
Comment.Math.Univ.Carolin. 35,3 (1994)485–495 485

Criteria for weak compactness

of vector-valued integration maps

S. Okada, W.J. Ricker

Abstract. Criteria are given for determining the weak compactness, or otherwise, of the
integration map associated with a vector measure. For instance, the space of integrable
functions of a weakly compact integration map is necessarily normable for the mean
convergence topology. Results are presented which relate weak compactness of the in-
tegration map with the property of being a bicontinuous isomorphism onto its range.
Finally, a detailed description is given of the compactness properties for the integra-
tion maps of a class of measures taking their values in ℓ1, equipped with various weak
topologies.
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Introduction

The importance of vector measures in modern analysis is well established. An
important aspect of the theory is the integration map. Associated with each X-
valued measure µ, with X a locally convex space (briefly, lcs), is its integration
map Iµ : L1(µ)→ X given by f 7→

∫
f dµ, for every f ∈ L1(µ). Here L1(µ) is the

space of all C-valued, µ-integrable functions; it is a lcs for the mean convergence
topology (see Section 1). Many classical operators, such as the Fourier transform
in L1(T), certain integral operators (e.g. Volterra), representations for Boolean
algebras of projections (arising from normal operators) and so on, can be viewed
as integration maps Iµ (or restrictions of such maps) for suitable measures µ and
spaces X .
Properties of the operator Iµ, which is always linear and continuous, are closely

related to the nature of the lcs L1(µ). For X a Banach space, the compactness
properties of Iµ are investigated in detail in [5]. It turns out that such compact-
ness results are not always a reliable guide as what to expect for X a lcs; the
theory in such spaces (see [6]) is generally not attained from the Banach space
case by simply replacing norms with seminorms. Genuinely new phenomena and
difficulties occur.
Curiously though, all the examples exhibited in [6; § 3] of compact or weakly

compact (briefly, w-compact) integration maps Iµ have the property that the lcs

L1(µ) is normable, although µ itself takes its values in a non-normable lcs X .
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One of the aims of this note is to show that this is not a coincidence, but a gen-
eral phenomenon. In particular, it provides a criterion for deciding about w-
compactness of Iµ; if L1(µ) is not normable, then Iµ cannot be w-compact. Here,
w-compactness is meant in the sense of Grothendieck, that is, some neighbourhood
of zero is mapped into a relatively w-compact set. We also exhibit other criteria
which are either necessary or sufficient for compactness (resp. w-compactness)
of Iµ. Several results are given which relate the w-compactness of Iµ with the
property of Iµ being a bicontinuous isomorphism onto its range. For instance,
if X is a Fréchet space and Iµ is w-compact, then Iµ cannot be a bicontinuous

isomorphism onto its range. Examples are given of a class of measures µ in ℓ1,
considered not as a Banach space, but as a lcs equipped with one of the topolo-
gies σ(ℓ1, c0) or σ(ℓ1, ℓ∞), for which a complete description of the compactness
properties of Iµ is possible.

1. Preliminaries

The continuous dual space of a locally convex Hausdorff space X (briefly, lcHs)
is denoted by X ′. The set of all continuous seminorms on X is denoted by
P(X). The space X equipped with its weak topology σ(X, X ′) is denoted by
Xσ(X,X′). The spaceX ′ equipped with its weak-star topology σ(X ′, X) is denoted

by X ′
σ(X′,X). We adopt the notation 〈x

′, x〉 = x′(x) for every x ∈ X and x′ ∈ X ′.

Given an X-valued set function m on a σ-algebra of sets and x′ ∈ X ′, let 〈x′, m〉
denote the set function given by 〈x′, m〉(E) = 〈x′, m(E)〉 for every set E in the
domain of m.
Let S be a σ-algebra of subsets of a non-empty set Ω. Let µ : S → X be a vector

measure, that is, a σ-additive set function. For every x′ ∈ X ′, the total variation
measure of the scalar measure 〈x′, µ〉 is denoted by |〈x′, µ〉|. Given p ∈ P(X), let
U0p = {x′ ∈ X ′; |〈x′, x〉| ≤ 1, x ∈ p−1([0, 1])}. The p-semivariation of µ is the

set function p(µ) given by

p(µ)(E) = sup{|〈x′, µ〉|(E); x′ ∈ U0p }, E ∈ S.

