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Abstract. We construct a space havfng the properties in the title, and with the same

technique, a countably compact T2 topological group which is not absolutely countably
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1. Introduction

A space X is called countably compact provided every countable open cover of
X has a finite subcover. A characterization of countable compactness (see [4], [2]
and [3, 3.12.22 (d)]) states that a T2-space X is countably compact iff for every
open cover U (countable or not) of X there exists a finite set F ⊂ X such that

St(F,U) = ∪{U ∈ U : U ∩ F 6= ∅} = X.

M.V. Matveev defined a space X to be absolutely countably compact (acc) [5]
provided for every open cover U of X and every dense Y ⊂ X , there exists a finite
set F ⊂ Y such that St(F,U) = X . We note that if D is a countable dense subset
of X , then

{St(x,U) : x ∈ D}

is a countable open cover of X ; so obviously if X is countably compact, there
exists a finite F ⊂ D such that St(F,U) = X . Hence, for a countably compact
space X , if X is hereditarily separable (more generally, has countable tightness
[5, 1.7]), or has a countable dense set of isolated points, then X is acc. Matveev
raised the natural question [5, 1.11]: Is every countably compact, separable space
acc? We answer this and another question of Matveev [5, 1.13] by constructing
the following examples.

Example 1.1. A separable, countably compact space which is not absolutely
countably compact.
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Example 1.2. A countably compact topological group which is not absolutely
countably compact.

The proofs that the spaces in 1.1 and 1.2 have the required properties follow
easily from known results, and the following theorem:

Theorem 1.3. If X is space having at least one nonempty closed, compact set
K and X has an open cover U which does not have a finite subcover, then the
product space Xκ, where κ = |U|, is not acc.

The hypothesis in 1.3 may be considered as a weak kind of separation property.
For example if the space X has at least one point x such that {x} is closed, then
K = {x} is compact and closed. Thus 1.3 holds in particular for T1-spaces.
On the other hand, we have the following simple example:

Example 1.4. A non-compact T0-space X such that every power Xκ is acc.

Proof: Let X be the set of natural numbers ω with the (well-known) T0 topology
whose only open sets are the empty set, ω, and {n : n < ω}. Thus the only
nontrivial open sets are initial intervals of integers. We show that Xκ is acc.
In fact, Xκ satisfies the stronger property (†): for every open cover U and every
point f ∈ Xκ, St({f},U) = Xκ. To see that (†) holds for this space, take any
f, g ∈ Xκ, and define h = max{f, g}. Pick any U ∈ U such that h ∈ U . By
definition of the product topology, there exists a finite F ⊂ κ and integers nα for
α ∈ F such that h ∈ B = ∩α∈F π−1(nα) ⊂ U . Thus for all α ∈ F we have

f(α), g(α) ≤ h(α) < nα;

so f, g ∈ B ⊂ U . �

The space X in 1.4 is not countably compact. A similar example which is
countably compact can be given by using the analogous topology on ω1 whose
only non-trivial open sets are initial intervals of ω1.

Theorem 1.3 improves the following similar theorem of Matveev, which we state
here with an added “separation” condition that is implicitly used in his proof.

Theorem 1.5 [5, 2.15]. For every non-compact space X [in which certain points
are closed], Xτ is not acc for some τ .

Matveev does not explicitly mention any separation axioms in the statement
of 1.5, but implicitly his proofs of [5, Propositions 2.7] and [5, Propositions 2.14]
(which are used in the proof of 1.5) each require that the a certain point, which
arises during the proof, be closed. Thus the separation hypothesis of 1.3 is weaker
that the implicit separation hypothesis of 1.5.
The main improvement of 1.3 over 1.5 is that we can take the cardinal κ in 1.3

to be much smaller than the cardinal τ in 1.5. We do not give here the definition
of Matveev’s cardinal τ = τ(X) (it is defined in the proof of [5, Lemma 2.13]
wherein it is not possible to use a cardinal smaller that τ). If in 1.3 we take κ
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to be as small as possible (i.e., for a noncompact space X , let κ(X) denote the
smallest cardinal number of an open cover of X having no finite subcover), then
it is not hard to show that κ(X) is the cofinality of τ(X), and moreover

κ(X) < iκ(X) ≤ τ(X).

Thus κ(X) is much smaller than τ(X) (recall i0 = ω, iα+1 = 2
iα , and for γ a

limit ordinal, iγ = sup{iα : α < γ}).

To show that the spaces in 1.1 and 1.2 are countably compact, we use the
following version of a theorem of C.T. Scarborough and A.H. Stone [9] (or see [10,
Theorem 3.3]). Recall that c denotes the cardinality of the continuum, t denotes
the smallest cardinality of a mod-finite tower on the set ω of natural numbers,
and that ω1 ≤ t ≤ c (see [1], [11]).

Theorem 1.6. Every product of no more than t sequentially compact spaces is
countably compact.

To show that our Example 1.1 is separable we use the following special case of
the Hewitt-Marczewski-Pondiczery theorem (see [3, 2.3.15]).

Theorem 1.7. The product of no more than c separable spaces is separable.

