On the extremality of regular extensions of contents and measures

WOLFGANG ADAMSKI

Abstract. Let \mathcal{A} be an algebra and \mathcal{K} a lattice of subsets of a set X. We show that every content on \mathcal{A} that can be approximated by \mathcal{K} in the sense of Marczewski has an extremal extension to a \mathcal{K} -regular content on the algebra generated by \mathcal{A} and \mathcal{K} . Under an additional assumption, we can also prove the existence of extremal regular measure extensions.

Keywords: regular content, lattice, semicompact, sequentially dominated *Classification:* 28A12

1. Introduction

If \mathcal{A} , \mathcal{B} , are algebras of subsets of some set X with $\mathcal{A} \subset \mathcal{B}$, then Plachky [9] has shown by a Krein-Milman argument that every (finite) content on \mathcal{A} has an extremal extension to a content on \mathcal{B} . In [2], this result has been generalized in the following way. If \mathcal{K} , \mathcal{L} are lattices of subsets of X with $\mathcal{K} \subset \mathcal{L}$, then every \mathcal{K} -regular content on $\alpha(\mathcal{K})$, the algebra generated by \mathcal{K} , has an extremal extension to an \mathcal{L} -regular content on $\alpha(\mathcal{L})$. It is the aim of this note to give the following further generalization. If \mathcal{A} is an algebra and \mathcal{K} a lattice of subsets of X, then every content on \mathcal{A} which can be approximated by \mathcal{K} in the sense of Marczewski [7] has an extremal extension to a \mathcal{K} -regular content on $\alpha(\mathcal{A} \cup \mathcal{K})$. Under an additional assumption, we can also prove the existence of extremal regular measure extensions. Note that extremal measure extensions are considered always under some additional assumptions ([2]) or for special situations (e.g. if the target σ -algebra is generated from a given one by adjunction of a family which either consists of pairwise disjoint sets or is well ordered by inclusion [3], [4], [5]), since, in general, extremal measure extensions do not exist (see [9], [11]).

Now we fix the notation. X will always denote an arbitrary set. Let \mathcal{C} be a subset of $\mathcal{P}(X)$, the power set of X. We write $\alpha(\mathcal{C})$, $\sigma(\mathcal{C})$ for the algebra, σ -algebra generated by \mathcal{C} , respectively. Furthermore, \mathcal{C}_{δ} denotes the family of all countable intersections of sets from \mathcal{C} . \mathcal{C} is said to be <u>semicompact</u> if every countable subfamily of \mathcal{C} having the finite intersection property has nonvoid intersection. \mathcal{C} is called a <u>lattice</u> if $\emptyset \in \mathcal{C}$ and \mathcal{C} is closed under finite unions and finite intersections. For a lattice \mathcal{C} , we denote by $\mathcal{F}(\mathcal{C}) := \{F \subset X : F \cap C \in \mathcal{C} \text{ for every } C \in \mathcal{C}\}$ the lattice of so-called "<u>local \mathcal{C} -sets</u>". Obviously, $X \in \mathcal{F}(\mathcal{C})$ and $\mathcal{C} \subset \mathcal{F}(\mathcal{C})$; in addition, we have $\mathcal{C} = \mathcal{F}(\mathcal{C})$ iff $X \in \mathcal{C}$.

W. Adamski

If \mathcal{D} is another subset of $\mathcal{P}(X)$, then \mathcal{C} is said to be <u>sequentially dominated</u> by \mathcal{D} if whenever $(C_n \in \mathcal{C})_{n \in N}$ and $C_n \downarrow \emptyset$, there exists a sequence $(D_n \in \mathcal{D})_{n \in N}$ such that $D_n \downarrow \emptyset$ and $C_n \subset D_n$ for all $n \in N$. Note that a semicompact family is sequentially dominated by any family \mathcal{D} with $X \in \mathcal{D}$.

By a <u>content</u> (measure) we always understand a $[0, \infty)$ -valued, finitely (countably) additive set function defined on an algebra.

