M-mappings make their images less cellular

Michael G. Tkačenko

Abstract. We consider *M*-mappings which include continuous mappings of spaces onto topological groups and continuous mappings of topological groups elsewhere. It is proved that if a space X is an image of a product of Lindelöf Σ -spaces under an *M*-mapping then every regular uncountable cardinal is a weak precaliber for X, and hence X has the Souslin property. An image X of a Lindelöf space under an *M*-mapping satisfies $cel_{\omega}X \leq 2^{\omega}$. Every *M*-mapping takes a $\Sigma(\aleph_0)$ -space to an \aleph_0 -cellular space. In each of these results, the cellularity of the domain of an *M*-mapping can be arbitrarily large.

Keywords: M-mapping, topological group, Maltsev space, \aleph_0 -cellularity

 $Classification:\ 54A25$

1. Introduction

We define the notion of an M-mapping that takes its origin from topological groups and Maltsev spaces (see [7], [18] for the discussion of Maltsev spaces). Then we prove the results mentioned above thus generalizing [11, Theorem 1], [16, Theorem 1] and [9, Theorem 1.1].

Let G be a topological group. The mapping $F: G^3 \to G$ defined by $F(x, y, z) = x \cdot y^{-1} \cdot z$ is continuous and satisfies the condition

(*)
$$F(x, y, y) = F(y, y, x) = x \text{ for all } x, y \in G.$$

This reason gives rise for the notion of Maltsev spaces [7], [18], or *M*-spaces for short: we say that X is an <u>*M*-space</u>, if there exists a continuous mapping $F: X^3 \to X$ satisfying (*). The mapping F is called a <u>Maltsev operation</u> on X. It is clear that every topological group is an *M*-space. In fact, every retract of a topological group is an *M*-space (if r is a continuous retraction of a topological group G onto its subspace X, define $F: X^3 \to X$ by $F(x, y, z) = r(x \cdot y^{-1} \cdot z)$ for all x, y, z of X). It is an open problem whether every *M*-space is a retract of some topological group.

Every σ -compact topological group has the Souslin property [11]. Uspenskii [17] generalized this result by proving that any Maltsev Lindelöf Σ -space has the same property (and even is \aleph_0 - cellular). In fact, a little bit more is proved in [11]: if γ is a family of open sets in a σ -compact topological group G and the cardinality of γ is uncountable and regular, then there exists a subfamily μ of γ such that $|\mu| = |\gamma|$ and $U \cap V \neq \emptyset$ for all U, V of μ . In other words, every uncountable regular cardinal is a <u>weak precaliber</u> for G. The same conclusion can be proved for a Lindelöf Σ -group or more generally, for a Maltsev Lindelöf Σ -space.

Our aim is to show that both the Souslin property and the weak precaliber property arise when the structures of an M-space and of a Lindelöf Σ -space are 'separated' by a continuous mapping of a special kind. In fact, the structure of an M-space will be completely replaced by the so-called M-mapping.

1.1 Definition. We call $f : X \to Y$ an <u>M-mapping</u> provided that there exists a continuous mapping $F : X^3 \to Y$ such that F(x, y, y) = F(y, y, x) = f(x) for all x, y of X.

It is clear that every *M*-mapping is continuous. If $f: X \to Y$ is continuous and *X* (or *Y*) is an *M*-space, then *f* is an *M*-mapping. One can easily see that if every continuous mapping of a space *X* to elsewhere is an *M*-mapping, then *X* is an *M*-space. Furthermore, *X* is an *M*-space iff the identity mapping id_X is an *M*-mapping. Also note that $f: X \to Y$ is an *M*-mapping if there exist an 'intermediate' *M*-space *Z* and continuous mappings $g: Z \to Y$ and $h: X \to Z$ such that $f = g \circ h$. The class of *M*-mappings does not consist only of mappings generated by *M*-spaces: it is not necessary to require that *g* be defined on the whole space *Z*; it suffices to assume that *g* is defined on a subspace Z_0 of *Z* containing the set $F_0(h(X)^3)$, where F_0 is a Maltsev operation for *Z*. Indeed, define a continuous mapping $F: X^3 \to Y$ by $F(x, y, z) = gF_0(h(x), h(y), h(z))$ for all x, y, z of *X*. Obviously, *F* is as in Definition 1.1. Note that neither h(X)nor Z_0 have to be *M*-subspaces of *Z*. This is the reason why the notion of an *M*-mapping seems to be flexible. Some additional information on *M*-mappings is contained in [13].

We denote by w(X), l(X) and c(X) the weight, Lindelöf number and cellularity of a space X respectively. A G_{τ} -set in X is an intersection of at most τ many open subsets of X. The $\underline{\tau}$ -cellularity of X, denoted by $cel_{\tau}X$, is the least cardinal λ such that every family γ of G_{τ} -sets in X contains a subfamily μ of cardinality less than or equal to λ satisfying $cl(\cup\mu) = cl(\cup\lambda)$. A space X is said to be $\underline{\tau}$ -cellular if $cel_{\tau}X \leq \tau$.

All considered spaces are assumed to be completely regular.

The notion of a Σ -space (see [8]) is one of the most important in the paper. For the reader's convenience we give some definitions related to this concept.

1.2 Definition. We call X a $\underline{\Sigma}$ -space, if there are two covers \mathcal{K} and \mathcal{C} of X such that \mathcal{K} is σ -locally finite and consists of closed sets, \mathcal{C} consists of countably compact sets and for every $C \in \mathcal{C}$ and every neighborhood U of C there exists $K \in \mathcal{K}$ satisfying $C \subseteq K \subseteq U$. If in addition $|\mathcal{K}| \leq \tau$, we call X a $\underline{\Sigma}(\tau)$ -space.

Note that every countably compact space is obviously a $\Sigma(\aleph_0)$ -space. The classes of Σ - and $\Sigma(\tau)$ -spaces are closed with respect to countable unions and passing to perfect (even quasiperfect) images [8].