A scalar-valued, S-measurable function f on Ω is called µ-integrable if it is
〈x′, µ〉-integrable, for every x′ ∈ X ′, and if there is a unique function fµ : S → X
satisfying

〈x′, (fµ)(E)〉 =

∫

E
f d〈x′, µ〉, x′ ∈ X ′, E ∈ S.

In this case, fµ is also σ-additive by the Orlicz-Pettis lemma, and will be called
the indefinite integral of f with respect to µ. We also use the classical notation

∫

E
f dµ = (fµ)(E), E ∈ S.

The vector space of all µ-integrable functions on Ω is denoted by L1(µ). An
element of L1(µ) is called µ-null if its indefinite integral is the zero measure.
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The subspace of L1(µ) consisting of all µ-null functions is denoted by N (µ). For
every p ∈ P(X), the seminorm f 7→ p(fµ)(Ω), for f ∈ L1(µ), is also denoted
by p(µ). The space L1(µ) is equipped with the lc-topology defined by the family
of seminorms p(µ), p ∈ P(X). This topology is called the mean convergence
topology. The lcHs associated with L1(µ) is the quotient space L1(µ)/N (µ).
The integration map Iµ : L1(µ)→ X is defined by

Iµ(f) = (fµ)(Ω) =

∫

Ω
f dµ, f ∈ L1(µ).

It is clear that Iµ is linear and continuous.

Definition 1.1. The measure µ : S → X is said to factor through a lcHs Y if
there exist a vector measure ν : S → Y and a continuous linear map j : Y → X
such that

(i) L1(µ) = L1(ν) as lcs,
(ii) N (µ) = N (ν) as sets, and
(iii) Iµ = j ◦ Iν .

In this case we say that µ factors through Y (via ν and j); see [6; § 1].

Lemma 1.2. Let j be a continuous linear map from a lcHs Y into a lcHs X and
ν : S → Y be a vector measure. Let µ = j ◦ ν. Suppose that µ factors through
Y via ν and j. Then, if the integration map Iν : L1(ν)→ Y is w-compact (resp.
compact, nuclear) so is the integration map Iµ : L1(µ)→ X .

Proof: The statements for compact and w-compact maps are clear. For the case
concerning nuclear maps see [8; Proposition 47.1]. �

Remark 1.3. It is shown in Section 3 (see Example 3.3) that the converse of
Lemma 1.2 is not always valid. �

Lemma 1.4. Let Y be a lcHs and ν : S → Y be a vector measure. Let X =
Yσ(Y,Y ′) and j : Y → X be the identity map. Suppose that the measure µ = j ◦ ν

factors through Y via ν and j. Then the integration map Iµ : L1(µ) → X is

compact (= w-compact), if and only if, the integration map Iν : L1(ν) → Y is
w-compact.

Proof: Follows from the fact that a subset A of Y is w-compact, if and only if,
j(A) is compact in X . �

We conclude this section with a technical lemma needed later.

Lemma 1.5. Let Z be a Banach space and Z ′ be the dual Banach space. Let

j : Z ′ → Z ′
σ(Z′,Z) be the identity map. A continuous linear map T from a Banach

space W into Z ′ is nuclear, if and only if, j ◦ T :W → Z ′
σ(Z′,Z) is nuclear.

Proof: Since Z ′
σ(Z′,Z) is quasicomplete, it follows from [8; Corollary 1, p. 482]

that there exist a bounded sequence {w′
n}

∞
n=1 inW ′, a bounded sequence {z′n}

∞
n=1
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in Z ′
σ(Z′,Z) and an absolutely convergent series of scalars Σ

∞
n=1an such that

(j ◦ T )w =

∞∑

n=1

an〈w
′
n, w〉z′n, w ∈ W.

