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The C1 stability of slow manifolds for a system

of singularly perturbed evolution equations

Daniel Ševčovič

Abstract. In this paper we investigate the singular limiting behavior of slow invariant
manifolds for a system of singularly perturbed evolution equations in Banach spaces.
The aim is to prove the C1 stability of invariant manifolds with respect to small values
of the singular parameter.
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1. Introduction

In this paper we consider the following system of singularly perturbed evolution
equations

(1)ε
ut +Aεu = Gε(u, v)

εvt +Bεv = Fε(u, v)

where ε ≥ 0 is a small parameter, {Aε}ε≥0, {Bε}ε≥0 are continuously depending
families of sectorial operators in Banach spaces X and Y , respectively; Gε :
Xα × Y β → X , Fε : Xα × Y β → Y , α, β ∈ [0, 1); are smooth and bounded
functions, Gε → G0, Fε → F0 as ε → 0+.
In the qualitative analysis of evolutionary differential equations, the theory of

invariant manifolds plays an important rôle. It is well known that the proof of
existence of center-unstable invariant manifolds carries over from the ODE setting
to abstract semilinear evolution equations in Banach spaces (see, e.g. Chow & Lu
[1] and references therein). Under suitable assumptions on the spectrum of Aε

and Bε it has been proven that the dynamics of solutions of (1) resembles the
behavior of a a dynamical system generated by some ODE when restricted on
so-called inertial form (Foias, Sell & Temam [2]). Such inertial manifolds are even

shown to be Ck smooth embedded submanifolds of the phase-space, provided that
the nonlinearities Gε, Fε are of the same regularity class (Chow & Lu [1]). In fact,

they are usually constructed as a Ck smooth graph over some finite dimensional
space.
The aim of this paper is to investigate the singular limiting behavior of invariant

manifolds for the system (1) when ε → 0+. More precisely, the question to be
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considered below is whether the inertial manifoldMε for (1)ε, 0 < ε ≪ 1, is close
in the C1 topology to the inertial manifoldM0 corresponding to the quasidynamic
approximation of (1)ε, ε = 0, i.e.

(1)0
ut +A0u = G0(u, v)

B0v = F0(u, v) .

In the geometric singular perturbation theory, such a manifold of solutions is
referred to as a slow manifold. We prove the existence of an inertial manifoldMε

for the perturbed system (1)ε, 0 < ε ≪ 1, as well as the inertial manifold M0.
Such an invariant manifold is constructed as a graph of a C1 smooth function, i.e.
Mε = Graph(Φε). The main goal is to show that Φε → Φ0 in a C1 sense. The
invariant manifolds are shown to be exponentially attractive and the semiflow Sε

when restricted to the manifoldMε is generated by solutions of the inertial form
which is an ODE

(2) pt = Ĝε(p), p ∈ Em

in the Euclidean space Em. The main result of this paper (Theorem 8) implies

that the vector field G̃ε : E
m → Em is continuous at ε = 0 with respect to the

C1(Em, Em) topology. Therefore such a result can be a useful tool, e.g. in the
local bifurcation analysis when one is interested in extension of various bifurcation
phenomena arising in the reduced system to the perturbed system of governing
evolution equations.
In order to construct an inertial manifold Mε, ε ≥ 0, we follow the classical

Lyapunov-Perron method of integral equations. We first treat the singularly per-
turbed equation εvt+Bεv = Fε(u, v) and we show that there is a nonlocal solution
operator v = φε(u) acting on a Banach scale of functional spaces consisting of all
globally defined solutions of this equation. It should be emphasized that the de-
rivativeDφε becomes continuous with respect to ε → 0+ only when φε operates in
a subclass of Hölder continuous curves. By contrast to the usual choice of a func-
tional space (e.g. Chow & Lu [1], Foias, Sell & Temam [2], Marion [4] or Miklavčič
[5]), our setting involves scales of spaces of Hölder continuous curves growing ex-
ponentially at −∞. The Hölder exponent depends merely on α ∈ [0, 1). In order
to prove the existence of an inertial manifoldMε = Graph(Φε), 0 ≤ ε ≪ 1, for the
semiflow Sε generated by solutions of (1)ε (cf. [1]) we set up an integral equation
for the nonlocal equation ut+Aεu = Gε(u, φε(u)). We then show the convergence
Φε → Φ0 in the C1 topology. To this end, we apply a two parameter contraction
principle due to Mora & Sola-Morales [6] covering differentiability and continuity
of a family of nonlinear mappings operating in a scale of Banach spaces.
The methods used in the proof of the main theorem are similar, in spirit and

technique, to those of the paper [8] where the author has studied the problem
of C1 smoothness of the singular limit of finite dimensional invariant manifolds
in the case when the nonlinearity F depends on the u-variable only. The last



The C1 stability of slow manifolds for a system of singularly perturbed evolution equations 91

assumption makes the analysis of the singularly perturbed equation considerably
easier. Moreover, the exponential attractivity of invariant manifolds has not been
proven in [8], and the results obtained in [8] cannot be applied to some problems
arising e.g. in the theory of so-called Sobolev’s equations.
The outline of this paper is as follows: Section 2 is devoted to preliminaries.

We introduce the notion of a scale of Banach spaces of Hölder continuous curves
parametrized by their growth at −∞. We also recall some useful results regarding
properties of a family of sectorial operators. In Section 3 we are interested in
the problem of the existence, C1 smoothness and continuity w.r. to ε → 0+ of
a family of inertial manifoldsMε for the system (1)ε, 0 ≤ ε ≪ 1. The main result
of this paper is contained in Theorem 8. As an example we consider the following
equation of Sobolev type

(A − µ(ξ))wt +A2w = f(w),

where µ(ξ) → µ(0) as ξ → 0+. In the case of resonance, i.e. Ker (A−µ(0)) 6= 0 and

Ker (A−µ(ξ)) = 0, 0 < ξ ≪ 1, the aim is to show, under suitable assumptions on
A, that the semiflow generated by the above equation is C1 stable in the singular
limit ξ → 0+.

2. Preliminaries

Let X be a Banach space. For any µ > 0 we denote the Banach space

C−
µ (X ) :=

{

u : C(R−,X ), and ‖u‖
C−

µ (X )
:= sup

t≤0
eµt‖u(t)‖X < ∞

}

.