The following cardinal invariant was defined by Arhangel'skiĭ [1] in a slightly different form. Let βX be the Čech-Stone compactification of X and \mathcal{F} the family

of all closed subsets of βX .

1.3 Definition. The <u>Nagami number</u> of a space X is the cardinal number

$$Nag(X) = \min\{|\gamma| : (\gamma \subseteq \mathcal{F})\&(\forall x \in X \ \forall y \in \beta X \setminus X \ \exists F \in \gamma \text{ with } x \in F \not\supseteq y)\}.$$

In other words, the Nagami number of X is the least cardinality of a family $\gamma \subseteq \mathcal{F}$ separating the points of X from the points of $\beta X \setminus X$. Note that a Σ -space X is Lindelöf iff $Nag(X) \leq \aleph_0$. Lindelöf Σ -spaces can also be characterized as continuous images of spaces that admit perfect mappings onto separable metric ones [1]. Compact and σ -compact spaces constitute proper subclasses of the class of Lindelöf Σ -spaces, and the latter is countably productive. Clearly, $l(X) \leq Nag(X)$ for every space X. It needs mentioning that the Čech-Stone compactification βX in Definition 1.3 can be replaced by any compactification of X.

2. Main results

Let $\Pi = \prod_{i \in J} P_i$ be a product space and $p^* \in \Pi$. Denote by $\sigma(p^*)$ the subspace of Π consisting of all points which differ from p^* on at most finitely many coordinates. The following theorem presents the main result of the paper.

2.1 Theorem. Let $\Pi = \prod_{i \in J} P_i$ be a product of spaces satisfying $Nag(P_i) \leq \tau$ for each $i \in J$, and Z be a subspace of Π such that $\sigma(p^*) \subseteq Z$. If X is an image of Z under an M-mapping, then every regular cardinal $\lambda > \tau$ is a weak precaliber for X.

We will prove the theorem by making use of two auxiliary set-theoretic lemmas. The first of them reminds of the Δ -lemma [5, Appendix 2] and has a similar proof.

2.2 Lemma. Suppose that λ and τ are infinite cardinals such that $cf(\lambda) > \tau^+$ and $k^{\tau} < \lambda$ for each $k < \lambda$. If ξ is a family of sets of cardinality less than or equal to τ and $|\xi| = \lambda$, then ξ contains a quasidisjoint subfamily η of the same cardinality λ , i.e. there exists a set R such that $M \cap N = R$ whenever $M, N \in \eta$ and $M \neq N$.

PROOF: For an arbitrary set A put $\xi_A = \{M \setminus A : M \in \xi\}$. It suffices to consider the case when the family ξ_A does not contain disjoint subfamilies of cardinality λ whenever $|A| < \lambda$. If $\alpha < \tau^+$ and a subfamily $\eta(\beta)$ of ξ with $|\eta(\beta)| < \lambda$ has already been defined for each $\beta < \alpha$, we put $B(\beta) = \bigcup \eta(\beta)$, $A(\alpha) = \bigcup_{\beta < \alpha} B(\beta)$ and define $\eta(\alpha)$ as a <u>maximal</u> disjoint subfamily of $\xi_{A(\alpha)}$. Obviously $|A(\alpha)| < \lambda$, and hence $|\eta(\alpha)| < \lambda$ as well. If now $M \in \xi \setminus \bigcup_{\alpha < \tau^+} \eta(\alpha)$, then $M \cap B(\alpha) \neq \emptyset$ for each $\alpha < \tau^+$. The latter implies $|M| > \tau$, for $B(\alpha) \cap B(\beta) = \emptyset$ whenever $\alpha \neq \beta$, which contradicts the assumption on the family ξ .

If γ is a cover of a set X and $x \in X$, we denote $St(x, \gamma) = \bigcup \{U \in \gamma : x \in U\}$.

2.3 Lemma (see [11]). Let $\{\gamma_{\alpha} : \alpha < \lambda\}$ be a family of finite covers of a set T, where λ is a regular uncountable cardinal. Then for every sequence $\{x_{\alpha} : \alpha < \lambda\} \subseteq T$ there exists a subset $A \subseteq \lambda$ such that $|A| = \lambda$ and $St(x_{\alpha}, \gamma_{\beta}) \cap St(x_{\beta}, \gamma_{\alpha}) \neq \emptyset$ for all $\alpha, \beta \in A$.

Proof of Theorem 2.1. Let f be an M-mapping of Z onto X and suppose that a continuous mapping $F : Z^3 \to X$ witnesses that. Suppose also that $\{O_{\alpha} : \alpha < \lambda\}$ is a family of non-void open sets in X, where λ is a regular cardinal, $\lambda > \tau$. Since $\sigma = \sigma(p^*)$ is dense in Π (and in Z), for each $\alpha < \lambda$ one can find a point $x_{\alpha} \in \sigma$ with $f(x_{\alpha}) \in O_{\alpha}$. For all $x \in \sigma$ and $\alpha < \lambda$ define $U_{\alpha}(x) \ni x$ as a <u>maximal</u> open set in σ such that

(1) $F(x_{\alpha}, y, z) \in O_{\alpha}$ and $F(z, y, x_{\alpha}) \in O_{\alpha}$ for all $y, z \in U_{\alpha}(x)$.

Then define $\gamma_{\alpha} = \{U_{\alpha}(x) : x \in \sigma\}; \alpha < \lambda$. It is clear that γ_{α} is an open cover of σ for each $\alpha < \lambda$. Our aim is to show that the conclusion of Lemma 2.3 holds for the family $\{\gamma_{\alpha} : \alpha < \lambda\}$ and the sequence $\{x_{\alpha} : \alpha < \lambda\}$. The further reasoning is divided into three parts.