Since
∑∞

n=1 |an|.|〈w′
n, w〉|.‖z′n‖ is finite, we have

Tw =

∞∑

n=1

an〈w
′
n, w〉j−1(z′n), w ∈ W.

Again by [8; Corollary 1, p. 482], T is nuclear.
The converse statement is clear. �

2. w-Compactness criteria

In this section we present some general criteria which are sufficient to guarantee
compactness and/or w-compactness of integration maps.
A lcs Z is called seminormable if its topology is the same as that determined

by a single seminorm. If Z is Hausdorff then, of course, the single seminorm is
a norm and we use the term normable. If, in addition, Z is sequentially complete,
then it must be complete for this norm, that is, Z is a Banach space.

Proposition 2.1. Let X be a lcHs and µ : S → X be a vector measure. Then
the following two statements are equivalent.

(i) There is a neighbourhood V of 0 in L1(µ) such that its image Iµ(V ) is
a bounded subset of X .

(ii) The lcs L1(µ) is seminormable (i.e. the quotient space L1(µ)/N (µ) is
normable).

If X is sequentially complete, then either of (i) or (ii) is equivalent to the
following statement.

(iii) The lcs L1(µ) is a complete seminormed space (i.e. the quotient space
L1(µ)/N (µ) is a Banach space).

Proof: The implications (iii) ⇒ (ii) ⇒ (i) are clear. So, suppose that (i) holds.
Take a seminorm p ∈ P(X) satisfying

(1) {g ∈ L1(µ); p(µ)(g) ≤ 1} ⊆ V.

Denote the left-hand-side of (1) by Vp. Let q ∈ P(X) be arbitrary. The bound-
edness of Iµ(Vp) implies that

Iµ(Vp) ⊆ Cq{x ∈ X ; q(x) ≤ 1},

for some positive constant Cq . Let g ∈ L1(µ). If p(µ)(g) 6= 0, then it follows
easily that

(2) q(Iµg) ≤ Cqp(µ)(g).
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If p(µ)(g) = 0, then αg ∈ Vp ⊆ V and so αIµg ∈ Iµ(Vp), for all scalars α. Since
Iµ(Vp) is bounded, this forces Iµg = 0 and so again (2) holds. Accordingly, (2)

holds for every g ∈ L1(µ). It then follows from [2; Ch.I, Proposition 1.11] that

q(µ)(g) ≤ 4 sup
E∈S

q(

∫

E
g dµ) ≤ 4Cqp(µ)(g), g ∈ L1(µ).

This shows that the mean convergence topology on L1(µ) can be defined by
the single seminorm p(µ). In other words, (ii) holds. A further consequence
is that there is a finite measure λ : S → [0,∞) with respect to which the set
functions q(µ), for q ∈ P(X), are absolutely continuous; that is, q(µ)(E) → 0
for all q ∈ P(X) as λ(E) → 0, E ∈ S. This follows from the fact that there is
a finite measure on S with respect to which the set function p(µ) is absolutely
continuous; see [4; Ch.II, Theorem 1.1], for example. It follows that the scalar
measures 〈x′, µ〉, for x′ ∈ X ′, are absolutely continuous with respect to λ.
Assume now that X is sequentially complete. Statement (iii) then follows from

[4; Ch. IV, Theorem 7.3] and [7; Proposition 2.1]. �

Since w-compact sets are bounded, an immediate consequence is that the ex-
amples of w-compact integration maps Iµ exhibited in [6], namely Examples 3.1

and 3.2 and Proposition 3.8, necessarily have normable spaces L1(µ). Proposi-
tion 2.1 can also be used to check that an integration map is not w-compact. For
instance, the lcHs X in Example 1.7 of [6] is quasicomplete and it was shown for
the vector measure µ : S → X given there, that L1(µ) is not normable. So, by
Proposition 2.1, the associated integration map Iµ : L1(µ)→ X is not w-compact.
We now consider the connection between w-compactness of Iµ and the property

of Iµ being a bicontinuous isomorphism onto its range.
Let T be a continuous linear map from a lcHs U into a lcHs W . We say that

T factors through a lcHs Z if there exist continuous linear maps R : U → Z and
S : Z → W such that T = S ◦ R.

