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Boundary value problems for higher

order ordinary differential equations

Armando Majorana, Salvatore A. Marano

Abstract. Let f : [a, b] × R
n+1 → R be a Carathéodory’s function. Let {th}, with

th ∈ [a, b], and {xh} be two real sequences. In this paper, the family of boundary value
problems(

x(k) = f
�
t, x, x′, . . . , x(n)

�
x(i)(ti) = xi , i = 0, 1, . . . , k − 1

(k = n+ 1, n+ 2, n+ 3, . . . )

is considered. It is proved that these boundary value problems admit at least a solution
for each k ≥ ν, where ν ≥ n+1 is a suitable integer. Some particular cases, obtained by
specializing the sequence {th}, are pointed out. Similar results are also proved for the
Picard problem.

Keywords: higher order ordinary differential equations, Nicoletti problem, Picard
problem

Classification: 34B15, 34B10, 34A12

1. Introduction

In this paper we shall consider the ordinary differential equation

x(k) = f
(

t, x, x′, . . . , x(n)
)

where k ≥ n + 1. The function f: [a, b] × R
n+1 → R will be assumed to verify

Carathéodory’s type conditions. We shall be concerned with the existence of
solutions of this differential equation satisfying the boundary values

x(i)(ti) = xi , ti ∈ [a, b] , xi ∈ R , i = 0, 1, . . . , k − 1

or

x(ti) = xi , a ≤ t0 < t1 < · · · < tk−1 ≤ b , xi ∈ R , i = 0, 1, . . . , k − 1 .

The question of the existence of solutions of the previous boundary value prob-
lems was widely investigated (see, for instance, [2], [3], [8] and the references given
therein). To the best of our knowledge, the most of the existence results assume
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growth conditions on the function f(t, x, x′, . . . , x(n)) with respect to the vari-

ables x, x′, . . . , x(n) or require that (b − a) is suitably small. When one attempts
to establish the existence in the large of the solutions of boundary value problems,
that is, existence without restricting the length of the smallest interval containing
the points ti, many difficulties arise.
In this paper no condition on (b − a) neither further assumptions on f are

imposed; existence theorems are established provided that the order k is greater
than or equal to a suitable integer ν. Really, our assumptions also guarantee the
existence of solutions for every k ≥ ν.
To give a more precise idea of these features, we present a result which follows

immediately from Theorem 3 below, concerning the Cauchy problem.

Theorem A. Let {xh} be a real bounded sequence and α = suph≥0 |xh|. Then,
for every ̺ > α eb−a there exists an integer ν ≥ n+ 1 such that, for every k ≥ ν,
the problem

{

x(k) = f
(

t, x, x′, . . . , x(n)
)

x(i)(a) = xi , i = 0, 1, . . . , k − 1

has at least a solution uk with u
(k−1)
k

absolutely continuous in [a, b] and
‖uk‖Cn([a,b]) ≤ ̺.

2. Notations and preliminary results

Let [a, b] be a compact real interval andm a positive integer. In order to obtain
our results, we introduce two classes of polynomials and describe some of their
properties, which will be useful in the next section.
The Abel-Gontcharoff polynomials [10] constitute the first family.
Let t0, t1, . . . , tm−1 m be arbitrary parameters belonging to [a, b]; we define,

for every t ∈ [a, b],

(2.1) Gm(t; t0, t1, . . . , tm−1) =

∫ t

t0

ds1

∫ s1

t1

ds2 · · ·
∫ sm−1

tm−1

dsm ,

and put G0(t) = 1. Clearly, Gm(t; t0, t1, . . . , tm−1) is an m-degree polynomial
in t. It is immediate to verify that, if h ≤ m,

(2.2) DhGm(t; t0, t1, . . . , tm−1) = Gm−h(t; th, th+1, . . . , tm−1) ;

then DhGm(th; t0, t1, . . . , tm−1) = 0 for h = 0, 1, . . . , m − 1. By the definition
(2.1), it is easy to prove that the following identities

Gm(t; t0, t1, . . . , tm−1) = Gm(t+ τ ; t0 + τ, t1 + τ, . . . , tm−1 + τ) ,(2.3)

Gm(λt;λt0, λt1, . . . , λtm−1) = λmGm(t; t0, t1, . . . , tm−1)(2.4)
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hold for all real numbers τ and λ. Useful bounds are given for these polynomials
introducing the nonnegative functions γ0(t) = 1 and, by recurrence,

γm(t; t0, t1, . . . , tm−1) =

∣

∣

∣

∣

∫ t

t0

γm−1(s; t1, t2, . . . , tm−1) ds

∣

∣

∣

∣

.