Case 1. Suppose that $\lambda \leq 2^{\tau}$. For each $x \in \sigma$ denote by supp(x) the set of all indices of J on which x differs from p^* . Put $B = \bigcup_{\alpha < \lambda} supp(x_\alpha)$. Then $|B| \leq \lambda$, because $|supp(x)| < \aleph_0$ whenever $x \in \sigma$. Denote by π_B the projection of Π onto $\Pi_B = \prod_{i \in B} P_i$. The subspace $\sigma_B = \{x \in \sigma : supp(x) \subseteq B\}$ of Π is homeomorphic to $\pi_B(\sigma)$, and the latter is the σ -product $\sigma(\pi_B(p^*)) \subseteq \Pi_B$ with the base point $\pi_B(p^*)$. We have $|B| \leq \lambda \leq 2^{\tau}$ and $Nag(P_i) \leq \tau$ for all $i \in B$. Therefore $Nag(\sigma_B) = Nag(\pi_B(\sigma)) \leq \tau$ by a theorem of Ranchin [2]. Let $\beta \Pi$ be the Čech-Stone compactification of Π and \mathcal{F} a family of closed sets in $\beta \Pi$ separating points of σ_B from the points of $\beta \Pi \setminus \sigma_B$, $|\mathcal{F}| \leq \tau$. We can assume that the family \mathcal{F} is closed under finite intersections. For every $\alpha < \lambda$ denote by $\tilde{\gamma}_{\alpha}$ a family of open sets in $\beta \Pi$ whose traces on σ constitute the cover γ_{α} of σ and find an element $L \in \mathcal{F}$ such that $x_{\alpha} \in L \subseteq \bigcup \tilde{\gamma}_{\alpha}$. It does exist, for otherwise $\cap \mathcal{F}_{\alpha} \setminus \bigcup \tilde{\gamma}_{\alpha} \neq \emptyset$, where $\mathcal{F}_{\alpha} = \{K \in \mathcal{F} : x_{\alpha} \in K\}$. The latter, however, contradicts the separating property of \mathcal{F} . Since λ is a regular cardinal and $|\mathcal{F}| \leq \tau < \lambda$, one can find a set $A_0 \subseteq \lambda$, $|A_0| = \lambda$, and an element $K^* \in \mathcal{F}$ such that $x_\alpha \in K^* \subseteq \bigcup \tilde{\gamma}_\alpha$ for all $\alpha \in A_0$. Using compactness of K^* , we can assume that $|\tilde{\gamma}_{\alpha}| < \aleph_0$ for each $\alpha \in A_0$. Thus γ_{α} is a finite cover of the set $T = \{x_{\beta} : \beta \in A_0\}$ for each $\alpha \in A_0$, and Lemma 2.3 implies the existence of a subset $A \subseteq A_0$ with $|A| = \lambda$ such that $St(x_{\alpha}, \gamma_{\beta}) \cap St(x_{\beta}, \gamma_{\alpha}) \neq \emptyset$ for all $\alpha, \beta \in A$.

Case 2. There exists a cardinal k such that $\tau < k < \lambda \leq 2^k$.

The argument here is just the same as in Case 1 with k playing the rôle of τ .

Case 3. $2^k < \lambda$ for each $k < \lambda$ (i.e. λ is a strong limit cardinal). This is the only case to care about thoroughly. Since X is completely regular, we can assume that for each $\alpha < \lambda$ there exists a continuous function $\varphi_{\alpha} : X \to [0, 1]$ such that $O_{\alpha} = \varphi_{\alpha}^{-1}(0, 1]$. Consider continuous mappings $\psi_{\alpha} = \varphi_{\alpha} \circ F$ and $\tilde{\psi}_{\alpha} = \psi_{\alpha}|_{\sigma^3}$; $\alpha < \lambda$. Note that for every finite $B \subseteq J$ the space Π_B satisfies the inequality $l(\Pi_B) \leq Nag(\Pi_B) \leq \tau$, and hence $l(\sigma) \leq \tau$ by a theorem of [6]. By the same

reason we have $l(\sigma^3) \leq \tau$. Since $\tilde{\psi}_{\alpha}$ is a continuous mapping of σ^3 to a secondcountable space, $\tilde{\psi}_{\alpha}$ depends on at most τ coordinates by Corollary 1 of [10] (another way is to apply a theorem of Engelking [3]). Let M_{α} be the set of all the indices of J the function $\tilde{\psi}_{\alpha}$ depends on; $|M_{\alpha}| \leq \tau$. Note that in fact we should speak about coordinates of the index set J^3 , but 'spilling' the triples of J^3 we get the sets M_{α} lying in J. Obviously, ψ_{α} does not depend on $J \setminus M_{\alpha}$ either, because σ^3 is dense in Z^3 . For every $\alpha < \lambda$ denote $N_{\alpha} = M_{\alpha} \cup supp(x_{\alpha})$ and consider the family $\xi = \{N_{\alpha} : \alpha < \lambda\}$. If $|\xi| < \lambda$, by the regularity of λ there exists a set $E \subseteq \lambda$ of cardinality λ such that $N_{\alpha} = N_{\beta} = B$ for all $\alpha, \beta \in E$. Then $|B| \leq \tau$ and we will get Case 1 if we consider the subspace σ_B of Z and the family $\{\gamma_{\alpha} : \alpha \in E\}$ of covers of σ_B . So it remains to assume that $|\xi| = \lambda$. Then by Lemma 2.2 the family ξ contains a quasidisjoint subfamily η with $|\eta| = \lambda$. Let $\eta = \{N_{\alpha} : \alpha \in C\}$, where $C \subseteq \lambda$, and suppose that R is a root of η . Diminishing η , we can also assume that $N_{\alpha} \neq N_{\beta}$ for all distinct α, β of C. For each $\alpha \in C$ put $N_{\alpha}^* = N_{\alpha} \setminus R$. Then $\{N_{\alpha}^* : \alpha \in C\}$ is a disjoint family of cardinality λ .