For any ̺ ∈ (0, 1], a ∈ (0, 1] and µ > 0 we furthermore introduce the Banach
space C−

µ,̺,a(X ) of Hölder continuous curves growing exponentially at −∞,

C−
µ,̺,a(X ) =

=
{

u ∈ C−
µ (X ); [u]µ,̺,a = sup

t≤0,h∈(0,a]

‖eµtu(t)− eµ(t−h)u(t − h)‖

h̺
< ∞

}

endowed with the norm ‖u‖
C−

µ,̺,a(X )
:= ‖u‖

C−

µ (X )
+[u]µ,̺,a. The space C−

µ (X ) is

continuously embedded into C−
ν (X ), ν > µ, through a linear embedding operator

(3) Jµ,ν : C
−
µ (X )→ C−

ν (X )

with norm ‖Jµ,ν‖ = 1. At the same time, the operator Jµ,ν when restricted to

C−
µ,̺,a(X ), Jµ,ν : C

−
µ,̺,a(X ) → C−

ν,̺,a(X ) is again an embedding, its norm is less

or equal to max(1, (ν−µ)a1−̺) (see [8]). Hence the families {C−
µ (X )}µ>0 as well

as {C−
µ,̺,a(X )}µ>0 form scales of Banach spaces.
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As usual, for Banach spaces E1, E2 and η ∈ (0, 1] we denote L(E1, E2) the
Banach space of all linear bounded mappings from E1 to E2, C1bdd(E1, E2) the
Banach space consisting of the mappings F : E1 → E2 which are Fréchet differ-
entiable and such that F, DF are bounded and uniformly continuous, the norm

being given by ‖F‖1 := sup |F |+sup |DF |. C1+η
bdd
(E1, E2) will denote the Banach

space consisting of the mappings F ∈ C1bdd(E1, E2) such that DF is η-Hölder con-
tinuous, the norm being given by ‖F‖1,η := ‖F‖1+supx 6=y ‖DF (x)−DF (y)‖‖x−

y‖−η. If F : E1 → E2 is a bounded and Lipschitz continuous mapping, then the
Nemitzky operator

F̃ : C−
µ (E1)→ C−

µ (E2), F̃ (u)(t) := F (u(t))

is bounded and Lipschitzian as well, sup |F̃ | ≤ sup |F | and Lip(F̃ ) ≤ Lip(F ).

Let us emphasize the known fact: if F ∈ C1bdd(E1, E2) then the mapping F̃ :

C−
µ (E1) → C−

µ (E2) need not be necessarily differentiable. However, it becomes

C1 smooth after composition with the embedding operator Jµ,ν , ν > µ,

Lemma 1 ([12, Lemma 5], [8, Lemma 2.1]). Assume F ∈ C1bdd(E1, E2). Then,

for any ν > µ > 0, we have F̃ ∈ C1bdd(C
−
µ (E1), C

−
ν (E2)) and

F̃ ∈ C1bdd(C
−
µ,̺,a(E1), C

−
ν (E2)), the derivative being given by DF̃ (u)h =

Jµ,νdF̃ (u)h where dF̃ (u)h = DF (u(.))h(.).

In what follows we recall some useful perturbation results for a family of sec-
torial operators (see [8, Section 2]). Let {Aε}ε≥0 be a family of closed densely
defined linear operators in a Banach space X . Consider the following hypotheses:

(H1)











D(A0) = D(Aε) and A−1
0 A−1

ε = A−1
ε A−1

0 , ε ∈ [0, ε0];

0 ∈ ̺(Aε), ε ∈ [0, ε0], and A0A
−1
ε → I as ε → 0+ in L(X, X);

A0 is a sectorial operator in X and Re σ(A0) > ω > 0.

We refer to [3, Chapter 1] for the definition of a sectorial operator. According
to [8, Lemma 2.1] the operator Aε is also sectorial in X and Re σ(Aε) > ω > 0
for any ε > 0 sufficiently small. Besides the hypotheses (H1) we also impose the
assumptions:

(H2)



















A−1
0 : X → X is a compact linear operator;

there are 0 < λ− < λ+ < ∞ such that σ(A0) = σ0− ∪ σ0+ where

σ0± = {λ ∈ σ(A0); Re λ ≷ λ±}

Under the assumptions (H1) and (H2) we have

σ(Aε) = σε
− ∪ σε

+, for any 0 < ε ≪ 1 small,
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where σε
± = {λ ∈ σ(Aε); Re λ ≷ λ±} (cf. [8, Lemma 2.2]). Denote by Pε : X →

X the projector associated with the linear operator Aε and the spectral set σε
−.

We also denote Qε := I − Pε; A1,ε := PεAε; A2,ε := QεAε and let

X1,ε := PεX, X2,ε := QεX,

be the complementary subspaces invariant with respect to Aε. Since A−1
0 : X →

X is assumed to be compact and A0 is a sectorial operator we conclude that the
set σ0− is finite. With regard to [8, Lemma 2.2], we have Pε → P0 as ε → 0+.
Hence Pε|X1,0 : X1,0 → X1,ε is a linear isomorphism, dimX1,ε = dimX1,0 < ∞
and there exists an inverse operator

(4) P
(−1)
ε :=

(

Pε|X1,0

)−1
: X1,ε → X1,0

of the projector Pε restricted to X1,0 (see [8, Lemma 2.2]). Further, P
(−1)
ε Pε → I

as ε → 0+ in the space L(X1,0, X1,0).
If A is a sectorial operator then −A generates an analytic semigroup of linear

operators exp(−At), t ≥ 0. If Re σ(A) > 0 then the fractional power operator
Aα, α ∈ R, can be defined (see e.g. [3]). As the spectral set σε

− is bounded the
operator A1,ε is a bounded linear operator on X and hence exp(−A1,εt) can be
extended to a group of operators on X , t ∈ R. The operator A2,ε is sectorial as
well. Suppose that a family {Aε}ε≥0 fulfills the hypotheses (H1). Then, by [8,
Lemma 2.5], there are constants M0 > 1 and ε0 > 0 such that, for any ε ∈ [0, ε0],

(5)
‖ exp(−Aεt)‖ ≤ M0e

−ωt; t ≥ 0

‖Aα
0 exp(−Aεt)‖ ≤ M0t

−αe−ωt; t > 0.

Henceforth, we will suppose that the families {Aε}0≤ε≤ε0 and {Bε}0≤ε≤ε0
fulfill the hypotheses (H1)–(H2) and (H1) in the Banach spaces X and Y , respec-
tively. Denote

Xα = [D(Aα
0 )]; Y β = [D(Bβ

0 )]; α, β ∈ [0, 1)

the fractional power spaces endowed with graph norms ofAα
0 andB

β
0 , i.e. ‖u‖Xα =

‖Aα
0u‖, ‖v‖Y β = ‖Bβ

0 v‖ (cf. [3, Chapter 1]).
Now, using the estimates (5) one can easily follow the lines of the proofs of

global existence and continuity of solutions of abstract semilinear evolution equa-
tions due to Henry [3, Theorems 3.3.3, 3.3.4] in order to prove that the system
(1)ε, 0 < ε ≤ ε0, generates a semiflow Sε(t), t ≥ 0, defined by solutions of (1)ε on

the phase-space Xα × Y β . By a global solution of (1)ε with the initial condition

(u0, v0) ∈ Xα × Y β we understand a function (u, v) ∈ Cloc([0,∞);X
α × Y β) ∩

C1loc((0,∞);X
α × Y β) such that (u(t), v(t)) ∈ D(Aε) × D(Bε), t > 0 and (u, v)

solves the system (1)ε on (0,∞) (cf. [8, Section 3]).
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In case the function F0 ∈ C1bdd(X
α × Y β , Y ) obeys the condition