Since,
|Gm(t; t0, t1, . . . , tm−1)| ≤ γm(t; t0, t1, . . . , tm−1) ,

we are interested in finding upper bounds for the function γm. The following
significative inequality was proved by Gontcharoff (see, for instance, [10, p. 38])

(2.5) γm(t; t0, t1, . . . , tm−1) ≤
1

m!
(|t − t0|+ σm−1)

m ,

where

σ0 = 0, σm−1 =

m−2
∑

h=0

|th+1 − th| , m ≥ 2 .

Another inequality, which requires more details, will be recalled in the sequel.

The Lagrange polynomials constitute the other family. Assuming now that
a ≤ t0 < t1 < · · · < tm−1 ≤ b, one defines, for every t ∈ [a, b] and 0 ≤ h ≤ m − 1,

Lh(t; t0, t1, . . . , tm−1)

=
(t − t0)(t − t1) · · · (t − th−1)(t − th+1) · · · (t − tm−1)

(th − t0)(th − t1) · · · (th − th−1)(th − th+1) · · · (th − tm−1)
,

that is, the (m − 1)-degree polynomial satisfying

Lh(tj ; t0, t1, . . . , tm−1) =

{

0 if j 6= h

1 if j = h
.

We denote by Cm−1([a, b]) the space of all real-valued functions defined on
[a, b] having continuous derivatives up to the order m − 1 on [a, b]; the norm in
this space is given by

‖u‖Cm−1([a,b]) = max
0≤i≤m−1

[

max
t∈[a,b]

|u(i)(t)|
]

, u ∈ Cm−1([a, b]) .

The space of all real-valued functions u ∈ Cm−1([a, b]) such that u(m−1) is abso-
lutely continuous in [a, b], is denoted by Wm,1([a, b]).
Let u ∈ Wm,1([a, b]) and let x0, x1, . . . , xm−1 be m given real numbers such

that

(2.6) u(i)(ti) = xi , i = 0, 1, . . . , m − 1 .
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The function

σ(t) = u(t)−
m−1
∑

h=0

xhGh(t; t0, t1, . . . , th−1)

belongs toWm,1([a, b]) and satisfies the conditions σ(i)(ti) = 0 (i = 0, 1, . . . , m−1)
and σ(m)(t) = u(m)(t) almost everywhere in [a, b]. By the identities

∫ t

t0

ds1

∫ s1

t1

ds2 · · ·
∫ sm−1

tm−1

σ(m)(sm) dsm

=

∫ t

t0

ds1

∫ s1

t1

ds2 · · ·
∫ sm−2

tm−2

σ(m−1)(sm−1) dsm−1

=

∫ t

t0

ds1

∫ s1

t1

ds2 · · ·
∫ sm−3

tm−3

σ(m−2)(sm−2) dsm−2 = · · · = σ(t), t ∈ [a, b] ,

we can write

(2.7)

u(t) =

m−1
∑

h=0

xhGh(t; t0, t1, . . . , th−1)

+

∫ t

t0

ds1

∫ s1

t1

ds2 · · ·
∫ sm−1

tm−1

u(m)(s) ds .

Using (2.2), it follows that, for i < m,

u(i)(t) =
m−1
∑

h=i

xhGh−i(t; ti, ti+1, . . . , th−1)

+

∫ t

ti

dsi+1

∫ si+1

ti+1

dsi+2 · · ·
∫ sm−1

tm−1

u(m)(s)dsm .

This formula implies that the conditions (2.6) are included in (2.7).
In the particular case t0 = t1 = · · · = tm−1 = a, the identity (2.7) becomes the

Taylor’s formula

u(t) =

m−1
∑

h=0

(t − a)h

h!
xh +

1

(m − 1)!

∫ t

a

(t − s)m−1u(m)(s) ds .

Another interpolation formula is given when u ∈ Wm,1([a, b]) and verifies the
conditions

u(ti) = xi, i = 0, 1, . . . , m − 1 ,
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where t0 < t1 < · · · < tm−1 and xi (i = 0, 1, . . . , m−1) are assigned real numbers.
We have the identity

u(t) =

m−1
∑

h=0

[

xh − 1

(m − 1)!

∫ th

a
(th − s)m−1u(m)(s) ds

]

Lh(t; t0, t1, . . . , tm−1)

+
1

(m − 1)!

∫ t

a

(t − s)m−1u(m)(s) ds , t ∈ [a, b] .