We claim that $U = \sigma \cap \pi_{N_{\alpha}}^{-1} \pi_{N_{\alpha}}(U)$ for all $U \in \gamma_{\alpha}$ and $\alpha < \lambda$. First, note that the restriction of $\pi_{N_{\alpha}}$ to σ is an open mapping onto $\pi_{N_{\alpha}}(\sigma)$; therefore by the maximality of a set $U = U_{\alpha}(x)$ for some point $x \in \sigma$ it suffices to verify that the open set $\sigma \cap \pi_{N_{\alpha}}^{-1} \pi_{N_{\alpha}}(U)$ satisfies the above condition (1). Indeed, take $y, z, y', z' \in \sigma$ such that $y, z \in U_{\alpha}(x), \pi_{N_{\alpha}}(y') = \pi_{N_{\alpha}}(y)$ and $\pi_{N_{\alpha}}(z') = \pi_{N_{\alpha}}(z)$. Then $\pi_{N_{\alpha}}^{3}(x_{\alpha}, y', z') = \pi_{N_{\alpha}}^{3}(x_{\alpha}, y, z)$, and the definition of the subset M_{α} of N_{α} implies

$$\psi_{\alpha}(x_{\alpha}, y', z') = \varphi_{\alpha}F(x_{\alpha}, y', z') = \varphi_{\alpha}F(x_{\alpha}, y, z) = \psi_{\alpha}(x_{\alpha}, y, z).$$

By the definition of $U_{\alpha}(x)$ we have

$$y, z \in U_{\alpha}(x) \Longrightarrow \varphi_{\alpha}F(x_{\alpha}, y, z) > 0 \Longrightarrow \varphi_{\alpha}F(x_{\alpha}, y', z') > 0.$$

Analogously,

$$y, z \in U_{\alpha}(x) \Longrightarrow \varphi_{\alpha}F(z, y, x_{\alpha}) > 0 \Longrightarrow \varphi_{\alpha}F(z', y', x_{\alpha}) > 0.$$

Since $O_{\alpha} = \varphi_{\alpha}^{-1}(0, 1]$, the inequalities above imply that the set $\tilde{U}_{\alpha}(x) = \sigma \cap \pi_{N_{\alpha}}^{-1} \pi_{N_{\alpha}}(U_{\alpha}(x))$ satisfies (1), and hence $\tilde{U}_{\alpha}(x) = U_{\alpha}(x)$.

Denote $\Pi_R^* = \Pi_R \times \{\pi_{J \setminus R}(p^*)\}$ and $\Phi = cl_{\beta\Pi}\Pi_R^*$. Since $|R| \leq \tau$, the subspace $\sigma_R = \sigma \cap \Pi_R^*$ of Π satisfies $Nag(\sigma_R) \leq \tau$. The set σ_R is dense in Φ , and hence there exists a family \mathcal{F} of closed sets in Φ separating points of σ_R from the points of $\Phi \setminus \sigma_R$, $|\mathcal{F}| \leq \tau$. For each $\alpha \in C$, define a point $x_{\alpha}^* \in \sigma_R$ by $\pi_R(x_{\alpha}^*) = \pi_R(x_{\alpha})$ and $\pi_{J \setminus R}(x_{\alpha}^*) = \pi_{J \setminus R}(p^*)$. The same argument as in Case 1 gives us an element $K^* \in \mathcal{F}$ and a subset D of C such that $|D| = \lambda$ and $x_{\alpha}^* \in K^* \subseteq \cup \tilde{\gamma}_{\alpha}$ for all $\alpha \in D$.

Claim. If $\mu \subseteq \gamma_{\alpha}$ for some $\alpha \in D$ and $K^* \subseteq \cup \mu$, then $\{x_{\beta} : \beta \in D\} \setminus \{x_{\alpha}\} \subseteq \cup \mu$.

Indeed, let $\alpha \in D$ and $\mu \subseteq \gamma_{\alpha}$, $F \subseteq \cup \mu$. For an arbitrary $\beta \in D \setminus \{\alpha\}$ choose $U \in \mu$ with $x_{\beta}^* \in U$. The points x_{β} and x_{β}^* coincide on all coordinates of $J \setminus N_{\beta}^*$, and $N_{\beta}^* \cap N_{\alpha} = \emptyset$. Since $x_{\beta}^* \in U$ and $U = \pi_{N_{\alpha}}^{-1} \pi_{N_{\alpha}}(U)$, we conclude that $x_{\beta} \in U$. This proves the claim.

For each $\alpha \in D$, find a finite subfamily μ_{α} of γ_{α} that covers the compact set $K^* \cup \{x_{\alpha}\}$ and apply Lemma 2.4 to the family $\{\mu_{\alpha} : \alpha \in D\}$ of covers of the sequence $\{x_{\alpha} : \alpha \in D\}$ (Claim works here). This gives us a subset $A \subseteq D$ of cardinality λ such that $St(x_{\alpha}, \mu_{\beta}) \cap St(x_{\beta}, \mu_{\alpha}) \neq \emptyset$ for all $\alpha, \beta \in A$. Since $\mu_{\alpha} \subseteq \gamma_{\alpha}$, we conclude that

(*) $St(x_{\alpha}, \gamma_{\beta}) \cap St(x_{\beta}, \gamma_{\alpha}) \neq \emptyset$ for all $\alpha, \beta \in A$.

Final step. In each of Cases 1–3 we have found a subset $A \subseteq \lambda$ of cardinality λ with the above property (*). It remains to show that $O_{\alpha} \cap O_{\beta} \neq \emptyset$ for all $\alpha, \beta \in A$. To this end apply an argument similar to the proof of Proposition 1 of [16]. Let $\alpha, \beta \in A$ and $\alpha \neq \beta$. By (*) one can find $U \in \gamma_{\alpha}, V \in \gamma_{\beta}$ and a point $z \in \sigma$ such that $\{x_{\alpha}, z\} \subseteq V$ and $\{x_{\beta}, z\} \subseteq U$. Then by the definition of γ_{α} and γ_{β} , we have $F(x_{\alpha}, z, x_{\beta}) \in O_{\alpha} \cap O_{\beta} \neq \emptyset$.

The following result was earlier announced by the author in [12] for $\tau = \aleph_0$.

2.4 Theorem. Let $\Pi = \prod_{i \in J} P_i$ be a product of spaces satisfying $Nag(P_i) \leq \tau$ for all $i \in J$, and suppose that $f : \Pi \to X$ is an *M*-mapping onto a Tikhonov space *X*. Then every regular cardinal $\lambda > \tau$ is a weak precaliber for *X* and $cel_{\tau}X \leq \tau$.