‖Bβ−1
0 ‖ sup ‖DvF0‖ < 1, there exists a C1bdd function φ0 : X

α → Y β such that
B0v = F0(u, v) iff v = φ0(u). By a solution of (1)0 with the initial condition
u0 ∈ Xα we understand a function u ∈ Cloc([0,∞);X

α) ∩ C1loc((0,∞);X
α) such

that u(t) ∈ D(A0), t > 0 and u solves the equation ut + A0u = G0(u, φ0(u)) on
(0,∞). Again due to the above references to Henry’s lecture notes it follows that

the system (1)0 generates a semiflow S̃0(t), t ≥ 0, on Xα. The semiflow S̃0 can be
naturally extended to a semiflow S0 acting on the manifold {(u, φ0(u)), u ∈ Xα}

by S0(t)(u, φ0(u)) := (S̃0(t)u, φ0(S̃0(t)u)) for any u ∈ Xα. Henceforth, we will

identify the semiflow S̃0 with its extension S0.
Let S(t), t ≥ 0, be a semiflow in the Banach space X . We say that the set

M ⊂ X is an inertial manifold for the semiflow S if: (1) it is an invariant finite
dimensional submanifold of X ; and (2)M attracts exponentially all solutions, i.e.
there is a µ > 0 such that dist (S(t)u0,M) = O(e−µt) as t → ∞ for any u0 ∈ X
(cf. [2]).

3. Existence and the C1 stability of inertial manifolds

First, we will be concerned with solutions of the linear nonhomogeneous sin-
gularly perturbed problem

(6)ε εvt +Bεv = f

where ε > 0, f ∈ C−
µ (Y ), and solutions of the unperturbed problem

(6)0 B0v = f

belonging to the space C−
µ (Y

β).

Denote by Yν , Yν,̺,a and Xν,̺,a, ν > 0, 0 < ̺ ≤ 1, a ∈ (0, 1], the following
Banach spaces of bounded linear operators

(7)
Yν = L(C−

ν (Y ), C
−
ν (Y

β)), Yν,̺,a = L(C−
ν,̺,a(Y ), C

−
ν (Y

β)),

Xν,̺,a = L(C−
ν (X), C

−
ν,̺,a(X

α)) .

Lemma 2 ([8, Lemma 3.1]). Assume that the family {Bε}0≤ε≤ε0 fulfills the

hypothesis (H1). Then, for any ε ∈ [0, ε0], 0 < ν < ωε−10 , and f ∈ C−
ν (Y ) there

is the unique solution v ∈ C−
ν (Y

β) of (6)ε given by v = Lεf where

Lεf(t) =
1

ε

∫ t

−∞
exp (−Bε(t − s)/ε) f(s) ds, ε > 0; L0f(t) = B−1

0 f(t) t ≤ 0 .

The linear operator Lε belongs to the spaces Yν and Yν,̺,a, 0 < ̺ ≤ 1, and there

is a K0 > 0 such that ‖Lε‖Yν,̺,a
≤ ‖Lε‖Yν

≤ K0(ω − νε0)
β−1 for any ε ∈ [0, ε0],

0 < νJ < ωε−10 . Moreover, Lε → L0 as ε → 0+ in the space Yν,̺,a.

According to the previous lemma, if u ∈ C−
µ (X

α) then any solution v ∈

C−
µ (Y

β) of the equation εvt + Bεv = Fε(u, v) can be written as v = LεFε(u, v).
The next lemma deals with unique solvability of such an equation.
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Lemma 3. Assume Fε ∈ C1+η
bdd
(Xα × Y β , Y ), ε ∈ [0, ε0], for some η ∈ (0, 1],

and Fε → F0 in C
1+η
bdd
(Xα × Y β , Y ) as ε → 0+. Let µ, κ be fixed and such that

0 < (1 + η)µ ≤ κ < ωε−10 . Suppose that there is a δ < 1 with the property

‖Lε‖Yµ
‖DvFε(u, v)‖L(Y β ,Y ) ≤ δ for any u ∈ Xα, v ∈ Y β and ε ∈ [0, ε0]. Then,

for any u ∈ C−
µ (X

α) and ε ∈ [0, ε0], there is the unique solution v = φε(u) ∈

C−
µ (Y

β) of the equation v = LεFε(u, v) satisfying,

(i) ‖φε(u1)− φε(u2)‖C−

µ (Y β) ≤ K1‖u1 − u2‖C−

µ (Xα);

(ii) limε→0+ φε(u) = φ0(u) in C−
µ (Y

β) uniformly w.r. to u ∈ B where B is

arbitrary bounded subset of C−
µ,̺,a(X

α);

(iii) φε ∈ C1bdd(C
−
µ (X

α), C−
κ (Y

β)), ‖φε‖1 ≤ K1 and there is

dφε ∈ L(C−
µ (X

α), C−
µ (Y

β)) with the property Dφε = Jµ,κdφε, ‖dφε‖ ≤
K1;

(iv) limε→0+ φε = φ0 in C1bdd(B, C−
κ (Y

β)) for any bounded subset B of

C−
µ,̺,a(X

α), where K1 := ‖Lε‖Yµ
‖Fε‖1(1− δ)−1.

Proof: Under the assumption ‖Lε‖Yµ
‖DvFε‖L(Y β ,Y ) ≤ δ < 1, the existence of

the solution operator v = φε(u) as well as its Lipschitz continuity (i) follows from
the parametrized contraction principle.

Obviously, for ε = 0, we have v = B−1
0 F0(u, v) and ‖L0‖Yµ

= ‖B
β−1
0 ‖. To

prove (ii), we first find an estimate of the norm of ‖φ0(u)‖C−

µ,̺,a(Y β) in terms

of u ∈ C−
µ,̺,a(X

α). To this end, we put v(t) = φ0(u)(t). Then, for any t ≤ 0,

h ∈ (0, a], we have

eµtv(t)− eµ(t−h)v(t − h) = (eµt − eµ(t−h))B−1
0 F0(u(t), v(t))

+eµ(t−h)B−1
0 (F0(u(t), v(t))− F0(u(t − h), v(t − h))) .

Notice that

(8)

‖w(t)− w(t − h)‖E

≤ e−µt‖eµtw(t) − eµ(t−h)w(t − h)‖E + (1− e−µh)‖w(t − h)‖E

≤ K2e
−µt‖w‖

C−

µ,̺,a(E)
h̺

where E stands either for Xα or Y β and K2 = K2(µ) > 0 is a constant. Thus

‖eµtv(t)− eµ(t−h)v(t − h)‖Y β ≤ K2‖u‖C−

µ,̺,a(Xα)h
̺

+‖Bβ−1
0 ‖‖DvF0‖‖v(t)− v(t − h)‖Y βeµ(t−h) .