A preliminary version of this paper was presented at the first joint meeting
of the American Mathematical Society and the Sociedad Matematica Mexicana,
Merida, Mexico December 1–5, 1993 [12].

2. Proofs

Proof of Theorem 1.3. Let U be an open cover of X such that |U| = κ and U
has no finite subcover. We will assume that κ = κ(X), i.e. that |U| is the smallest
cardinality of an open cover of X having no finite subcover. This suffices to prove
the theorem because acc is preserved by continuous open maps (or certain more
general maps [5, Proposition 3.2]); so if Xκ is not acc, then neither is Xµ for all
µ ≥ κ.
By hypothesis there is a non-empty closed set K and a finite family U0 ⊂ U

covering K. Define
U ′ = U0 ∪ {U \ K : U ∈ U \ U0}.

Then U ′ is an open cover of X , U ′ does not have a finite subcover, |U ′| = κ, and
the elements in U0 are the only element of U

′ that intersect K. We may assume
that the original cover U has these properties, and that U = {Uα : α < κ}, with
U0 = {U0, U1, · · · , Un}, i.e. the elements of U0 are listed first in the well-order on
U .
Let W = {π−1

0 (Uα) ∩ π−1
α (Uβ) : α, β < κ}, where πα is the projection map

onto the αth coordinate. Then W covers Xκ since given any f ∈ Xκ, there exist
α < κ such that f(0) ∈ Uα, and there exists β < κ such that f(α) ∈ Uβ .
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Next we define a dense subset of Xκ by

Y = {f ∈ Xκ : {α < κ : f(α) /∈ K} is finite}.

To show that Xκ is not acc, we show that if F ⊂ Y is finite, then

∪{W ∈ W : W ∩ F 6= ∅} 6= Xκ.

For each f ∈ F , let Rf = {α < κ : f(α) /∈ K}, and let R = ∪{Rf : f ∈ F}. Thus
R is a finite subset of κ; so we may pick a point

p ∈ X − ∪{Uα : α ∈ R ∪ {0, 1, · · · , n}}.

Define g ∈ Xκ to be the constant function with constant value p. We need to
show that g 6∈ ∪{W ∈ W : W ∩ F 6= ∅} and we verify this by contradiction.
Suppose we have f ∈ F , and W ∈ W such that both f, g ∈ W . There exists
α, β < κ such that W = π−1

0 (Uα) ∩ π−1
α (Uβ). Since g(0) = g(α) = p ∈ Uα ∩ Uβ ,

we know that α, β 6∈ R ∪ {0, 1, · · · , n}. Since α /∈ R, we know that f(α) ∈ K.
Since the elements of U0 are the only elements of U

′ that intersect K, and we
have f(α) ∈ Uβ ∩ K, we get β ∈ {0, 1, · · · , n}, but this is a contradiction. �

The hypothesis in 1.3 onK can be formally weakened to the following technical
property (*): There exists an open cover U of X having no finite subcover, and
having a finite U0 ⊂ U such that

(∪U0) \ ∪(U \ U0) 6= ∅.

This set plays the role of K in the proof.

Proof of Example 1.1. Let T denote a mod-finite tower of infinite subsets
of ω with |T | = t (see [1], [11]), and let X(T ) denote the associated Franklin-
Rajagopalan space (see [8]). Then X(T ) is sequentially compact, separable, and
has an open cover of cardinality t which has no finite subcover. Thus X(T )t is
countably compact (by 1.6), separable (by 1.7, since t ≤ c), and not acc (by 1.3).

Proof of Example 1.2. Let

G = {f ∈ 2ω1 : |{α < ω1 : f(α) = 1}| ≤ ω}.

One can easily check that G is sequentially compact (indeed, G is a countably
compact, Fréchet-Urysohn space [7]). Further,

{π−1
α (0) : α < ω1}

is an open cover of G of cardinality ω1 which has no finite subcover. Thus Gω1 is
a countably compact group that is not acc. For this space G, unlike the separable
space X(T ) in the previous example, we do not need to use the Scarborough-
Stone Theorem to know that the product is countably compact. It is well-known
that every power of G is countably compact, i.e. G is ω-bounded (cf. [10, §4]).



A countably compact, separable space which is not absolutely countably compact 201

Remark. There are several other constructions of countably compact, non-acc
topological groups. After we had proved 1.2, we were informed that B. Bokalo
and I. Guran noticed that the existence of such a group is implicit in Matveev’s
Theorem 1.5: take any ω-bounded noncompact group (such as the groupG above).
Then by 1.5 there exists τ such that Gτ is not absolutely countably compact (in
this case τ ≥ iω1). Later, Matveev constructed a countably compact group
H ⊂ G, in fact a ring, that is not acc [6]. We included 1.2 since it is somewhat
different from these other two examples.

Questions. (1) Is there a countably compact, separable T2 group which is not
acc? A more basic question: (2) Is there a sequentially compact, separable T2
group which is not compact? If there is a group that answers question (2), and it
has an open cover of cardinality ≤ t with no finite subcover, then by the method
we have given, the answer to question (1) is “yes”.
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