PROOF: It suffices to put $Z = \Pi$ in Theorem 2.1. The inequality $cel_{\tau} \leq \tau$ follows from [13, Theorem 2.2].

2.5 Remark. The subspace Z of the product Π in Theorem 2.1 could not be an *arbitrary* dense set in Π even if the index set J is one-point, i.e. $Nag(\Pi) \leq \tau$. In fact, *every* space is an image of some dense subspace of a *compact space* under an M-mapping. Indeed, for a given space X let X_d be a discrete group with the underlying set X. Then the identity mapping $id_X : X_d \to X$ is obviously an M-mapping and X_d is dense in the compact space βX_d .

2.6 Remark. A proof of the 'weak precaliber' part of Theorem 2.4 can be essentially simplified in comparison with the proof of Theorem 2.1. Indeed, let us have defined the points $x_{\alpha} \in \Pi$ with $f(x_{\alpha}) \in O_{\alpha}$ for all $\alpha < \lambda$. For every $\alpha < \lambda$ there exists a standard open set $V_{\alpha} \ni x_{\alpha}$ in Π such that $f(V_{\alpha}) \subseteq O_{\alpha}$. Then $V_{\alpha} = \pi_{D(\alpha)}^{-1} \pi_{D(\alpha)} V_{\alpha}$ for some finite subset $D(\alpha)$ of J. By the usual Δ -lemma, the family $\xi = \{D(\alpha) : \alpha < \lambda\}$ contains a quasidisjoint subfamily of the same cardinality λ , so we can assume that ξ is quasidisjoint itself and has a root R, $|R| < \aleph_0$. Put $E(\alpha) = D(\alpha) \setminus R$ for each $\alpha < \lambda$. The family $\{E(\alpha) : \alpha < \lambda\}$ is disjoint, and one can find a point $q \in \Pi_{J \setminus R}$ such that $q|_{E(\alpha)} = x_{\alpha}|_{E(\alpha)}$ for all $\alpha < \lambda$. Denote $\Pi_R^* = \Pi_R \times \{q\}$. Then $V_{\alpha} \cap \Pi_R^* \neq \emptyset$, and hence $f(\Pi_R^*) \cap O_{\alpha} \neq \emptyset$

for all $\alpha < \lambda$. Since $Nag(\Pi_R^*) = Nag(\Pi_R) \leq \tau$, it remains to apply the argument of Case 1 and Final step of the corresponding proof.

2.7 Corollary. If an *M*-space *X* is a continuous image of a product of Lindelöf Σ -spaces, then every regular uncountable cardinal is a weak precaliber for *X* and *X* is \aleph_0 -cellular.

PROOF: Every continuous mapping onto an M-space is an M-mapping. The conclusion now follows from Theorem 2.4.

2.8 Corollary. If X is a dense subspace of a Lindelöf Σ -group, then every regular uncountable cardinal is a weak precaliber for X.

PROOF: The 'weak precaliber' property is hereditary with respect to dense subspaces. It remains to note that a topological group is an M-space and apply Corollary 2.7.

It is known that the cellularity can be raised by multiplying of two spaces [14]. Recently Todorčević [15] constructed (in ZFC only) an example of a topological group H with $c(H \times H) > c(H)$. However, the latter is impossible in the class of subgroups of Lindelöf Σ -groups.

2.9 Proposition. Let G be a subgroup of a Lindelöf Σ -group. Then $c(G \times H) = c(H)$ for every infinite topological group H.

PROOF: There exists a Lindelöf Σ -group \hat{G} containing G as a subgroup. Then $K = cl_{\hat{G}}G$ is a closed subgroup of \hat{G} , and hence is a Lindelöf Σ -group. Since G is dense in K, every uncountable regular cardinal is a weak precaliber for G by Corollary 2.8. In particular, this is the case for τ^+ where $\tau = c(H)$. For the following argument, topological group structures of G and H are unessential. Let γ be a family of open sets in $G \times H$, $|\gamma| = \tau^+$. It suffices to find two distinct elements of γ with a non-empty intersection. We can assume that each element of γ has the form $U \times V$ for some open sets $U \subseteq X$ and $V \subseteq Y$. For every subfamily μ of γ denote $\tilde{\mu} = \{p_1(O) : O \in \mu\}$, where p_1 is the projection of $G \times H$ onto G. Since τ^+ is a weak precaliber for G, one can find a subfamily μ of γ such that $|\mu| = \tau^+$ and $U \cap U' \neq \emptyset$ for all $U, U' \in \tilde{\mu}$. The inequality $c(H) \leq \tau$ implies that $p_2(O) \cap p_2(O') \neq \emptyset$ for some distinct $O, O' \in \mu$ where p_2 is the projection of $G \times H$ onto H. Since O and O' have rectangular form, we conclude that $O \cap O' \neq \emptyset$.

By Theorem 1.1 of [9], every topological group G with $l(G) \leq \tau$ is 2^{τ} -cellular, i.e. $cel_{\tau}(G) \leq 2^{\tau}$. Roughly speaking, this result was proved by making use of a 'good' lattice of open mappings of G onto quotient groups of countable pseudocharacter. Again, we show that the existence of an appropriate M-mapping is responsible for this phenomenon.

2.10 Theorem. Let $f: \Pi \to X$ be an *M*-mapping of a space Π with $l(\Pi) \leq \tau$ onto *X*. Then $cel_{\tau}(X) \leq 2^{\tau}$.

PROOF: Suppose the contrary. Then there exists a sequence $\{(K_{\alpha}, O_{\alpha}) : \alpha < \lambda\}$ such that $K_{\alpha} \subseteq O_{\alpha} \subseteq X$, K_{α} is a non-empty closed G_{τ} -set in X, O_{α} is open in

X and $K_{\beta} \cap O_{\alpha} = \emptyset$ whenever $\beta < \alpha < \lambda$; $\lambda = (2^{\tau})^+$. Diminishing K_{α} and O_{α} if necessary, we can assume that for each $\alpha < \lambda$ there exists a continuous mapping φ_{α} of X onto a space X_{α} of weight at most τ such that $K_{\alpha} = \varphi_{\alpha}^{-1} \varphi_{\alpha} K_{\alpha}$.

