊆ J(Re)
and I ∩ xRey ⊆ J(xRey). Besides, [10], Corollary 3, and [11], Corollary 6, imply
that B(Me) is the largest ideal of Me with the property that I ∩ Re ⊆ B(Re)
and I ∩ xRey ⊆ B(xRey). Therefore J(Me) = B(Me). Further, Qe/Se

∼= Z and
Se/Me = 〈xy〉 + 〈yx〉 imply J(Qe) = B(Me). Thus J(Qe) = B(Qe). It follows
from [21], Lemma 2.3, that J(Qe) ⊇ J(Re). This and transfinite induction show
that all rings Q obtained from R in Lemmas 2 and 3 satisfy J(Qe) = B(Qe).
However J(Q) is not locally nilpotent, because J(Q) ⊇ J(R). Thus Q is the
required example. �

Note that in the opposite case, where G is locally finite, it follows from the re-
sults of [2] and [3] that J(Re) = L(Re) implies J(R) = L(R) (cf. [13], Lemma 1.1).
Analogous results were obtained in [2] for the more general case of rings graded
by locally finite semigroups. A sufficient condition for the Jacobson radical of an
algebra graded by a finite group to be nilpotent follows from the main theorem
of [17].
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[12] Năstăsescu C., Strongly graded rings of finite groups, Commun. Algebra 11 (1983),
1033–1071.
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