(2.8)

3. Existence theorems

Let n be a nonnegative integer and f a real-valued function defined on [a, b]×
R

n+1. On R
n+1 we introduce the norm ‖z‖ = max0≤i≤n |zi|, where

z = (z0, z1, . . . , zn). We assume that f satisfies the Carathéodory’s conditions

(a1) the function t → f(t, z) is measurable for every z ∈ R
n+1;

(a2) the function z → f(t, z) is continuous for almost every t ∈ [a, b];
(a3) the function t → ϕ(t, ̺) = sup‖z‖≤̺ |f(t, z)| is integrable on [a, b] for every

̺ > 0.

We consider the ordinary differential equation

(3.1) x(k) = f
(

t, x, x′, . . . , x(n)
)

,

where k is an integer greater than n. Since f satisfies the assumptions (a1) and
(a2), it is reasonable to call a solution in [a, b] of the equation (3.1) a function

u ∈ W k,1([a, b]) such that

u(k)(t) = f
(

t, u(t), u′(t), . . . , u(n)(t)
)

almost everywhere in [a, b].

3.1 The Nicoletti problem.

The first result concerns the boundary value problem

(Ak)

{

x(k) = f
(

t, x, x′, . . . , x(n)
)

x(i)(ti) = xi , i = 0, 1, . . . , k − 1

where ti ∈ [a, b] and xi ∈ R (i = 0, 1, . . . , k − 1).
Theorem 1. Let f satisfy the assumptions (a1)–(a3). Let {th} and {xh} be two
real sequences, with th ∈ [a, b] for every h ≥ 0. If

(3.2) lim
h→∞

[

max
t∈[a,b]

γh(t; tn, tn+1, . . . , tn+h−1)

]

= 0
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and, for every k ≥ n+ 1,

(3.3) max
t∈[a,b]

∣

∣

∣

∣

∣

k−1
∑

h=i

xhGh−i(t; ti, ti+1, . . . , th−1)

∣

∣

∣

∣

∣

≤ M , i = 0, 1, . . . , n

for some constant M , then, for every ̺ > M , there exists an integer ν ≥ n + 1
such that the problem (Ak) admits at least a solution uk ∈ W k,1([a, b]) for all
k ≥ ν; moreover, ‖uk‖Cn([a,b]) ≤ ̺.

Proof: Let ̺ > M . Owing to the assumptions, there exists an integer ν ≥ n+1
such that, for all k ≥ ν,

(3.4) M + (b − a)n−i max
t∈[a,b]

γk−n−1(t; tn, tn+1, . . . , tk−2)

∫ b

a
ϕ(s, ̺) ds ≤ ̺ ,

i = 0, 1, . . . , n .

Fix k ≥ ν. Taking into account (2.7), one can simply check that the problem
(Ak) is equivalent to the problem

(3.5)

u(t) =

k−1
∑

h=0

xhGh(t; t0, t1, . . . , th−1)

+

∫ t

t0

ds1

∫ s1

t1

ds2 · · ·
∫ sk−1

tk−1

f
(

s, u(s), u′(s), . . . , u(n)(s)
)

ds ,

u ∈ Cn([a, b]).

It is convenient to define

u0(t) =

k−1
∑

h=0

xhGh(t; t0, t1, . . . , th−1)

and, for every u ∈ Cn([a, b]),

T (u)(t) = u0(t) +

∫ t

t0

ds1

∫ s1

t1

ds2 · · ·
∫ sk−1

tk−1

f
(

s, u(s), u′(s), . . . , u(n)(s)
)

ds ,

t ∈ [a, b] .

It is clear that T (u) ∈ Cn([a, b]) for every u ∈ Cn([a, b]). Since the problem (3.5)
now can be written as u = T (u), our aim is to find a fixed point of T in Cn([a, b]).

Let us indicate with B̺ the set
{

u ∈ Cn([a, b]) : ‖u‖Cn([a,b]) ≤ ̺
}

. We first show
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that T
(

B̺

)

⊆ B̺. Indeed, if u ∈ B̺, 0 ≤ i ≤ n and t ∈ [a, b], we have

∣

∣

∣
DiT (u)(t)

∣

∣

∣
≤

∣

∣

∣
u
(i)
0 (t)

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ t

ti

dsi+1

∣

∣

∣

∣

∣

∫ si+1

ti+1

dsi+2

∣

∣

∣

∣

∣

· · ·
∣

∣

∣

∣

∣

∫ sk−1

tk−1

f
(

s, u(s), u′(s), . . . , u(n)(s)
)

ds

∣

∣

∣

∣

∣

· · ·
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ M + γk−i−1(t; ti, ti+1, . . . , tk−2)

∫ b

a

ϕ(s, ̺) ds

≤ M + (b − a)n−i max
t∈[a,b]

γk−n−1(t; tn, tn+1, . . . , tk−2)

∫ b

a
ϕ(s, ̺) ds ≤ ̺ .

