A note on convex sublattices of lattices

VÁCLAV SLAVÍK

Abstract. Let $CSub(\mathbf{K})$ denote the variety of lattices generated by convex sublattices of lattices in \mathbf{K} . For any proper variety \mathbf{V} , the variety $CSub(\mathbf{V})$ is proper. There are uncountably many varieties \mathbf{V} with $CSub(\mathbf{V}) = \mathbf{V}$.

Keywords: lattice, convex sublattice, variety Classification: 06B25

Let A be a lattice. Denote by Int(A) the lattice of all intervals of A and by CSub(A) the lattice of all convex sublattices of A. The empty set is considered to be in both Int(A) and CSub(A). For a variety **K** of lattices, let $CSub(\mathbf{K})$ denote the variety of lattices generated by $\{CSub(A); A \in \mathbf{K}\}$.

The aim of the paper is to show that there exist uncountably many varieties of lattices \mathbf{K} with $CSub(\mathbf{K}) = \mathbf{K}$ and that for any proper subvariety \mathbf{K} of lattices $CSub(\mathbf{K})$ is also proper. Thus we give a partial answer to the problem I. 10 posed in G. Grätzer [1].

Lemma 1. If p is a lattice term in k variables and A_1, \ldots, A_k convex sublattices of a lattice A, then

$$p(A_1,\ldots,A_k) = \bigcup \{ p(I_1,\ldots,I_k); I_j \subseteq A_j \text{ and } I_j \in Int(A) \}.$$

PROOF: (By induction on the length of p) Evidently, $p(I_1, \ldots, I_k) \subseteq p(A_1, \ldots, A_k)$ for any intervals $I_j \subseteq A_j$. We must show that every element of $p(A_1, \ldots, A_k)$ belongs to $p(I_1, \ldots, I_k)$ for some intervals I_j of A_j . If p is a variable, it is clear. Let x be an element of $t_1(A_1, \ldots, A_k) \lor t_2(A_1, \ldots, A_k)$ for some terms t_1, t_2 . We shall show that $x \in t_1(I_1, \ldots, I_k) \lor t_2(I_1, \ldots, I_k)$ for some intervals $I_j \subseteq A_j$. If either $t_1(A_1, \ldots, A_k) = \emptyset$ or $t_2(A_1, \ldots, A_k) = \emptyset$, then we get it by induction. In the opposite case there exist elements $a_1, b_1 \in t_1(A_1, \ldots, A_k)$ and $a_2, b_2 \in t_2(A_1, \ldots, A_k)$ such that $a_1 \land a_2 \le x \le b_1 \lor b_2$. By assumption there exist intervals J_j, K_j, L_j, M_j of A_j such that $a_1 \in t_1(J_1, \ldots, J_k), b_1 \in t_1(K_1, \ldots, K_k), a_2 \in t_2(L_1, \ldots, L_k), b_2 \in t_2(M_1, \ldots, M_k)$. It is evident that $a_1, a_2, b_1, b_2, x \in t_1(I_1, \ldots, I_k) \lor t_2(I_1, \ldots, I_k)$, where $I_j = J_j \lor K_j \lor L_j \lor M_j$. The rest is easy.

For any lattice A, Int(A) is a sublattice of CSub(A). Combining this fact with Lemma 1 we obtain the following proposition.

Proposition 1. Let *A* be a lattice and **V** a variety of lattices. Then $Int(A) \in \mathbf{V}$ if and only if $CSub(A) \in \mathbf{V}$.

For a bounded lattice B (with the least element u and the greatest element v), denote by $\mathscr{L}(B)$ the lattice pictured in Fig. 1. Denote by $\mathscr{L}_0(B)$ the lattices obtained from $\mathscr{L}(B)$ by excluding its least element.

Let **V** be a variety of lattices. Denote by $\mathscr{L}(\mathbf{V})$ the class of all lattices L such that whenever $\mathscr{L}(B)$ is a sublattice of L, then $B \in \mathbf{V}$.

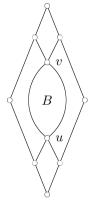


Figure 1: $\mathscr{L}(B)$

It is shown in [2] that $\mathscr{L}(\mathbf{V})$ is a variety of lattices. Moreover, $\mathscr{L}(\mathbf{V})$ is proper if \mathbf{V} is and $\mathscr{L}(\mathbf{V}) \neq \mathscr{L}(\mathbf{W})$ for any pair of varieties $\mathbf{V} \neq \mathbf{W}$. If variety \mathbf{V} is self-dual, then $\mathscr{L}(\mathbf{V})$ is self-dual, too.

Proposition 2. Let A be a lattice and V a self-dual variety of lattices. Then $A \in \mathscr{L}(\mathbf{V})$ if and only if $Int(A) \in \mathscr{L}(\mathbf{V})$.

PROOF: Without loss of generality we may assume that A is a bounded lattice. The mapping h of A into Int(A) defined by h(a) = [0, a] (0 is the least element of A) is an embedding of A into Int(A). So any variety containing Int(A) must contain also the lattice A. Now suppose that $A \in \mathscr{L}(\mathbf{V})$. Let $\mathscr{L}(B)$ be a sublattice of Int(A) for some bounded lattice B. For any element $b = [b_1, b_2] \in \mathscr{L}(B) \subseteq$ Int(A) different from the least element of $\mathscr{L}(B)$, denote $h(b) = (b_1, b_2)$. Clearly, the mapping h is an embedding of the partial lattice $\mathscr{L}_0(B)$ into $A^* \times A$, where A^* denotes the lattice dual to A. One can easily show that the sublattice of $A^* \times A$ generated by $h(\mathscr{L}_0(B))$ is isomorphic to $\mathscr{L}(B)$ (see [2]). Since $A^* \times A \in \mathscr{L}(\mathbf{V})$, we get $B \in \mathbf{V}$ and thus $Int(A) \in \mathscr{L}(\mathbf{V})$.

Since any proper variety \mathbf{V} of lattices is a subvariety of a proper self-dual variety \mathbf{W} and \mathbf{W} is a subvariety of a proper variety $\mathscr{L}(\mathbf{W})$ which is, by Propositions 1 and 2, closed under the formation of lattice of all convex sublattices, we get the following result.

Theorem 1. For any proper variety \mathbf{V} of lattices, the variety $CSub(\mathbf{V})$ is proper.

Since there exist uncountably many proper self-dual varieties of lattices (see [3], [4]) and $\mathscr{L}(\mathbf{V}) \neq \mathscr{L}(\mathbf{W})$ if $\mathbf{V} \neq \mathbf{W}$, we have, by Propositions 1 and 2, the following theorem.

Theorem 2. There exist uncountably many self-dual varieties V of lattices such that $CSub(\mathbf{V}) = V$.

References

- [1] Grätzer G., General Lattice Theory, Birkhäuser Verlag, 1978.
- [2] Adams M.E., Sichler J., Lattices with unique complementation, Pacif. J. Math. 92 (1981), 1–13.
- [3] McKenzie R., Equational bases for lattice theories, Math. Scand. 27 (1970), 24–38.
- [4] Wille R., Primitive subsets of lattices, Alg. Universalis 2 (1972), 95–98.

Agriculture University, Department of Mathematics, 165 21 Praha 6 – Suchdol, Czech Republic

(Received August 2, 1994)