Let $F : \Pi^3 \to X$ be a continuous mapping with the property F(x, y, y) = F(y, y, x) = f(x) for all $x, y \in \Pi$. For every $\alpha < \lambda$ pick a point $x_\alpha \in \Pi$ with $f(x_\alpha) \in K_\alpha$ and define a continuous mapping $\psi_{\alpha,\beta} : \Pi \to X_\alpha$ by $\psi_{\alpha,\beta}(x) = \varphi_\alpha F(x_\alpha, x_\beta, x)$ for all $\alpha, \beta < \lambda$ and $x \in \Pi$. Note that $\psi_{\beta,\beta} = \varphi_\beta \circ f$ for all $\beta < \lambda$. Denote $T = \{x_\alpha : \alpha < \lambda\}$ and $T_\alpha = \{x_\beta : \beta < \alpha\}; \alpha < \lambda$. If $g : \Pi \to Y$ is an arbitrary mapping to a space Y with $w(Y) \leq \tau$, then $|Y| \leq 2^{\tau}$; therefore there exists an ordinal $\delta(g) < \lambda$ such that $g(T_{\delta(q)}) = g(T)$.

The following step is a transfinite construction on $\alpha < \lambda$. Put $\nu(0) = 0$. Suppose that for some $\alpha < \tau^+$ we have already defined ordinals $\nu(\beta) < \lambda$ for all $\beta < \alpha$. If α is limit, we put $\nu(\alpha) = \sup_{\beta < \alpha} \nu(\beta)$. Otherwise $\alpha = \beta + 1$ for some β and we put $\mathcal{G}_{\alpha} = \{\psi_{\gamma,\gamma'} : \gamma, \gamma' \leq \beta\}$ and denote by \mathcal{H}_{α} the family $\{\Delta \Psi : \Psi \subseteq \mathcal{G}_{\alpha}, |\Psi| \leq \tau\}$, where $\Delta \Psi$ is the diagonal product of mappings of Ψ . Obviously, $|\mathcal{H}_{\alpha}| \leq 2^{\tau}$ and the weight of the space $g(\Pi)$ does not exceed τ for each $g \in \mathcal{H}_{\alpha}$. Therefore we can define $\nu(\alpha)$ as the maximum of the ordinals $\nu(\beta)$ and $\sup\{\delta(g) : g \in \mathcal{H}_{\alpha}\}$. Clearly, $\nu(\alpha) < \lambda$. This completes our construction.

Put $\nu = \sup_{\alpha < \tau^+} \nu(\alpha)$, $\mathcal{G} = \{\psi_{\gamma,\gamma'} : \gamma, \gamma' < \nu\}$ and $h = \Delta \mathcal{G}$. The crucial statement is that the set $C = cl_{\Pi}T_{\nu}$ has the property $h(T) \subseteq h(C)$. Indeed, by the construction, for every subfamily Ψ of \mathcal{G} with $|\Psi| \leq \tau$ we have $(\Delta \Psi)(T) \subseteq (\Delta \Psi)(T_{\nu})$, and the statement follows from the fact that $l(C) \leq \tau$.

Choose a point $z \in C$ with $h(z) = h(x_{\nu})$. We have $F(z, z, x_{\nu}) = f(x_{\nu}) \in K_{\nu} \subseteq O_{\nu}$, and the continuity of F in the first argument implies that there exists an open neighbourhood V of z in Π such that $F(x, z, x_{\nu}) \in O_{\nu}$ for all $x \in V$. Since z is in the closure of T_{ν} , one can find $\alpha < \nu$ with $x_{\alpha} \in V$. Thus we have $F(x_{\alpha}, z, x_{\nu}) \in O_{\nu}$. To get a contradiction it remains to show that $F(x_{\alpha}, z, x_{\nu}) \in K_{\alpha}$.

Since $\psi_{\alpha,\beta} \in \mathcal{G}$ for all $\beta < \nu$, from the choice of the point z it follows that $\varphi_{\alpha}F(x_{\alpha}, x_{\beta}, x_{\nu}) = \varphi_{\alpha}F(x_{\alpha}, x_{\beta}, z)$ for each $\beta < \nu$. Using the continuity of F in the first argument, we get

$$\varphi_{\alpha}F(x_{\alpha}, z, x_{\nu}) = \varphi_{\alpha}F(x_{\alpha}, z, z) = \varphi_{\alpha}f(x_{\alpha}) \in \varphi_{\alpha}(K_{\alpha}).$$

However, $K_{\alpha} = \varphi_{\alpha}^{-1} \varphi_{\alpha}(K_{\alpha})$, whence it follows that the point $p = F(x_{\alpha}, z, x_{\nu})$ belongs to K_{α} . Thus $p \in O_{\nu} \cap K_{\alpha} \neq \emptyset$ and $\alpha < \nu$, a contradiction with the choice of K_{α} and O_{ν} .

2.11 Remark. An easy examination of the above proof shows that we have not used the continuity of the mapping $F : \Pi^3 \to X$ in all its power. In fact, just the separate continuity of F in its arguments is necessary. This enables to consider groups with a separately continuous multiplication (and continuous inverse); let us call them quasitopological. Thus we have the following.

2.12 Corollary. A quasitopological group G with $l(G) \leq \tau$ satisfies $cel_{\tau}(G) \leq 2^{\tau}$.

This corollary of Theorem 2.10 is a slight generalization of [9, Theorem 1.1]. Note that one cannot improve Corollary 2.12 by showing $cel_{\tau}(G) \leq \tau$ even for a topological group G. Indeed, if X is a one-point τ -Lindelöfication of a discrete set of cardinality greater than τ , then the free Abelian group G = A(X) satisfies $l(G) \leq \tau$ and $c(G) > \tau$ (see [11] for details).