Then, by (3.4),
‖T (u)‖Cn([a,b]) ≤ ̺ .

Next, if u ∈ B̺ then

∣

∣Dn
[

T (u)(t′)− T (u)(t′′)
]∣

∣

≤
∣

∣

∣
u
(n)
0 (t

′)− u
(n)
0 (t

′′)
∣

∣

∣

+

∣

∣

∣

∣

∣

∫ t′′

t′
dsn+1 · · ·

∫ sk−1

tk−1

f
(

sk, u(sk), u
′(sk), . . . , u(n)(sk)

)

dsk

∣

∣

∣

∣

∣

≤
∣

∣

∣
u
(n)
0 (t

′)− u
(n)
0 (t

′′)
∣

∣

∣
+

∣

∣

∣

∣

∣

∫ t′′

t′
dsn+1

∣

∣

∣

∣

∣

· · ·
∣

∣

∣

∣

∣

∫ sk−1

tk−1

ϕ(sk, ̺) dsk

∣

∣

∣

∣

∣

· · ·
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

for every t′, t′′ ∈ [a, b]. Using the uniform continuity of the polynomial u
(n)
0 and

the absolute continuity of the integral, we obtain that the set
{

DnT (u) : u ∈ B̺

}

is equicontinuous in [a, b]. By the Ascoli-Arzelà Theorem (see, for instance, [7,
Theorem 54. IV]), it follows that the set T (B̺) is relatively compact in Cn([a, b]).

Finally we prove that the operator T is continuous in B̺. Let w ∈ B̺ and
{

wp

}

be a sequence in B̺ such that

lim
p→∞

∥

∥wp − w
∥

∥

Cn([a,b]) = 0 .

Since
∣

∣

∣
f

(

s, wp(s), w
′
p(s), . . . , w

(n)
p (s)

)∣

∣

∣
≤ ϕ(s, ̺)

for every p ≥ 0 and s ∈ [a, b], and

lim
p→∞

f
(

s, wp(s), w
′
p(s), . . . , w

(n)
p (s)

)

= f
(

s, w(s), w′(s), . . . , w(n)(s)
)
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almost everywhere in [a, b], by using the Lebesgue Dominated Convergence The-
orem, we obtain

(3.6) lim
p→∞

∫ b

a

∣

∣

∣
f

(

s, wp(s), w
′
p(s), . . . , w

(n)
p (s)

)

−

− f
(

s, w(s), w′(s), . . . , w(n)(s)
)
∣

∣

∣
ds = 0 .

Moreover, we have, for every t ∈ [a, b], 0 ≤ i ≤ n and p ≥ 0,
∣

∣

∣
DiT (wp)(t)− DiT (w)(t)

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ t

ti

dsi+1 · · ·
∫ sk−1

tk−1

f
(

s, wp(s), w
′
p(s), . . . , w

(n)
p (s)

)

ds

−
∫ t

ti

dsi+1 · · ·
∫ sk−1

tk−1

f
(

s, w(s), w′(s), . . . , w(n)(s)
)

ds

∣

∣

∣

∣

∣

≤ max
t∈[a,b]

γk−i−1(t; ti, ti+1, . . . , tk−2)

×
∫ b

a

∣

∣

∣
f

(

s, wp(s), w
′
p(s), . . . , w

(n)
p (s)

)

− f
(

s, w(s), w′(s), . . . , w(n)(s)
)
∣

∣

∣
ds .

Hence, from (3.6), it follows

lim
p→∞

∥

∥T (wp)− T (w)
∥

∥

Cn([a,b]) = 0 .

By the Schauder Fixed Point Theorem, there exists a function uk ∈ B̺ such that
uk = T (uk). This completes the proof. �

We think it useful to give some remarks to explain the assumptions of The-
orem 1. In the trivial case f(t, z) = 0, the problem (Ak) has, for each fixed
k ≥ n+ 1, a unique solution u0k, given by

u0k(t) =

k−1
∑

h=0

xhGh(t; t0, t1, . . . , th−1) , t ∈ [a, b] .

The family
{

u0k , k ≥ n+ 1
}

is equibounded in Cn([a, b]) if and only if (3.3) is
satisfied. Therefore, this assumption is necessary in order to require that the
problems (Ak) have an equibounded family of solutions.
In the sequel we shall show how, in some cases, the assumption (3.2) is verified

for particular choices of the point ti or if b−a < π/2. When b−a > π/2, we shall
prove that (3.2) is a necessary condition for the equiboundedness of the solutions
of (Ak) for arbitrary ti.
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3.2 Some particular cases.