Because ‖v‖
C−

µ (Y β) ≤ ‖B
β−1
0 ‖‖F0‖0 and ‖L0‖Yµ

‖DvF0‖ ≤ δ < 1, the above

inequality yields the estimate

(9) ‖φ0(u)‖C−

µ,̺,a(Y β) ≤ K2(1 + ‖u‖
C−

µ,̺,a(Xα)) .
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Arguing similarly as above one can show ‖F0(u, v)‖
C−

µ,̺,a(Y )
≤

K2(1 + ‖u‖
C−

µ,̺,a(Xα) + ‖v‖
C−

µ,̺,a(Y β)). Hence

(10) ‖F0(u, φ0(u))‖C−

µ,̺,a(Y )
≤ K2(1 + ‖u‖

C−

µ,̺,a(Xα)) .

As φε(u) = LεFε(u, φε(u)) we obtain

(1− δ)‖φε(u)− φ0(u)‖C−

µ (Y β) ≤ ‖Lε − L0‖Yµ,̺,a
‖F0(u, φ0(u))‖C−

µ,̺,a(Y )

+‖Lε‖Yµ
‖Fε(u, φ0(u))− F0(u, φ0(u))‖C−

µ (Y )
.

By Lemma 2, (H1) and (10) we obtain limε→0+ φε(u) = φ0(u) in C−
µ (Y

β) uni-

formly w.r. to u ∈ B where B is an arbitrary bounded subset of C−
µ,̺,a(X

α).

(iii) For any u, w ∈ C−
µ (X

α), we denote

(11) Dφε(u)w := [I − LεDvFε(u(.), φε(u)(.))]
−1LεDuFε(u(.), φε(u)(.))w .

A straightforward calculation then yields

φε(u+ w)− φε(u)− Dφε(u)w

= Rε[Fε(u + w, φε(u))− Fε(u, φε(u))− DuFε(u, φε(u))w]

+Rε[Fε(u+ w, φε(u+ w)) − Fε(u + w, φε(u))

− DvFε(u, φε(u))(φε(u+ w)− φε(u))]

=: I1 + I2

where
Rε := [I − LεDvFε(u(.), φε(u)(.))]

−1Lε .

Obviously, ‖Rε‖Yν
≤ (1 − δ)−1‖Lε‖Yν

for ν = µ or ν = κ, ε ∈ [0, ε0]. Further-
more, by Lemma 1 we have ‖I1‖C−

κ (Y β) = o(‖w‖
C−

µ (Xα)) as ‖w‖ → 0. On the

other hand, as Fε ∈ C
1+η
bdd
and 0 < (1 + η)µ ≤ κ we conclude

‖I2‖C−

κ (Y β) = O(‖w‖η

C−

µ
+ ‖φε(u + w)− φε(u)‖

η

C−

µ
)‖φε(u + w)− φε(u)‖C−

µ

= o(‖w‖
C−

µ
) .

Hence φε ∈ C1bdd(C
−
µ (X

α), C−
κ (Y

β)); Dφε(u)w = Jµ,κdφε(u)w where dφε(u)w is

defined by the right-hand side of (11) and so ‖dφε‖ ≤ ‖Lε‖Yµ
‖Fε‖1(1− δ)−1.

Finally, we prove the assertion (iv). Let B ⊂ C−
µ,̺,a(X

α) be an arbitrary

bounded set. With regard to (ii) it is sufficient to show the uniform convergence
Dφε(u)→ Dφ0(u) as ε → 0+ for u ∈ B. For any u ∈ C−

µ,̺,a(X
α) we have

Dφε(u)− Dφ0(u) = (Rε − R0)DuF0(u, φ0(u))

+Rε[DuFε(u, φε(u))− DuF0(u, φ0(u))] .
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Now one can readily verify that

Rε − R0 = Rε[DvFε(u, φε(u))− DvF0(u, φ0(u))]R0

+[I − LεDvFε(u, φε(u))]
−1(Lε − L0)(I +DvF0(u, φ0(u))R0) .

Furthermore,

DvFε(u, φε(u))− DvF0(u, φ0(u))

= Dv[Fε(u, φε(u))− F0(u, φε(u))] +Dv[F0(u, φε(u))− F0(u, φ0(u))] .

Thus

‖DvFε(u(t), φε(u)(t))− DvF0(u(t), φ0(u)(t))‖L(Y β ,Y )

≤ ‖Fε − F0‖1 + ‖F0‖1,η‖φε(u)(t)− φ0(u)(t)‖
η

Y β .

Because 0 < (1 + η)µ ≤ κ we obtain

‖DvFε(u, φε(u))− DvF0(u, φ0(u))‖L(C−

µ (Y β),C−

κ (Y ))

≤ ‖Fε − F0‖1 + ‖F0‖1,η‖φε(u)− φ0(u)‖
η

C−

µ (Y β)
.

But the right-hand side of the above inequality tends to 0 as ε → 0+ uniformly
w.r. to u ∈ B. Similarly one has

‖DuFε(u, φε(u))− DuF0(u, φ0(u))‖L(C−

µ (Xα),C−

κ (Y ))
→ 0 as ε → 0+

u.w.r. to u ∈ B. Notice that ‖R0DuF0(u, φ0(u))‖L(C−

µ (Xα),C−

µ (Y β)) ≤ K1 and

‖[I +DvF0(u, φ0(u))R0]DuF0(u, φ0(u))‖L(C−

µ,̺,a(Xα),C−

κ,̺,a(Y ))

≤ K1(1 + ‖u‖η

C−

µ,̺,a(Xα)
) .

Indeed, let us denote

A(t) := [I +DvF0(u(t), φ0(u)(t))R0]DuF0(u(t), φ0(u)(t)), t ≤ 0 .

Then, by (8) and (9)

‖A(t)−A(t − h)‖L(Xα,Y )

≤ K1(‖u(t)− u(t − h)‖η
Xα + ‖φ0(u)(t) − φ0(u)(t − h)‖η

Y β )

≤ K1e
−µηthη̺(1 + ‖u‖

η

C−

µ,̺,a(Xα)
) .
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As 0 < (1 + η)µ ≤ κ we obtain ‖A(.)w‖
C−

κ,η̺,a(Y )
≤ K1‖w‖

C−

µ,̺,a(Xα)(1 +

‖u‖
η

C−

µ,̺,a(Xα)
) for any w ∈ C−

µ,̺,a(X
α). According to Lemma 2 it is now ob-

vious that Dφε(u)→ Dφ0(u) as ε → 0+ u.w.r. to u ∈ B. The proof of Lemma 3
is complete. �

We are in a position to construct an inertial manifoldMε for the semiflow Sε

as the union of all Hölder continuous curves growing exponentially at −∞, i.e.