2.13 Problem. Does Theorem 2.10 remain valid for a weakly τ -Lindelöf space II (i.e. for a space each open cover of which contains a subfamily of cardinality $\leq \tau$ with a dense union)?

The following problem is closely connected with the previous one.

2.14 Problem. Let S be a weakly Lindelöf subspace of a product $\prod_{i \in J} P_i$ and suppose that $f: S \to X$ is an M-mapping to a second-countable space X. Does f depend on countably many coordinates?

The answer to Problem 2.14 is "yes" if S is a subgroup of a product of topological groups P_i , or even if S is an *M*-subspace of a product of *M*-spaces P_i [4, Theorem 1.1].

Combining the argument exposed in the proof of Theorems 2.2 and 2.10, we can prove a result generalizing Proposition 6 of [18]. This requires the following notation. Suppose $f: \Pi \to Y$ and $g: \Pi \to Z$ are continuous mappings and f is onto. We write $f \prec g$ if there exists a continuous mapping $h: Y \to Z$ such that $g = h \circ f$.

2.15 Theorem. An image of a $\Sigma(\aleph_0)$ -space under an *M*-mapping is \aleph_0 -cellular.

PROOF: Let $f : \Pi \to X$ be an M-mapping of a $\Sigma(\aleph_0)$ -space Π onto X and suppose that $F : \Pi^3 \to X$ witnesses that. If X is not \aleph_0 -cellular, there exists a sequence $\{(K_\alpha, O_\alpha) : \alpha < \omega_1\}$ such that $K_\alpha \subseteq O_\alpha \subseteq X$, K_α is a non-empty G_δ -set in X, O_α is open and $K_\beta \cap O_\alpha = \emptyset$ whenever $\beta < \alpha < \omega_1$. For each $\alpha < \omega_1$ pick a point $x_\alpha \in \Pi$ with $f(x_\alpha) \in K_\alpha$. We can also assume that for each $\alpha < \omega_1$ there exists a continuous function $\varphi_\alpha : X \to [0,1]$ such that $K_\alpha = \varphi_\alpha^{-1}(1)$ and $X \setminus O_\alpha = \varphi_\alpha^{-1}(0)$. Define a continuous mapping $\psi_{\alpha,\beta} : \Pi \to [0,1]$ by $\psi_{\alpha,\beta}(x) = \varphi_\alpha F(x_\alpha, x_\beta, x)$ for all $\alpha, \beta < \omega_1$ and $x \in \Pi$. Let two covers \mathcal{K} and \mathcal{C} of Π witness that Π is a $\Sigma(\aleph_0)$ -space, $|\mathcal{K}| \leq \aleph_0$. The family \mathcal{K} can be chosen closed under finite intersections.

Let α_0 be a countable ordinal. Put $g_0 = \triangle \{\psi_{\beta,\gamma} : \beta, \gamma \leq \alpha_0\}$. Then the space $Y_0 = g_0(\Pi)$ is second-countable. Suppose that for some integer n we have defined an ordinal $\alpha_n < \omega_1$ and a continuous mapping $g_n : \Pi \to Y_n$ onto a space Y_n with $w(Y_n) \leq \aleph_0$. Since Y_n is hereditarily separable, for each $K \in \mathcal{K}$ there exists an ordinal $\delta = \delta_n(K) < \omega_1$ such that $g_n(K \cap T_{\delta})$ is dense in $g_n(K \cap T)$, where $T = \{x_\alpha : \alpha < \omega_1\}$ and $T_{\delta} = \{x_\nu : \nu < \delta\}$. Put $\alpha_{n+1} = max\{\alpha_n, sup\{\delta_n(K) : K \in \mathcal{K}\}\}$ and $g_{n+1} = g_n \triangle(\triangle \{\psi_{\beta,\gamma} : \beta, \gamma \leq \alpha_{n+1}\})$; the symbol \triangle stands for the diagonal product of mappings. Thus we have defined an increasing sequence $\{\alpha_n : n \in \omega\}$ of countable ordinals and can now put $\alpha = sup_{n \in \omega} \alpha_n$ and $g = \triangle \{\psi_{\beta,\gamma} : \beta, \gamma < \alpha\}$. Then $\alpha < \omega_1$ and the space $Y = g(\Pi)$ is second-countable.

From the construction it follows that the following conditions are fulfilled:

- (1) $g(K \cap T_{\alpha})$ is dense in $g(K \cap T)$ for each $K \in \mathcal{K}$;
- (2) $g \prec \psi_{\beta,\gamma} \text{ for all } \beta, \gamma < \alpha.$

We claim that $g(x_{\alpha}) \in g(cl_{\Pi}T_{\alpha})$. Indeed, choose $C^* \in \mathcal{C}$ with $x_{\alpha} \in C^*$. Denote by \mathcal{B} a countable base of the space Y at $g(x_{\alpha})$. By (1), the family $\mathcal{F} = \{g^{-1}(cl_YU) \cap K \cap cl_{\Pi}T_{\alpha} : U \in \mathcal{B}, C^* \subseteq K \in \mathcal{K}\}$ consists of non-empty closed subsets of Π . The set $g^{-1}(cl_YU) \cap cl_{\Pi}T_{\alpha}$ meets C^* for each $U \in \mathcal{B}$, otherwise by the choice of \mathcal{K} there exists $K^* \in \mathcal{K}$ such that $C^* \subseteq K^* \subseteq \Pi \setminus (g^{-1}(cl_YU) \cap cl_{\Pi}T_{\alpha})$, which contradicts the fact that all elements of \mathcal{F} are non-empty. Thus, the countable family $\mathcal{F}^* = \{g^{-1}(cl_YU) \cap C^* \cap cl_{\Pi}T_{\alpha} : U \in \mathcal{B}\}$ consists of non-empty closed subsets of C^* and by the choice of \mathcal{B} has the finite intersection property. Since C^* is countably compact, we have $\emptyset \neq \cap \mathcal{F}^* = g^{-1}g(x_{\alpha}) \cap C^* \cap cl_{\Pi}T_{\alpha}$.