A variety of special cases of the boundary value problem (Ak) is particularly
interesting. We examine some of them, specializing the sequence {th}.
3.2.1. If the sequence {th} is monotone, the inequality (2.5) implies

(3.7) γh(t; tn, tn+1, . . . , tn+h−1) ≤
2h

h!
(b − a)h ;

hence the assumption (3.2) is satisfied. Furthermore, for every k ≥ n+1, we have

(3.8)

max
t∈[a,b]

∣

∣

∣

∣

∣

k−1
∑

h=i

xhGh−i(t; ti, ti+1, . . . , th−1)

∣

∣

∣

∣

∣

≤
k−i−1
∑

j=0

∣

∣xi+j

∣

∣ max
t∈[a,b]

γj(t; ti, ti+1, . . . , ti+j−1)

≤
k−i−1
∑

j=0

∣

∣xi+j

∣

∣

2j

j!
(b − a)j , i = 0, 1, . . . , n .

Therefore we can state the following

Theorem 2. Let f satisfy the assumptions (a1)–(a3) and {xh} be a real sequence
such that ∞

∑

h=0

|xh+i|
2h

h!
(b − a)h ≤ M , i = 0, 1, . . . , n

for some constant M . Then, for every ̺ > M , there exists an integer ν ≥
n+ 1 such that the problem (Ak), with t0, t1, . . . , tk−1 monotone finite sequence

in [a, b], admits at least a solution uk ∈ W k,1([a, b]) for all k ≥ ν; moreover,
‖uk‖Cn([a,b]) ≤ ̺.

Proof: One can simply repeat the same arguments of Theorem 1, using now the
explicit bounds given in (3.7) and (3.8). We point out only that the integer ν is
furnished, for fixed ̺ > M , by the inequality

M + (b − a)k−i−1 2k−n−1

(k − n − 1)!

∫ b

a
ϕ(s, ̺) ds ≤ ̺ , i = 0, 1, . . . , n .

�

3.2.2. In the particular case a = t0 = t1 = . . . = tk−1, the inequality (2.5)
becomes

γh(t; tn, tn+1, . . . , tn+h−1) ≤
(b − a)h

h!
and, for i = 0, 1, . . . , n and k ≥ n+ 1, we obtain

max
t∈[a,b]

∣

∣

∣

∣

∣

k−1
∑

h=i

xhGh−i(t; ti, ti+1, . . . , th−1)

∣

∣

∣

∣

∣

≤
k−i−1
∑

j=0

∣

∣xi+j

∣

∣

(b − a)j

j!
.

So we have the following theorem, concerning the Cauchy problem.
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Theorem 3. Let f satisfy the assumptions (a1)–(a3) and {xh} be a real sequence
such that

∞
∑

h=0

|xh+i|
(b − a)h

h!
≤ M , i = 0, 1, . . . , n

for some constantM . Then, for every ̺ > M , there exists an integer ν ≥ n+1 such
that the problem (Ak), with ti = a, admits at least a solution uk ∈ W k,1([a, b])
for all k ≥ ν; moreover, ‖uk‖Cn([a,b]) ≤ ̺.

3.2.3. We now study the case when

|th − th−1| ≤ µ ≤ 1
e
for every positive integer h .

Using the inequality (2.5) and the Stirling’s formula (see, for instance, [1, p. 257]),
we get

γh(t; tn, tn+1, . . . , tn+h−1) ≤
[b − a+ µ(h − 1)]h

h!

≤ 1√
2πh

[

e
b − a

h
+ µe

h − 1
h

]h

≤ 1√
2πh

ee(b−a)

and

max
t∈[a,b]

∣

∣

∣

∣

∣

k−1
∑

h=i

xhGh−i(t; ti, ti+1, . . . , th−1)

∣

∣

∣

∣

∣

≤ |xi|+
k−i−1
∑

j=1

∣

∣xi+j

∣

∣

1√
2πj

[

e
b − a

j
+ µe

]j

.

