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Checking positive definiteness or stability
of symmetric interval matrices is NP-hard

JIRf Roan*

Abstract. It is proved that checking positive definiteness, stability or nonsingularity of
all [symmetric] matrices contained in a symmetric interval matrix is NP-hard.
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As is well known, a square (not necessarily symmetric) matrix A is called
positive definite if 27 Az > 0 for each = # 0, stable if Re A < 0 for each eigen-
value A\ of A, and Schur stable if p(A) < 1. We prove here that checking these
properties is NP-hard (see [1]) for a symmetric interval matrix A7 = [4,4] :=
{A;A <AL Z}. By definition, A’ is called symmetric if both A and A are
symmetric; hence, a symmetric Al may contain nonsymmetric matrices. If Al is
symmetric and A € A’ then %(A + AT) € A, Let Ayin(A) denote the minimal
eigenvalue of a symmetric matrix A. We have these results:

Theorem. For a symmetric interval matrix Al with rational bounds, each of the
following problems is NP-hard:

(i) check whether each A € Al is positive definite,

) check whether each symmetric A € Al is positive definite,

) check whether each A € Al is stable,

) check whether each symmetric A € Al is stable,
(v) check whether each A € Al is nonsingular,

) check whether each symmetric A € Al is nonsingular,

) check whether each symmetric A € Al is Schur stable,

) given rational numbers a,b, a < b, check whether Apin(A) € (a,b) for each
symmetric A € AT,

PROOF: Let us call a symmetric real n x n matrix A = (a;;) an MC-matrix if
a;; = n and a;; € {0,—1} for i # j (i,j = 1,...,n). Then for each  # 0 we
have x7 Az > n||z|3 - izl = (n+ 1)[|z]|3 — ||z||? > [|=]|3 > 0, hence A is

*This work was supported by the Charles University Grant Agency under grant GAUK 237.

795



796 J.Rohn

positive definite (and so is A™1). For an MC-matrix A and a positive integer L,
let us form three symmetric interval matrices

Al = {A_l — %eeT,A_l + %eeT} ,

Aé = {—A_l — %eeT, A 4 %eeT]

and 1 1 1 1
Al = {I + E(_A_l — EeeT),I + E(—A_l + EeeT)] ,
where e = (1,1,...,1)7, I is the unit matrix and m = || A7 ||s + 7 + 1. Hence,

Al ={-A4Ae A} Al ={I+L14;A¢€ Al} and o(A’) < ||A'||oc < m for each

A’ e AT, We shall prove that the following assertions are mutually equivalent:
0) 2T Az > L for some z € {—1,1}",

AT contains a matrix which is not positive definite,

[N

A contains a symmetric matrix which is not positive definite,
Aé contains an unstable matrix,

Ol W

Al contains a singular matrix,

(=2}

)
)
)
) Aé contains a symmetric unstable matrix,
)
) Al contains a symmetric singular matrix,
)

EN|

A{ contains a symmetric matrix which is not Schur stable,
8) Amin(4’) ¢ (0,m) for some symmetric A’ € AL,

We prove 0) = 6) =2)=8)=2)=4)=7)=4)=3)=1)=5)=0). 0) =
6): If 27 Az > L for some z € {—1,1}", then the matrix A’ = A=1— (2T Az)7 12T
is symmetric, belongs to A’ and satisfies A’ Az = 0, hence it is singular. 6) = 2)
is obvious. 2) < 8): For a symmetric A’ € Al since o(A’) < m, we have that A’
is not positive definite if and only if Apin(A4’) ¢ (0,m). 2) = 4): If a symmetric
A" € Al is not positive definite, then Amax(—A’) = —Amin(A’) > 0, hence — A’ is
unstable and —A’ € Al. 4) & 7): For each symmetric A’ € Al, since o(A’) < m,
we have that A’ is unstable if and only if I+ A’ € Al is not Schur stable. 4) = 3)
is obvious. 3) = 1): If A € Aé is unstable, then by Bendixson theorem 0 < Re A <
Amax (5 (A+AT)), hence for A’ = — 3 (A+AT) we have A’ € AT and Ay (A') <0,
so that A’ is not positive definite. 1) = 5): Let A € A’ be not positive definite.
Put tg = sup {t €l0,1]; A7+ t(%(/l + AT) — A71) is positive deﬁnite}. Then
the matrix A’ = A= + to(%(/i + AT) — A=l is symmetric, belongs to A’ (due
to its convexity) and is positive semidefinite, but not positive definite, hence
Amin(A’) = 0, so that A’ is singular. 5) = 0): Let A’z = 0 for some A’ € Af,
x # 0. Define z € {—1,1}" by z; = 1 if 2; > 0 and z; = —1 otherwise (j =
1,...,n). Then eT|z| = 2Tz = 2T A(A™1 — Az < |ZTA|%6€T|{E|, which implies
L < [2TAle = 2T Az (since A is diagonally dominant). This proves that the
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assertions 0) to 8) are equivalent. Now, in [3, Theorem 2.6] it is proved that the
decision problem

Instance. An MC-matrix A and a positive integer L.
Question. Is 2T Az > L for some z € {—1,1}"?

is NP-complete. In view of the above equivalences, this problem can be polyno-
mially reduced to each of the problems (i)—(viii), hence all of them are NP-hard.
(]

Comments. The result (v) was proved in [3, Theorem 2.8]; here it was included
for completeness. Cf. also Nemirovskii’s results in [2]. Characterizations of posi-
tive definiteness, stability and Schur stability of symmetric interval matrices are
given in [4].
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