Remark 2.2. (i) Let X be a non-reflexive Pták space. Let T be a bijective,
continuous linear map from X onto a lcHs Y . Then T does not factor through
any reflexive Banach space, [6; Lemma 3.5]. We note that every Fréchet lcs is
a Pták space and hence, in particular, Banach spaces are Pták spaces.

(ii) If a vector measure µ : S → X factors through a lcHs Y (cf. Definition 1.1),
then the associated integration map Iµ : L1(µ)→ X also factors through Y . �

For clarity of presentation, in the remainder of this paper the space L1(µ) of
all µ-integrable functions, for a given vector measure µ, will be identified with its
associated Hausdorff space L1(µ)/N (µ).

Proposition 2.3. Let X be a Fréchet lcs and µ : S → X be a vector measure
such that L1(µ) is a non-reflexive Fréchet space.

(i) If the integration map Iµ : L1(µ) → X is an injective, continuous linear
map with closed range, then Iµ cannot be w-compact.
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(ii) If Iµ : L1(µ) → X is w-compact, then Iµ cannot be a bicontinuous iso-

morphism onto its range.

Proof: (i) Suppose Iµ were w-compact, where we consider µ and Iµ as taking

their values in the Fréchet lcs X
˜
= Iµ(L1(µ)). By Remark 2.5 of [6], applied to

X
˜
, the measure µ would factor through a reflexive Banach space Y and hence,

the integration map Iµ : L1(µ)→ X
˜
would factor through Y , by Remark 2.2 (ii).

This contradicts Remark 2.2 (i).

(ii) If Iµ were a bicontinuous isomorphism onto its range Z = Iµ(L1(µ)), then

Z would be a Fréchet lcs and so, by part (i), Iµ : L
1(µ) → Z could not be w-

compact. This contradicts the hypothesis.
�

We note that Proposition 2.3 (ii) implies immediately that the w-compact inte-
gration map Iµ of Example 3.2 in [6] cannot be a bicontinuous isomorphism onto
its range.

Remark 2.4. A slight variation of Proposition 2.3 (i) is as follows:
Let µ : S → X be a vector measure with values in a non-normable lcHs X such
that its integration map Iµ : L1(µ)→ X is a bicontinuous isomorphism of L1(µ)
onto X . Then Iµ cannot be w-compact.

For, otherwise X would have a bounded neighbourhood of 0, which would force
X to be normable. �

Example 2.5. Let N denote the natural numbers. Let X = C
N, equipped with

the seminorms given by

qn : x 7→ max
1≤r≤n

|xr|, x = (xj)
∞
j=1 ∈ X,

for each n = 1, 2, . . . . Then X is a separable, reflexive Fréchet space. Let S = 2N

and µ(E) = χ
E
, for each E ∈ S. Then Iµ is a bicontinuous isomorphism of L1(µ)

onto X (see Remark 2.7 below) and hence, Iµ is not w-compact (by Remark 2.4).
This is despite the fact that X is reflexive; for reflexive Banach spaces X this
cannot happen as Iµ is always w-compact in such spaces. �

We now exhibit a class of measures µ for which the criterion given by Re-
mark 2.4 is especially effective; Example 2.5 is a particular case of such a mea-
sure µ.
Let X be a lcHs and L(X) be the space of all continuous linear operators of X

intoX . With respect to the topology of pointwise convergence inX (i.e. the strong
operator topology), L(X) is also a lcHs; it is denoted by Ls(X). For the definition
of a spectral measure P : S → Ls(X) we refer to [3]. These are generalizations
of the resolution of the identity for normal operators in Hilbert space. A spectral
measure P is called equicontinuous if its range P (S) is an equicontinuous subset
of L(X). Given x ∈ X , the cyclic space P (S)[x] generated by x with respect to
P is defined to be the closed linear span of the set {P (E)x; E ∈ S}. For each
x ∈ X , let Px : S → X denote the X-valued measure E 7→ P (E)x, E ∈ S.
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Proposition 2.6. Let X be a quasicomplete lcHs such that Ls(X) is sequentially
complete and P : S → Ls(X) be an equicontinuous spectral measure with range
P (S) a closed subset of Ls(X).