Hence we can formulate the following

Theorem 4. Let f satisfy the assumptions (a1)–(a3) and {xh} be a real sequence
such that

|xi|+
∞
∑

h=1

|xh+i|
1√
2πh

[

e
(b − a)

h
+ µe

]h

≤ M , i = 0, 1, . . . , n ,

where µ ≤ 1
e andM are constants. Then, for every ̺ > M , there exists an integer

ν ≥ n+1 such that the problem (Ak), with |th − th−1| ≤ µ, for h = 1, 2, . . . , k−1,
admits at least a solution uk ∈ W k,1([a, b]) for all k ≥ ν; moreover,
‖uk‖Cn([a,b]) ≤ ̺.
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3.2.4. The last result is based on some inequalities obtained by Bernstein in [4],
[5] and Schoenberg in [9]. Using the identities (2.3) and (2.4), we obtain

Gm(t; t0, t1, . . . , tm−1) = Gm(t − a; t0 − a, t1 − a, . . . , tm−1 − a)

= (b − a)mGm

(

t − a

b − a
;
t0 − a

b − a
,
t1 − a

b − a
, . . . ,

tm−1 − a

b − a

)

;

hence, for arbitrary t, t0, t1, . . . , tm−1 (m ≥ 1), it follows (see [9, inequality (12)])
γm(t; t0, t1, . . . , tm−1) ≤ |Gm(b; a, b, a, . . . )| = (b − a)m |Gm(1; 0, 1, 0, . . . )|
= (b − a)m |Gm(0; 1, 0, 1, . . . )|

= (b − a)m

{ 1
m! |Em| if m is even

2m+1

(m+1)!

(

2m+1 − 1
)

|Bm+1| if m is odd
,

where Em and Bm+1 are the Euler and Bernoulli numbers respectively. A more
explicit bound is obtained taking into account the inequalities (see [1, p. 805])

2

(

2

π

)m+1 (

1− 1

3m+1 + 1

)

<
|Em|
m!

< 2

(

2

π

)m+1

, m even

2(m+ 1)!

(2π)m+1
< |Bm+1| <

2(m+ 1)!

(2π)m+1

(

1

1− 2−m

)

, m odd .

Indeed, we have

(3.9)

2

(

2

π

)m+1(

1− 1

2m+1

)

<
|Gm(b; a, b, . . . )|
(b − a)m

< 2

(

2

π

)m+1 (

1 +
1

2m+1 − 2

)

.

Because

max
t∈[a,b]

γh(t; tn, tn+1, . . . , tn+h−1) < 3

(

2

π

)h+1

(b − a)h

for every sequence {th} then, if b − a < π/2,

lim
h→∞

[

max
t∈[a,b]

γh(t; tn, tn+1, . . . , tn+h−1)

]

= 0 ,

that is the assumption (3.2) is always verified. Moreover,

max
t∈[a,b]

∣

∣

∣

∣

∣

k−1
∑

h=i

xhGh−i(t; ti, ti+1, . . . , th−1)

∣

∣

∣

∣

∣

≤ 3
k−i−1
∑

j=0

∣

∣xi+j

∣

∣

(

2

π

)j+1

(b − a)j , i = 0, 1, . . . , n .

Then, by means of the same arguments used in the previous proofs, one can verify
the following
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Theorem 5. Assume that b − a < π/2. Let f satisfy the hypotheses (a1)–(a3)
and {xh} be a real sequence such that

6

π

∞
∑

h=0

|xh+i|
[

2

π
(b − a)

]h

≤ M , i = 0, 1, . . . , n

for some constant M . Then, for every ̺ > M , there exists an integer ν ≥ n+ 1
such that the problem (Ak) admits at least a solution uk ∈ W k,1([a, b]) for all
k ≥ ν; moreover, ‖uk‖Cn([a,b]) ≤ ̺.

The constraint b − a < π/2 is not artificious, but it is related to the Abel-
Gontcharoff interpolation polynomials. In fact, (2.7) can be regarded as an inter-
polation formula, where the term

Rm(t; t0, t1, . . . , tm−1) =

∫ t

t0

ds1

∫ s1

t1

ds2 · · ·
∫ sm−1

tm−1

u(m)(s) ds

is the remainder. If u(m)(t) = 1 and t0 = a, t1 = b, t2 = a, . . . , then
Rm(t; t0, t1, . . . , tm−1) becomes Gm(t; a, b, a, . . . ). Hence, when b − a > π/2,
taking into account (3.9), it is immediate to see that maxt∈[a,b] |Rm(t; a, b, a, . . . )|
is great for large m.
The same constraint (b − a < π/2) appeared in a previous result (Theorem 1

of [6]) where a different technique, which avoids the use of the Abel-Gontcharoff
polynomials, was applied.
Finally we shall show that, when b− a > π/2, the condition (3.2) is in general

necessary in order to get the equiboundedness in Cn([a, b]) of the family {uk}.
To this aim, assume b − a > π/2 and consider the problem

(A1k)

{

x(k) = 1

x(i)(ti) = 0 , i = 0, 1, . . . , k − 1
where ti = a for i even and ti = b for i odd. Taking in mind the inequality (3.9),
it is easy to check that (3.2) does not hold. The problem (A1k) has, for each k ≥ 1,
a unique solution given by Gk(t; a, b, a, . . . ), t ∈ [a, b]. Again by (3.9), we obtain

lim
k→∞

max
t∈[a,b]

|Gk(t; a, b, a, . . . )| = lim
k→∞

2

(

2

π

)k+1

(b − a)k ;

so that the solutions of (A1k) are not equibounded because b − a > π/2.