Pick a point $z \in cl_{\Pi}T_{\alpha}$ with $g(z) = g(x_{\alpha})$. Since $F(z, z, x_{\alpha}) = f(x_{\alpha}) \in K_{\alpha} \subseteq O_{\alpha}$, there exists a neighbourhood V of z such that $F(V \times \{z\} \times \{x_{\alpha}\}) \subseteq O_{\alpha}$. From $z \in cl_{\Pi}T_{\alpha}$ it follows that $x_{\beta} \in V$ for some $\beta < \alpha$, and we have $F(x_{\beta}, z, x_{\alpha}) \in O_{\alpha}$. Since $g(x_{\alpha}) = g(z)$, (2) implies that $\psi_{\beta,\gamma}(x_{\alpha}) = \psi_{\beta,\gamma}(z)$, i.e. $\varphi_{\beta}F(x_{\beta}, x_{\gamma}, x_{\alpha}) = \varphi_{\beta}F(x_{\beta}, x_{\gamma}, z)$ for all $\gamma < \alpha$. Taking into account the continuity of F in the first argument and the fact that $z \in cl_{\Pi}T_{\alpha}$, we get the equalities

$$\varphi_{\beta}F(x_{\beta}, z, x_{\alpha}) = \varphi_{\beta}F(x_{\beta}, z, z) = \varphi_{\beta}f(x_{\beta}) = 1.$$

Since $K_{\beta} = \varphi_{\beta}^{-1}(1)$, the latter means that $y = F(x_{\beta}, z, x_{\alpha}) \in K_{\beta}$. Thus $y \in K_{\beta} \cap O_{\alpha} \neq \emptyset$ and $\beta < \alpha$, which contradicts the choice of the sequence $\{(K_{\nu}, O_{\nu}) : \nu < \omega_1\}$.

Note again that the separate continuity of the mapping $F: \Pi^3 \to X$ was only used in the proof of the above theorem. Thus we have the following corollary.

2.16 Corollary. If a quasitopological group G is a continuous image of some $\Sigma(\aleph_0)$ -space, then G is \aleph_0 -cellular.

2.17 Corollary. Suppose a space Π admits a quasiperfect (i.e. continuous closed with countably compact fibers) mapping onto a space with a countable network. Then every image of Π under an *M*-mapping is \aleph_0 -cellular.

PROOF: Let $h : \Pi \to Z$ be a quasiperfect mapping of Π onto a space Z with a countable network \mathcal{N} . Since Z is regular, we can assume that \mathcal{N} consists of closed sets. Put $\mathcal{C} = \{h^{-1}(z) : z \in Z\}$ and $\mathcal{K} = \{h^{-1}(N) : N \in \mathcal{N}\}$. Then the covers \mathcal{C} and \mathcal{K} of Π witness that Π is a $\Sigma(\aleph_0)$ -space. It remains to apply Theorem 2.15. \Box

2.18 Problem. Suppose $f : \Pi \to X$ is an *M*-mapping of a countably compact space Π onto *X*. Is then every regular uncountable cardinal a caliber for *X*?

2.19 Problem (see also [13, Problem 2.4]). Does an image of a pseudocompact space under an *M*-mapping have the Souslin property?

It is still unknown whether every pseudocompact M-space has the Souslin property; see [18] for details.

We conclude with a little bit alien problem to the area.

2.20 Problem (see [13, Problem 2.5]). If X is an image of a compact space under an M-mapping, must X be dyadic?

References

- Arhangelskiĭ A.V., Factorization theorems and function spaces: stability and monolithicity, Soviet Math. Dokl. 26 (1982), 177–181.
- [2] Arhangelskii A.V., Ranchin D.V., On dense subspaces of topological products and properties related with final compactness (in Russian), Vestnik Mosc. Univ. 1982, No.6, 21–28.
- [3] Engelking R., On functions defined on cartesian products, Fund. Math. 59 (1966), 221–231.
- [4] Hušek M., Productivity of properties of topological groups, Topology Appl. 44 (1992), 189– 196.
- [5] Juhász I., Cardinal Functions in Topology, Math. Centrum Tracts 34, Amsterdam, 1971.
- [6] Kombarov A.P., Malykhin V.I., On Σ-products (in Russian), Dokl. AN SSSR 213 (1973), 774–776.
- [7] Maltsev A.I., To the general theory of algebraic systems (in Russian), Mat. Sb. 35 (1954), 3–20.
- [8] Nagami K., Σ -spaces, Fund. Math. **65** (1969), 169–192.
- [9] Pasynkov B.A., On the relative cellularity of Lindelöf subspaces of topological groups, Topol. Appl., to appear.
- [10] Tkačenko M.G., Some results on inverse spectra. I., Comment. Math. Univ. Carolinae 22 (1981), 621–633.
- [11] _____, On the Souslin property in free topological groups over compacta (in Russian), Matem. Zametki 34 (1983), 601–607.
- [12] _____, On mappings improving properties of their images (in Russian), Uspekhi Matem. Nauk 48 (1993), 187–188.
- [13] _____, *M*-spaces and the cellularity of spaces, Topology Appl., to appear.
- [14] Todorčević S., Remarks on cellularity in products, Compositio Math. 57 (1986), 357–372.
- [15] _____, Cellularity of topological groups, Handwritten notes.
- [16] Uspenskii V.V., Topological group generated by a Lindelöf Σ-space has the Souslin property, Soviet Math. Dokl. 26 (1982), 166–169.
- [17] _____On continuous images of Lindelöf topological groups (in Russian, translated in English), Dokl. AN SSSR 285 (1985), 824–827.
- [18] _____, The Maltsev operation on countably compact spaces, Comment. Math. Univ. Carolinae 30 (1989), 395–402.

Departamento de Matemáticas, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México $13\,$

E-mail: mich@xanum.uam.mx or rolando@redvax1.dgsca.mx to Tkachenko

(Received December 28, 1993)