(i) For each x ∈ X , the integration map IPx : L
1(Px)→ X is a bicontinuous

isomorphism of L1(Px) onto the cyclic space P (S)[x].
(ii) If the cyclic space P (S)[x] is non-normable, then the integration map IPx

is not w-compact.

Proof: Part (i) is just [3; Proposition 2.1], while part (ii) follows from (i) and
Remark 2.4. �

We note that the condition of the range P (S) being closed in Ls(X) is auto-
matically satisfied in separable Fréchet spaces, [3], [7].

Remark 2.7. The claim made in Example 2.5 that the integration map Iµ given

there is a bicontinuous isomorphism onto X = C
N follows from Proposition 2.6.

For, in the notation of Example 2.5, given a subset E of N define the projection
P (E) by P (E)x = χ

E
x (coordinatewise multiplication), for each x ∈ X . Since X

is barrelled, the spectral measure is necessarily equicontinuous. Moreover, as X
is a separable Fréchet space, P (S) is a closed subset of Ls(X). In addition, the
element 11 ∈ X (consisting of 1 in every co-ordinate) is a cyclic vector for P , that
is, P (S)[11] = X . Since µ = P11, we can apply Proposition 2.6. �

3. Examples

In this section we exhibit some examples of measures in lc-spaces which arise
from Banach spaces with their weak or weak-star topologies. For the particular
Banach space ℓ1 quite detailed information is available. The dual operator to
a continuous linear operator T between lc-spaces is denoted by T ′.

Proposition 3.1. Let j be an injective, continuous linear map from the Banach
space ℓ1 into a lcHs X such that (j′)−1({f1}) 6= φ, where f1 = (1, 0, 0, . . . ) is
considered as an element of ℓ∞. Let λ : S → [0,∞) be a finite measure. Let
g1 = 11 be the function constantly equal to 1 and gn ∈ L∞(λ), n = 2, 3, . . . ,
satisfy

∞∑

n=1

|〈gn, f〉| < ∞, f ∈ L1(λ).

Let en, n ∈ N, be the standard basis vectors of ℓ1 and ν : S → ℓ1 be the vector
measure given by

(3) ν(E) =
∞∑

n=1

〈gn, χ
E
〉en, E ∈ S.

Finally, let µ = j ◦ ν. Then the following statements hold.

(i) The measure µ : S → X factors through ℓ1 via ν and j.
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(ii) If {gn}∞n=1 is unconditionally summable in L∞(λ), then the integration

map Iµ : L1(µ)→ X is compact.
(iii) If {gn}

∞
n=1 is absolutely summable in L∞(λ), then the integration map

Iµ : L1(µ)→ X is nuclear.

Proof: (i) The continuity of j implies that L1(ν) ⊂ L1(µ). Choose a vector
x′ ∈ X ′ such that j′(x′) = f1, in which case

(4) 〈x′, µ〉 = 〈x′, j ◦ ν〉 = 〈j′(x′), ν〉 = 〈f1, ν〉 = λ,

and so L1(µ) ⊂ L1(λ) = L1(ν). Accordingly, L1(µ) = L1(ν) = L1(λ) as vector
spaces. By (4) we conclude that L1(µ) and L1(λ) are isomorphic. The identity
Iµ = j ◦ Iν is a consequence of the fact that the S-simple functions are dense in

both L1(µ) and L1(ν). The equality N (µ) = N (ν) follows from the injectivity of
j. Hence, (i) holds.

Statements (ii) and (iii) follow from part (i), Lemma 1.2 and [5; Proposi-
tion 3.6].

�

Special choices of the space X in Proposition 3.1 give a way of producing
integration maps with specific properties.

Corollary 3.1.1. Let X = ℓ1
σ(ℓ1,c0)

and j : ℓ1 → X be the identity map. Let

the measure λ, the sequence {gn}∞n=1 in L∞(λ) and the vector measure ν be as
in Proposition 3.1. Let µ = j ◦ ν.