3.3 The Picard problem.

The other main result concerns the Picard problem

(Bk)

{

x(k) = f
(

t, x, x′, . . . , x(n)
)

x(ti) = xi , i = 0, 1, . . . , k − 1
where a ≤ t0 < t1 . . . < tk−1 ≤ b and xi ∈ R (i = 0, 1, . . . , k − 1).
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Theorem 6. Let f satisfy the assumptions (a1)–(a3). Let {th} be an increasing
sequence in [a, b] and {xh} a real sequence such that for every k ≥ n+ 1

(3.10) max
t∈[a,b]

∣

∣

∣

∣

∣

Di
k−1
∑

h=0

xhLh(t; t0, t1, . . . , tk−1)

∣

∣

∣

∣

∣

≤ M , i = 0, 1, . . . , n

for some constant M . Then, for every ̺ > M , there exists an integer ν ≥ n+ 1
such that the problem (Bk) admits at least a solution vk ∈ W k,1([a, b]) for all
k ≥ ν; moreover, ‖vk‖Cn([a,b]) ≤ ̺.

Proof: Let ̺ > M . Owing to the assumptions, there exists an integer ν ≥ n+1
such that, for every k ≥ ν,

M +
(b − a)k−i−1

(k − i − 1)!

∫ b

a

ϕ(s, ̺) ds ≤ ̺ , i = 0, 1, . . . , n .

Let us fix k ≥ ν. From the identity (2.8) it follows that (Bk) is equivalent to the
problem

v(t) =

k−1
∑

h=0

[

xh − 1

(k − 1)!

∫ th

a

(th − s)k−1f
(

s, v(s), v′(s), . . . , v(n)(s)
)

ds

]

× Lh(t; t0, t1, . . . , tk−1)

(3.11)

+
1

(k − 1)!

∫ t

a

(t − s)k−1f
(

s, v(s), v′(s), . . . , v(n)(s)
)

ds ,

v ∈ Cn([a, b]).

We look for a solution v ∈ B̺, where B̺ is the same set previously defined. For
every t ∈ [a, b] and every v ∈ B̺, we set

v0(t) =

k−1
∑

h=0

xhLh(t; t0, t1, . . . , tk−1) ,

P (v)(t) = − 1

(k − 1)!

k−1
∑

h=0

Lh(t; t0, t1, . . . , tk−1)

×
∫ th

a

(th − s)k−1f
(

s, v(s), v′(s), . . . , v(n)(s)
)

ds

and

S(v)(t) = v0(t)+P (v)(t)+
1

(k − 1)!

∫ t

a

(t−s)k−1f
(

s, v(s), v′(s), . . . , v(n)(s)
)

ds .

So the equation (3.11) becomes v = S(v), v ∈ B̺. Since

P (v)(t) +
1

(k − 1)!

∫ t

a
(t − s)k−1f

(

s, v(s), v′(s), . . . , v(n)(s)
)

ds
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vanishes when t = ti (i = 0, 1, . . . , k − 1) and its k-order derivative is equal to

f
(

t, v(t), v′(t), . . . , v(n)(t)
)

for almost every t ∈ [a, b], by applying a lemma of

[11], we obtain
∣

∣

∣

∣

Di

[

P (v)(t) +
1

(k − 1)!

∫ t

a
(t − s)k−1f

(

s, v(s), v′(s), . . . , v(n)(s)
)

ds

]
∣

∣

∣

∣

≤ (b − a)k−i−1

(k − i − 1)!

∫ b

a

∣

∣

∣
f

(

s, v(s), v′(s), . . . , v(n)(s)
)
∣

∣

∣
ds

≤ (b − a)k−i−1

(k − i − 1)!

∫ b

a
ϕ(s, ̺) ds , i = 0, 1, . . . , n , t ∈ [a, b] .

Therefore, by the assumption (3.10), we have

∣

∣

∣
Di [S(v)(t)]

∣

∣

∣
≤ M +

(b − a)k−i−1

(k − i − 1)!