(12) Mε = {(Y (τ), τ ∈ R, Y ∈ C−
µ,̺,a(X

α × Y β), Y = (u, v) solves (1)}

for some µ > 0, ̺ ∈ (0, 1) and a ∈ (0, 1]. Since the system (1)ε, ε ≥ 0, is
autonomous the invariance property ofMε under the semiflow Sε(t), t ≥ 0, follows

from the uniqueness of solutions of (1)ε. By Lemma 3, (u, v) ∈ C−
µ,̺,a(X

α×Y β) is

a solution of (1)ε if and only if v = φε(u) and u ∈ C−
µ,̺,a(X

α) satisfies the equation

ut(t) + Aεu(t) = Gε(u(t), φε(u)(t)) on (−∞, 0]. Suppose that λ− < µ < λ+.
According to [1, Lemma 4.2], u ∈ C−

µ,̺,a(X
α) is a solution of the integral equation

(13)

u(t) = exp(−A1,εt)Pεu(0) +

∫ t

0
exp(−A1,ε(t − s))PεGε(u(s), φε(u)(s)) ds

+

∫ t

−∞
exp(−A2,ε(t − s))QεGε(u(s), φε(u)(s)) ds .

Let us define the linear operators Kε : X1,0 → C−
µ,̺,a(X

α) and Tε : C−
µ (X) →

C−
µ,̺,a(X

α),

(14)

Kεx(t) := exp(−A1,εt)Pεx; for any x ∈ X1,0, t ≤ 0,

Tε(g)(t) :=

∫ t

0
exp(−A1,ε(t − s))Pεg(s) ds

+

∫ t

−∞
exp(−A2,ε(t − s))Qεg(s) ds for any g ∈ C−

µ (X), t ≤ 0

and the mapping Tε : X1,0×C−
µ,̺,a(X

α)→ C−
µ,̺,a(X

α) defined by the right-hand

side of (13), i.e.

(15)
Tε(x, u)(t) := Kεx(t) + Tε(Gε(u(.), φε(u)(.)))(t),

t ≤ 0, x ∈ X1,0, u ∈ C−
µ,̺,a(X

α) .

For any 0 ≤ ε ≪ 1 small, Pε|X1,0 : X1,0 → X1,ε is a linear isomorphism. Then,

for any u(0) ∈ Xα there exists the unique x ∈ X1,0 such that Pεx = Pεu(0).
Now, using the invariance property ofMε we can write the setMε as

(16) Mε = {(u(0), φε(u)(0)) ∈ Xα × Y β , u = Tε(x, u), x ∈ X1,0} .

The next lemma deals with the linear operators Kε and Tε.
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Lemma 4 ([8, Lemma 3.2]). Suppose that ̺ ∈ (0, 1−α). Then there is a constant
C1 > 0 independent of ε ∈ [0, ε0] and λ± such that, for any µ ∈ (λ−, λ+), there
exists a number a(λ±, µ) ∈ (0, 1] with the property

(i) Kε ∈ L(X1,0, C
−
µ,̺,a(X

α)); ‖Kε‖L(X1,0,C
−

µ,̺,a(Xα)) ≤ C1λ
α
− and

Tε ∈ Xµ,̺,a; ‖Tε‖Xµ,̺,a
≤ C1K(λ−, λ+, µ, α) for any ε ∈ [0, ε0] and 0 <

a ≤ a(λ±, µ), where

K(λ−, λ+, µ, α) := λα
−(µ − λ−)

−1 + (2− α)(1 − α)−1(λ+ − µ)α−1 ;

(ii) Kε → K0 in L(X1,0, C
−
µ,̺,a(X

α)) and Tε → T0 as ε → 0+ in Xµ,̺,a when

ε → 0+.

Henceforth, we will assume that 0 < ̺ < 1 − α is fixed and the positive
constants µ, κ, ε0 satisfy the inequality

(17) λ− < µ < (1 + η)µ < κ < λ+ and ε0λ+ < ω/2 .

Let us define the Banach spaces U , Ū and Em as follows

(18) U = C−
µ,̺,a(X

α), Ū = C−
κ,̺,a(X

α), Em = X1,0

where a := min{a(λ±, µ), a(λ±, κ)} and m = dimX1,0 < ∞. Concerning the
nonlinear functions Gε and Fε we will assume the following hypotheses:

(H3)



















there exist α, β ∈ [0, 1) and η ∈ (0, 1) such that

Gε ∈ C1bdd(X
α × Y β ;X), Fε ∈ C1+η

bdd
(Xα × Y β , Y )

for any ε ∈ [0, ε0];

Gε → G0, Fε → F0 as ε → 0+ in the respective topologies.

If, in addition to (H3), we suppose that Fε satisfies the assumption of Lemma 3,
i.e. there is a 0 < δ < 1 such that

‖Lε‖Yµ
‖DvFε‖ ≤ K0(ω − µε0)

β−1‖DvFε‖ ≤ K0(ω/2)β−1‖DvFε‖ ≤ δ ,

then the mapping U ∋ u 7→ Tε(x, u) ∈ U is Lipschitz continuous. By Lemma 3 (i),
and Lemma 4, we have

(19) ‖Tε(x, u1)− Tε(x, u2)‖U

≤ ‖Tε‖Xµ,̺,a
‖G̃ε(u1, φε(u1))− G̃ε(u2, φε(u2))‖C−

µ (X)
≤ θ‖u1 − u2‖U

where θ := C2K(λ−, λ+, µ, α) and C2 > 0 is a constant independent of λ±, µ ∈
(λ−, λ+) and ε ∈ [0, ε0]. On the other hand, from Lemma 4 we obtain the estimate

(20) ‖Tε(x1, u)− Tε(x1, u)‖U ≤ ‖Kε‖L(Em,C−

µ,̺,a(Xα)) ≤ Q‖x1 − x2‖Em

where Q := C1λ
α
−. Henceforth, we will assume that λ± and µ ∈ (λ−, λ+) are

chosen in such a way that the following inequality is fulfilled

(21) θ := C2K(λ−, λ+, µ, α) < 1 .

Then the family of nonlinear mappings Tε(x, .) : U → U undergoes the parametrized
contraction principle and so, for any x ∈ Em and ε ∈ [0, ε0], there is the unique
solution u = uε(x) of the equation u = Tε(x, u) in U .
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Lemma 5. Let B ⊂ Em be a bounded subset. Then

lim
ε→0+

sup
x∈B

‖Tε(x, u0(x)) − T0(x, u0(x))‖U = 0 .

Proof: As uε(x) = Tε(x, uε(x)) and Tε, Kε and Gε are bounded uniformly for
ε ∈ [0, ε0], ε0 small, we conclude that the set

(22) BB := {uε(x), x ∈ B, ε ∈ [0, ε0]}

is a bounded subset of U . In particular, the set {u0(x), x ∈ B} is bounded in U .