(i) The measure µ : S → X factors through the Banach space ℓ1 via ν and j.
(ii) The integration map Iµ : L1(µ)→ X is compact (= w-compact).
(iii) Iµ is nuclear, if and only if, Iν is nuclear.

(iv) If the Banach space L1(λ) is infinite-dimensional, then the integration
map Iµ is not a bicontinuous isomorphism onto its range.

Proof: (i) Let f1 ∈ ℓ∞ be as in Proposition 3.1. Since j′(f1) = f1, Proposi-
tion 3.1 (i) implies (i).

(ii) Since Iµ = j ◦ Iν with j compact, it follows that Iν is compact.

(iii) See Lemma 1.5.

(iv) By the proof of Proposition 3.1, the spaces L1(µ) and L1(λ) are isomor-
phic Banach spaces; in particular, L1(µ) is non-reflexive. Statement (iv) follows
from (ii). �

Corollary 3.1.2. Let X = ℓ1
σ(ℓ1,ℓ∞)

and j : ℓ1 → X be the identity map. Let

the measure λ, the sequence {gn}∞n=1 in L∞(λ) and the measure ν be as in
Proposition 3.1. Let µ = j ◦ ν.

(i) The measure µ : S → X factors through the Banach space ℓ1 via ν and j.
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(ii) The integration map Iµ : L1(µ) → X is compact (= w-compact), if and

only if, the integration map Iν : L
1(ν)→ ℓ1 is compact.

(iii) The integration map Iµ is nuclear, if and only if, the integration map Iν

is nuclear.

(iv) If the Banach space L1(λ) is infinite-dimensional, then the integration
map Iµ is not a bicontinuous isomorphism onto its range.

Proof: Part (i) follows as in the proof of Corollary 3.1.1 (i). Part (ii) is a conse-
quence of part (i) and Lemma 1.4.

(iii) Let Z = ℓ1
σ(ℓ1,c0)

and k : X → Z be the identity map. Then the measure

k ◦ µ : S → Z factors through X via µ and k so that Ik◦µ = k ◦ Iµ. By part (i),
we have j ◦ Iν = Iµ, and hence, Ik◦µ = k ◦ Iµ = (k ◦ j) ◦ Iν . Therefore, if Iµ

is nuclear, then so is Ik◦µ and hence, Iν is nuclear by Corollary 3.1.1 (iii). The
converse implication is clear.

(iv) If Iµ were a bicontinuous isomorphism then, on the infinite-dimensional

linear subspace Iν(L1(λ)) = j−1(Iµ(L1(µ))) of ℓ1, the norm topology and the
weak topology would coincide, which is a contradiction. �

Corollary 3.1.3. Let X be the Fréchet space CN and j : ℓ1 → X be the natural
injection. Let the measure λ, the sequence {gn}∞n=1 in L

∞(λ) and the measure ν
be as in Proposition 3.1. Let µ = j ◦ ν.

(i) The measure µ : S → X factors through the Banach space ℓ1 via ν and j.
(ii) The integration map Iµ : L1(µ)→ X is compact (= w-compact).
(iii) The integration map Iµ is nuclear, if and only if, the integration map Iν

is nuclear.

(iv) If the Banach space L1(λ) is infinite-dimensional, then the integration
map Iµ : L1(µ)→ X is not an isomorphism onto its range.

Proof: (i) The arguments in the proof of Corollary 3.1.1 (i) apply.

(ii) Since X is a Montel space, the map j is compact. Hence, Iµ = j ◦ Iν is
compact and thus, also w-compact.

(iii) Since L1(λ) = L1(µ) is barrelled and X is complete, statement (iii) can
be proved as in Corollary 3.1.1 (iii) by using the analogue of Lemma 1.5 with

Z = CN; again apply [8; Corollary 1, p. 482].