∫ b

a

ϕ(s, ̺) ds ≤ ̺ , i = 0, 1, . . . , n , t ∈ [a, b] ,

that is S(B̺) ⊆ B̺. To prove that S(B̺) is relatively compact in Cn([a, b]),

it is sufficient to show that the set
{

DnS(v) : v ∈ B̺

}

is equicontinuous. This
is achieved immediately, noticing that Dn [v0(t) + P (v)(t)] is a polynomial with
equibounded coefficients as v ∈ B̺, and using the inequality

∣

∣

∣

∣

∣

∫ t′

a

(t′ − s)k−n−1f
(

s, v(s), v′(s), . . . , v(n)(s)
)

ds

−
∫ t′′

a
(t′′ − s)k−n−1f

(

s, v(s), v′(s), . . . , v(n)(s)
)

ds

∣

∣

∣

∣

∣

≤ (b − a)k−n−1

∣

∣

∣

∣

∣

∫ t′′

t′
ϕ(s, ̺) ds

∣

∣

∣

∣

∣

+

∫ b

a

∣

∣

∣
(t′ − s)k−n−1 − (t′′ − s)k−n−1

∣

∣

∣
ϕ(s, ̺) ds , t′, t′′ ∈ [a, b] .

The continuity in B̺ of the operator S can be established by means of the same
arguments which we have used in the proof of Theorem 1. Owing to (3.11),
the existence of a solution of the problem (Bk) is now obtained by applying the
Schauder Fixed Point Theorem to the operator S. �

The hypothesis (3.10) is satisfied in the significative case (see [2, Corollary 9.8])

xi = g(ti), with g ∈ C∞([a, b]) and maxt∈[a,b]

∣

∣

∣
g(j)(t)

∣

∣

∣
≤ µ (j = 0, 1, 2, . . . ) for

some constant µ. In fact, if k ≥ n+ 1, then the function

g(t)−
k−1
∑

h=0

g(th)Lh(t; t0, t1, . . . , tk−1)
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vanishes in t0, t1, . . . , tk−1 and, by a lemma of [11], we have

∣

∣

∣

∣

∣

g(i)(t)− Di
k−1
∑

h=0

g(th)Lh(t; t0, t1, . . . , tk−1)

∣

∣

∣

∣

∣

≤ (b − a)k−i−1

(k − i − 1)!

∫ b

a

∣

∣

∣
g(k)(t)

∣

∣

∣
dt , i = 0, 1, . . . , n .

That is

∣

∣

∣

∣

∣

Di
k−1
∑

h=0

g(th)Lh(t; t0, t1, . . . , tk−1)

∣

∣

∣

∣

∣

≤ µ+
(b − a)k−i−1

(k − i − 1)! (b−a)µ , i = 0, 1, . . . , n .

Therefore we can state the following

Theorem 7. Let f satisfy the assumptions (a1)–(a3) and g ∈ C∞([a, b]) such

that maxt∈[a,b]

∣

∣

∣
g(j)(t)

∣

∣

∣
≤ µ (j = 0, 1, 2, . . . ) for some constant µ. Then, for every

̺ > µ

{

1 + sup
k≥n+1

[

max
0≤i≤n

(b − a)k−i

(k − i − 1)!

]}

,

there exists an integer ν ≥ n + 1 such that the problem (Bk) with arbitrary ti
and xi = g(ti) (i = 0, 1, . . . , k − 1) admits at least a solution vk ∈ W k,1([a, b])
for all k ≥ ν; moreover, ‖vk‖Cn([a,b]) ≤ ̺.

4. Concluding remarks

In this paper we have pointed out that, for a given Carathéodory’s real-valued
function f defined in [a, b] × R

n+1, the existence of a solution for the boundary
value problems (Ak) and (Bk) can be obtained provided that the order k of the
differential equation (3.1) is appropriately large. To the best of our knowledge, the
existence theorems for (Ak) and (Bk) previously established, deal with the case
k ≥ n+1 fixed and require that further conditions on the function f (for example,
boundedness or growth conditions) or on the length of [a, b] must be satisfied. We
examine a different aspect of the problems (Ak) and (Bk). Nevertheless, the
assumptions that are used to prove our results, can be rephrased as conditions
on the function f or on the length of the segment [a, b]. In this way, one could
obtain existence results, which are similar to the known ones.
Another remark concerns the possibility to extend our results to finite vector

differential equations. This requires only small modifications in the proofs.
Finally it is possible to consider the case when f varies with k, provided that

a condition as t → supk≥n+1[sup‖z‖≤̺ |fk(t, z)|] integrable is assumed.
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