Hence, by Lemma 3 (ii), we obtain limε→0+ φε(u0(x)) = φ0(u0(x)) in C−
µ (Y

β)

uniformly w.r. to x ∈ B. Since sup(u,v) ‖Gε(u, v)− G0(u, v)‖X → 0 and Tε → T0
as ε → 0+ we infer that limε→0+ supx∈B ‖Tε(x, u0(x))− T0(x, u0(x))‖U = 0. �

In summary, we have shown that the family of mappings Tε(x, .) fulfills the
following hypotheses:

(T)



























































(1) there is a θ < 1 with the property ‖Tε(x, u1)− Tε(x, u2)‖U

≤ θ‖u1 − u2‖U for any x ∈ Em, u1, u2 ∈ U and ε ∈ [0, ε0];

(2) there is a Q < ∞ such that ‖Tε(x1, u)− Tε(x2, u)‖U ≤

Q‖x1 − x2‖Em for any x1, x2 ∈ Em, u ∈ U and ε ∈ [0, ε0];

(3) for any bounded open subset B ⊂ Em,

limε→0+ supx∈B ‖Tε(x, u0(x)) − T0(x, u0(x))‖U = 0.

The set Mε can be represented in the form (16). Let us therefore define the

mappings Ψε : E
m → Xα,Φε : E

m → Y β as follows

(23) Ψε(x) := uε(x)(0), Φε(x) := φε(uε(x))(0) .

Thus

(24) Mε := {(Ψε(x),Φε(x)), x ∈ Em} ⊂ Xα × Y β .

Since Tε satisfies the hypotheses (T)1, (T)2 we know by the parametrized con-
traction principle that the setMε is a Lipschitz continuous graph of the mapping
Em ∋ x 7→ (Ψε(x),Φε(x)) ∈ Xα × Y β . Furthermore, by Lemma 3 (ii), and (T)3,
we obtain the convergence (Ψε(x),Φε(x)) → (Ψ0(x),Φ0(x)) as ε → 0+ u.w.r.
to x ∈ B, B is an arbitrary bounded and open subset of Em. In other words,
the invariant set Mε is an embedded Lipschitz submanifold of the phase space
Xα × Y β andMε is C0loc close toM0 when ε is small enough.
By the next lemma we prove exponential attractivity of the invariant mani-

foldMε. It means thatMε is an inertial manifold for the semiflow Sε.
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Lemma 6. Suppose that the numbers K(λ−, λ+, µ, α), sup ‖DvFε‖ and ε0 are
sufficiently small. Then dist (Sε(t)(u0, v0),Mε) = O(e−µt) as t → ∞ for any

initial condition (u0, v0) ∈ Xα × Y β .

Proof: In the case ε = 0, the statement of the lemma is contained in [1, Theo-
rem 5.1]. Let ε ∈ (0, ε0] be fixed. In this case, the proof is again essentially the
same as that of [1, Theorem 5.1]. A slight difference, in technique, of the proof
is caused by the fact that we have assumed no hypotheses on the spectral gaps
of the operator Bε. Nevertheless, the lack of large spectral gaps for σ(Bε) is here
compensated by the assumption on smallness of the norm of DvFε. We therefore
only sketch the main ideas of the proof.
Given a solution (ū, v̄) of (1) we are looking for a solution (u∗, v∗) lying onMε

and satisfying the property: (u, v) ∈ C+µ (X
α ×Y β) where u = u∗ − ū, v = v∗ − v̄

and C+µ is the Banach space

C+µ (X
α × Y β) := {f ∈ C(R+, Xα × Y β), ‖f‖

C+µ
= sup

t≥0
eµt‖f(t)‖Xα×Y β < ∞} .

Following the lines of the proof [1, Theorem 5.1], one easily verifies that the
difference of solutions (u, v) belongs to C+µ , if and only if the following integral
equations are satisfied:

(25)

u(t) = exp(−A2,εt)ξu +

∫ t

0
exp(−A2,ε(t − s))Qεg(s) ds

+

∫ t

∞
exp(−A1,ε(t − s))Pεg(s) ds

v(t) = exp(−Bεt/ε)ξv +
1

ε

∫ t

0
exp(−Bε(t − s)/ε)f(s) ds, t ≥ 0,

for some ξ = (ξu, ξv) ∈ Xα
2,ε × Y β where

g(s) := Gε(ū(s) + u(s), v̄(s) + v(s)) − Gε(ū(s), v̄(s)) ,

f(s) := Fε(ū(s) + u(s), v̄(s) + v(s)) − Fε(ū(s), v̄(s)) .

It means that u ∈ C+µ is a fixed point of the mapping u 7→ G(u, v, ξ) defined by the

right-hand side of the first equation in (25). We will henceforth let C > 0 denote
any positive constant independent of λ± and µ. Analogously as in the proof of
[1, Theorem 5.1] one can show that the mapping G is a uniform contraction in
C+µ (X

α). More precisely, there is a C > 0 such that

‖G(u1, v1, ξ1)− G(u2, v2, ξ2)‖
C+µ (Xα)

≤ C.K(λ−, λ+, µ, α)
{

‖u1 − u2‖
C+µ (Xα) + ‖v1 − v2‖

C+µ (Y β)

}

+ C‖ξ1 − ξ2‖Xα
2,ε×Y β .
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By the parametrized contraction principle there exists the unique solution oper-
ator h : C+µ (Y

β) × Xα
2,ε × Y β → C+µ (X

α) with the property: u = G(u, v, ξ) iff

u = h(v, ξ). Furthermore,

(26)
‖h(v1, ξ1)− h(v2, ξ2)‖

C+µ (Xα)

≤ C.K(λ−, λ+, µ, α)‖v1 − v2‖
C+µ (Y β)

+ C‖ξ1 − ξ2‖Xα
2,ε×Y β .

Hence v is a fixed point of the equation v = F(v, ξ) where F is defined by the
right-hand side of the second equation in (25) with f(s) := R(v, ξ)(s),

R(v, ξ)(s) := Fε(ū(s) + h(v, ξ)(s), v̄(s) + v(s))− Fε(ū(s), v̄(s)), s ≥ 0 .

Clearly,

‖R(v1, ξ1)− R(v2, ξ2)‖
C+µ (Y )

≤ ‖Fε‖1‖h(v
1, ξ1)− h(v2, ξ2)‖

C+µ (Xα) + ‖DvFε‖‖v
1 − v2‖

C+µ (Y β) .

We remind ourselves that the numbers K(λ−, λ+, µ, α), sup ‖DvFε‖ and ε0 are
assumed to be sufficiently small. Then, taking into account (26) one can readily
prove that the mapping v 7→ F(v, ξ) is a uniform contraction w.r. to ξ. Denote

vξ ∈ C+µ (Y
β) the unique solution of v = F(v, ξ). The mapping ξ 7→ vξ is

Lipschitzian and so the mapping Xα
2,ε × Y β ∋ ξ 7→ (uξ , vξ) ∈ C+µ (X

α × Xβ);

u := h(vξ , ξ), is Lipschitz continuous as well. Now the rest of the proof is the same

as that of [1, Theorem 5.1]. If we define g(ξ) := Pε(ū(0)+uξ(0)) then the mapping

g : Xα
2,ε × Y β → X1,ε is Lipschitz continuous. Recall that (u

∗(0), v∗(0)) ∈ Mε iff

u∗(0) = Ψε(x) and v∗(0) = Φε(x) for some x ∈ Em = X1,0. Hence the solution
(u∗, v∗) belongs toMε iff ξ = (ξu, ξv) solves the equation

(27) ξ = (Qε(Ψε(P0g(ξ))− ū(0)), Φε(P0g(ξ))− v̄(0) ) .