(iv) Use the same argument as in the proof of Corollary 3.1.1 (iv). �

Remark 3.2. In relation to the previous three corollaries it may be worth not-
ing that the lcHs ℓ1

σ(ℓ1,c0)
is a semireflexive, quasicomplete Montel space, that

CN is a complete, reflexive, Fréchet-Montel space, but that ℓ1
σ(ℓ1,ℓ∞)

is neither

semireflexive, Montel nor quasicomplete (it is sequentially complete). Of course,
a continuous linear map from a lcHs into a Montel space is compact, if and only
if, it is w-compact. This comment is relevant to Corollary 3.1.1 (ii) and Corollary
3.1.2 (ii). �
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We can now exhibit an example showing that the converse of Lemma 1.2 fails
(cf. Remark 1.3).

Example 3.3. Let S be the σ-algebra of Borel subsets of [0, 1] and λ be Lebesgue
measure on S. Let g1 = 11 and gn = χ

E(n)
, where E(n) = ((n + 1)−1, n−1] for

each n = 2, 3, . . . . Since {gn}∞n=1 is not unconditionally summable in L∞(λ),

the integration map Iν : S → ℓ1 (with ν given by (3)) is not compact, [5; Propo-
sition 3.6]. Let X = ℓ1

σ(ℓ1,c0)
and j : ℓ1 → X be the identity map. It follows

from Proposition 3.1 (i) that the measure µ = j ◦ν factors through ℓ1 via ν and j.
Moreover, since j is a compact map and Iµ = j◦Iν , it follows that Iµ : L1(µ)→ X
is compact. �

We have already seen in the above example that the converse of Lemma 1.2 is
not valid. However, for a particular setting, the converse does hold.

Proposition 3.4. Let Y be a lcHs and X = Yσ(Y,Y ′). Let j : Y → X be the

identity map and ν : S → Y be a vector measure. Let µ = j ◦ ν. Suppose that
the integration map Iµ : L

1(µ) → X is w-compact. Then so is the integration

map Iν : L1(ν)→ Y .

Proof: By assumption, there is a neighbourhood V of 0 in L1(µ) whose image
Iµ(V ) is relatively w-compact in X . The set V is a neighbourhood of 0 also in

L1(ν) because L1(µ) = L1(ν) as vector spaces and because the mean convergence
topology on L1(ν) is stronger than that on L1(µ). Hence, Iν is w-compact because
Iν(V ) = Iµ(V ) is relatively w-compact in Y . �

The converse of Proposition 3.4 is not always valid. A counter-example will be
given in the case when Y = ℓ2. It is interesting to know whether or not that is
the case when Y = ℓ1.

Example 3.5. Let Y be the Hilbert space ℓ2 and X = ℓ2
σ(ℓ2,ℓ2)

. Let en, n ∈ N,

be the standard basis vectors in Y and ν : 2N → Y be the vector measure given
by

ν(E) =
∑

n∈E

n−1en, E ∈ 2N.

Let j : Y → X denote the identity map. Define a vector measure µ : 2N → X
by µ = j ◦ ν. Then L1(µ) = L1(ν) (as vector spaces) and this space consists of
precisely those functions f on N such that

∑∞
n=1 |f(n)/n|2 < ∞.

Since Y is reflexive, the integration map Iν : L1(ν) → Y is weakly compact.
However, we shall show that the integration map Iµ : L1(µ) → X is not weakly

compact. To this end, let Z denote the space ℓ2 equipped with the absolute weak
topology |σ|(ℓ2, ℓ2) (cf. [1; p. 166]). Namely, the topology on Z is generated by
the seminorms qξ , ξ = (ξn)

∞
n=1 ∈ ℓ2, defined by

qξ(x) =

∞∑

n=1

|ξnxn|, x = (xn)
∞
n=1 ∈ ℓ2.
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Then |σ|(ℓ2, ℓ2) is strictly weaker than the norm topology and strictly stronger

than the weak topology. Let k : Z → X be the identity map and η : 2N → Z be
the vector measure satisfying µ = k ◦ η. Clearly L1(η) = L1(µ) as vector spaces
(in fact, as lc spaces). A direct computation shows that the integration map Iη is

a bicontinuous isomorphism from L1(η) onto Z and hence, Iη is not w-compact
by Remark 2.4 because Z is not normable. Proposition 3.4 now implies that Iµ

is not w-compact. �
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