Arguing similarly as in the proof of [1, Theorem 5.1] the right-hand side of the

above equation if a contraction w.r. to ξ ∈ Xα
2,ε×Y β provided thatK(λ−, λ+, µ, α)

is sufficiently small. Hence, under the assumptions of the lemma, there exists
a solution ξ of (27). But this yields that (u∗(t), v∗(t)) ∈ Mε, t ≥ 0, where

(u∗(0), v∗(0)) := (ū(0) + uξ(0), v̄(0) + vξ(0)) and ‖ū(t) − u∗(t)‖Xα + ‖ū(t) −
u∗(t)‖Y β = O(e−µt) as t → ∞. It completes the proof of the lemma. �

The Banach space U is continuously embedded into Ū through a linear embed-
ding operator J := Jµ,κ. Notice that ‖Jµ,κ‖ ≤ 1 provided that the parameter
a ∈ (0, 1] is sufficiently small. Denote T̄ε := JTε and ūε(x) := Juε(x) for any
ε ∈ [0, ε0] and x ∈ Em. Now we can state a slightly modified version of the theo-
rem due to Mora & Solà-Morales regarding the limiting behavior of fixed points of
a two parametrized family of nonlinear mappings operating on a scale of Banach
spaces. Their result covers differentiability and continuity of such mappings with
respect to parameters.
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Theorem 7 ([6, Theorem 5.1], [8, Theorem 3.6]). Besides the hypothesis (T) we
assume also that the mappings T̄ε : E

m ×U → Ū , ε ∈ [0, ε0] satisfy the following
conditions:

(1) for any ε ∈ [0, ε0], T̄ε is Fréchet differentiable with DT̄ε : Em × U →
L(Em×U , Ū) bounded and uniformly continuous and there exist mappings

duTε : E
m×U → L(U ,U); d̄uTε : E

m×U → L(Ū , Ū); dxTε : E
m×U → L(Em,U)

such that

DuT̄ε(x, u) = JduTε(x, u) = d̄uTε(x, u)J , DxT̄ε(x, u) = JdxTε(x, u)

‖duTε(x, u)‖L(U ,U) ≤ θ, ‖d̄uTε(x, u)‖L(Ū ,Ū) ≤ θ, ‖dxTε(x, u)‖L(Em,U)

≤ Q
(2) for any B bounded and open subset of Em, DT̄ε(x, u) → DT̄0(x, u) as

ε → 0+ uniformly for (x, u) ∈ {(x, uε(x)), x ∈ B, ε ∈ [0, ε0]}.

Then the mappings ūε : E
m → Ū have the following properties:

(a) for any ε ∈ [0, ε0]; ūε : Em → Ū is Fréchet differentiable, with
Dūε : E

m → L(Em, Ū) bounded and uniformly continuous,

(b) for any B bounded and open subset of Em, Dūε(x) → Dū0(x) as
ε → 0+ uniformly with respect to x ∈ B.

In order to apply the above theorem we define the mappings

duTε(x, u) := Tε

(

duG̃ε(u, φε(u)) + dvG̃ε(u, φε(u))dφε(u)
)

, dxTε(x, u) := Kε,

d̄uTε(x, u) := T̄ε

(

d̄uG̃ε(u, φε(u)) + d̄vG̃ε(u, φε(u))dφε(u)
)

where the linear operators Tε ∈ Xµ,̺,a, T̄ε ∈ Xκ,̺,a, Kε ∈ L(Em, C−
µ,̺,a(X

α))

were introduced in (14) and the linear mappings

duG̃ε(u, v) ∈ L(U , C−
µ (X)); d̄uG̃ε(u, v) ∈ L(Ū , C−

κ (X)),

dvG̃ε(u, v) ∈ L(C−
µ (Y

β), C−
µ (X)); d̄uG̃ε(u, v) ∈ L(C−

κ (Y
β), C−

κ (X)),

dφε(u) ∈ L(U , C−
µ (Y

β)); d̄φε(u) ∈ L(U , C−
κ (Y

β))

are such that DiG̃ε = Jµ,κdiG̃ε, i = u or i = v, where

G̃ε ∈ C1bdd(U×C−
µ (Y

β), C−
κ (X)) (see Lemma 1). From this we infer DuT̄ε(x, u) =

Jµ,κduTε(x, u) = d̄uTε(x, u)Jµ,κ. Arguing similarly as in the proof of the estimate
(19) one obtains that the family Tε(x, .) obeys the assumption (i) of Theorem 7
with the constants Q > 0 and 0 < θ < 1 given by (20) and (21), respectively.
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Finally, let B be a bounded and open subset of Em. By (22), the set BB =
{uε(x), x ∈ B, ε ∈ [0, ε0]}, is a bounded subset of U . According to Lemma 3 (iii),
we conclude that

lim
ε→0+

sup
u∈BB

‖Dφε(u)− Dφ0(u)‖L(U ,C−

(1+η)µ
(Y β)) = 0

where φε is considered as a C1bdd function from U into C−
(1+η)µ

(Y β). Since

G̃ε ∈ C1bdd(U × C−
ν (Y

β), C−
κ (X)) where ν stands either for µ or (1 + η)µ and

limε→0+ φε(u) = φ0(u) in C−
ν (Y

β) u.w.r. to u ∈ BB, we obtain the convergence

DG̃ε(u, φε(u))→ DG̃0(u, φ0(u)) as ε → 0+. Therefore the derivative

DuT̄ε(x, u) = T̄ε

(

DuG̃ε(u, φε(u)) +DvG̃ε(u, φε(u))Dφε(u)
)

converges towards DuT̄0(x, u) when ε tends to zero u.w.r. to u ∈ BB and x ∈ B.
Obviously, DxT̄ε(x, u) = Jµ,κKε → DxT̄0(x, u) as ε → 0+. In this way we have
shown that the family of operators T̄ε fulfills all the hypotheses of Theorem 7.
Therefore uε ∈ C1bdd(E

m, Ū) and, for any bounded and open subset B ⊂ Em,

we have uε → u0 as ε → 0+ in C1bdd(B, Ū). Taking into account (22) and
Lemma 3 (iv), we furthermore know that φε(uε(x))→ φ0(u0(x)) in

C1bdd(B, C−
κ̄ (Y

β)) for some κ̄ > κ u.w.r. to x ∈ B. Since Ψε(x) = uε(x)(0)

and Φε(x) = φε(uε(x))(0) we also infer that (Ψε,Φε) ∈ C1bdd(E
m, Xα × Y β) and

(Ψε,Φε)→ (Ψ0,Φ0) as ε → 0+ in the space C1bdd(B, Xα×Y β). Finally, we notice
that the usual choice for the parameter µ ∈ (λ−, λ+) is to set µ := (λ− + λ+)/2.
Summarizing the above results, we are in a position to state the main theorem

of this paper.

Theorem 8. Assume that the families {Aε}ε≥0 and {Bε}ε≥0 satisfy the hypothe-

ses (H1)–(H2) and (H1) in the Banach spacesX and Y , respectively. Assume that
the nonlinearities Gε and Fε fulfill the hypothesis (H3).

If the numbers λα
−(λ+−λ−)

−1, (λ+−λ−)
−1, supε,u,v ‖DvFε(u, v)‖ and ε0 > 0

are sufficiently small, then, for any ε ∈ [0, ε0], there exists an inertial manifold

Mε ⊂ Xα × Y β for the semiflow Sε(t), t ≥ 0, generated by the system (1)ε.
Moreover,

(a) dimMε = dimM0 = m < ∞;
(b) Mε = {(Ψε(x),Φε(x)), x ∈ Em}

where (Ψε,Φε) ∈ C1bdd(E
m, Xα × Y β);

(c) for any bounded and open subset B ⊂ Em,

limε→0+(Ψε,Φε) = (Ψ0,Φ0) in the space C1bdd(B, Xα × Y β).

Remark 9. The assumption that the nonlinearities Gε and Fε are smoothly
bounded functions is not too much restrictive in the case when we are dealing with
so-called dissipative semiflows. If there exists a bounded subset D of the phase-
space attracting any solution (D does not depend on ε and the phase-space admits
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a C1+η smooth bump function) then one can modify the original nonlinearities
by zero far from the vicinity of D in such a way that the modified nonlinearities
fulfill the hypothesis (H3). In such a case we have however constructed a local

center-unstable manifoldMloc
ε instead of a global inertial manifold. The existence

of such a uniform dissipative set has been verified, e.g. for a class of singularly
perturbed beam equations (see [8], [9]).

Remark 10. The corresponding inertial form for (1)ε is obtained by taking Pε

projection of the first equation in (1). The resulting equation is an ODE in
the finite dimensional linear space X1,ε. With regard to (4) we then apply the

linear operator P
(−1)
ε : X1,ε → X1,0 to obtain an ODE in the Euclidean space

Em = X1,0. Namely,

pt = −P
(−1)
ε A1,εPεp+ P

(−1)
ε PεGε(Ψε(p),Φε(p)) =: Ĝε(p) .

Hence the dynamics on the invariant manifoldMε is governed by solutions of the
equation pt = Ĝε(p) in a sense that (u, v) ⊂ Mε is a solution of (1)ε iff u = Ψε(p),

v = Φε(p) where p is a solution of the ODE pt = Ĝε(p) in Em. The vector field

Ĝε belongs to the class C1bdd(E
m, Em) and, moreover, Ĝε → Ĝ0 as ε → 0+ in the

topology of C1bdd(B, Em) where B ⊂ Em is arbitrary bounded and open subset.

Example. We will apply the results obtained to certain resonance problem aris-
ing in the study of degenerate Sobolev’s equations. Let us consider the following
Sobolev equation

(28) (A − µ(ξ))wt +A2w = f(w)

where A : D(A) ⊂ X → X is a self-adjoint positive definite operator in a Hilbert

space X , A−1 : X → X is compact, f ∈ C
1+η
bdd
(Xα,X ) for some α ∈ [0, 1) and

η ∈ (0, 1]. We are interested in the singular limiting behavior of solutions in

the case of resonance when µ(ξ) → µ̄ as ξ → 0+ where µ̄ ∈ σ(A) = {µn, n ∈

N} and µ(ξ) /∈ σ(A) for any 0 < ξ ≪ 1. The existence of solutions and the
asymptotic expansions of equations of Sobolev type have been widely investigated
by Sviridyuk et al. in a general context in [10], [11] and references therein.
Denote P : X → Ker (A− µ̄) the projector onto the kernel of (A− µ̄) and put

Q := I −P and ε := (µ̄−µ(ξ))/µ̄2. Let us define the Hilbert spaces X = QX and

Y = PX . The operator (A − µ(ξ))Q = (A − µ̄+ εµ̄2)Q is continuously invertible
in X and, moreover, for any 0 ≤ ε ≪ 1,

Aε := [(A − µ̄+ εµ̄2)Q]−1A2

is again a self-adjoint operator in the Hilbert space X . Taking the projections of
a solution w, u := Qw and v = Pw, the Sobolev equation (28) can be rewritten
as a system of equations

(29)
ut +Aεu = Gε(u, v) ∈ X

εvt + v = µ̄−2Pf(u+ v) ∈ Y
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where Gε(u, v) := [(A − µ̄ + εµ̄2)Q]−1f(u + v). The operator Aε need not be
positive definite. But it is bounded from below and this is why one can translate
both the operator Aε and the right hand side of the first equation such that
σ(Aε) > 0 for any small 0 ≤ ε ≪ 1. Notice that Xα = [D(Aα

0 )] = QXα. Thus

Gε ∈ C1+η
bdd
(Xα × Y, X) and Gε → G0 as ε → 0+. Further, A−1

0 : X → X is a

compact operator as well and A0A
−1
ε − I = O(ε) in L(X, X) when ε → 0+.

Hence all the assumptions of Theorem 8 are fulfilled provided that the number
µ̄ ≫ 1 is large and the spectrum σ(A0) = {λn, λn = µ2n/(µn−µ̄), n ∈ N, µn 6= µ̄}
has sufficiently large spectral gaps. More precisely, λα

n/(λn+1 − λn) ≪ 1. If the
eigenvalues µn have the asymptotic µn = cn2 + O(1) the latter condition is
satisfied iff α < 1/2 and n ∈ N is large enough. We remind ourselves that the
spectrum of the differential operator Au := −∆u, A : H2 ∩ H10 (Ω) ⊂ L2(Ω) →

L2(Ω), Ω = (0, 1)
N , has the above property for N = 1. In the dimension N = 2,

it is known (cf. Richards [7]) that the spectrum of A has arbitrarily large spectral
gaps. This yields that the condition λα

n/(λn+1 − λn) ≪ 1 is satisfied for some
n ∈ N and the fractional power exponent α ≪ 1 small enough.

Having assured the hypotheses of Theorem 8 we may conclude that the Sobolev
equation (28) has a C1 smooth finite dimensional inertial manifold Mξ for any
0 ≤ ξ ≪ 1. Moreover, the semiflow generated by (28) is stable in the resonance
in a sense that the corresponding vector fields on Mξ for ξ = 0 and 0 < ξ ≪ 1

are C1-close to each other.
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