Consider a lattice $\mathcal{K} \subset \mathcal{P}(X)$ and a content μ on the algebra $\mathcal{A} \subset \mathcal{P}(X)$. Under the assumption $\mathcal{K} \subset \mathcal{A}$, μ is called <u> \mathcal{K} -regular</u> if $\mu(A) = \sup\{\mu(K) : K \in \mathcal{K}, K \subset A\}$ for all $A \in \mathcal{A}$. For the following concept going back to Marczewski [7], we will use the terminology of [8]:

 \mathcal{K} is said to μ -approximate \mathcal{A} if for every $A \in \mathcal{A}$ and every $\varepsilon > 0$, there exist sets $B \in \mathcal{A}$ and $K \in \mathcal{K}$ such that $B \subset K \subset A$ and $\mu(A - B) < \varepsilon$ hold. Note that in case $\mathcal{K} \subset \mathcal{A}$, $\mathcal{K} \mu$ -approximates \mathcal{A} iff μ is \mathcal{K} -regular.

2. The main results

In this section we consider an algebra \mathcal{A} and two lattices \mathcal{K} , \mathcal{L} of subsets of X with $\mathcal{K} \subset \mathcal{L}$ as well as a content μ on \mathcal{A} such that $\mathcal{K} \mu$ -approximates \mathcal{A} .

If $\mathcal{B} \supset \mathcal{A}$ is another algebra, then $\operatorname{ba}(\mu, \mathcal{B})$ denotes the family of all contents on \mathcal{B} that extend μ . In addition, we define $\operatorname{ba}(\mu, \mathcal{B}, \mathcal{K}) := \{\nu \in \operatorname{ba}(\mu, \mathcal{B}) : \mathcal{K} \nu$ -approximates $\mathcal{B}\}$ and $\operatorname{ca}(\mu, \mathcal{B}, \mathcal{K}) := \{\nu \in \operatorname{ba}(\mu, \mathcal{B}, \mathcal{K}) : \nu \text{ is a measure}\}$. Note that $\operatorname{ba}(\mu, \mathcal{B})$, $\operatorname{ba}(\mu, \mathcal{B}, \mathcal{K})$ and $\operatorname{ca}(\mu, \mathcal{B}, \mathcal{K})$ are convex sets. If D is any of these sets, then ex D denotes the set of extreme points of D.

Lemma 2.1. Let $\mathcal{B} \supset \mathcal{A}$ be another algebra and $\nu \in ba(\mu, \mathcal{B}, \mathcal{K})$. Then $\nu \in ex ba(\mu, \mathcal{B}, \mathcal{K})$ iff $\nu \in ex ba(\mu, \mathcal{B})$.

PROOF: Assume $\nu \in \operatorname{ex} \operatorname{ba}(\mu, \mathcal{B}, \mathcal{K})$ and let $\nu = \frac{1}{2}(\nu_1 + \nu_2)$ with $\nu_1, \nu_2 \in \operatorname{ba}(\mu, \mathcal{B})$. Since $\frac{1}{2}\nu_i \leq \nu$ and $\nu \in \operatorname{ba}(\mu, \mathcal{B}, \mathcal{K})$ we have $\nu_i \in \operatorname{ba}(\mu, \mathcal{B}, \mathcal{K})$ for i = 1, 2. Thus we infer $\nu_1 = \nu_2$ from the extremality of ν . This proves $\nu \in \operatorname{ex} \operatorname{ba}(\mu, \mathcal{B})$. The other part of the claim is obvious.

Lemma 2.2. If $Q \in \mathcal{F}(\mathcal{K}) - \mathcal{A}$ and $\mathcal{B} := \alpha(\mathcal{A} \cup \{Q\})$ then $\operatorname{exba}(\mu, \mathcal{B}, \mathcal{K}) \neq \emptyset$. PROOF: (1) For every $E \in \mathcal{P}(X)$, we define $\mu^*(E) := \inf\{\mu(A) : E \subset A \in \mathcal{A}\}$ and $\mu_*(E) := \sup\{\mu(A) : E \supset A \in \mathcal{A}\}$. It is well known ([6]) that $\mathcal{B} = \{(A_1 \cap Q) \cup (A_2 - Q) : A_1, A_2 \in \mathcal{A}\}$ and $\nu(B) := \mu^*(B \cap Q) + \mu_*(B - Q), B \in \mathcal{B}$, defines an element ν of $\operatorname{ba}(\mu, \mathcal{B})$.

(2) To prove $\nu \in \operatorname{ba}(\mu, \mathcal{B}, \mathcal{K})$ let $B \in \mathcal{B}$ and $\varepsilon > 0$ be given. Then $B = (A_1 \cap Q) \cup (A_2 - Q)$ with some \mathcal{A} -sets A_1, A_2 . Since $\mu_*(B - Q) = \mu_*(A_2 - Q) = \sup\{\mu(A) : A \in \mathcal{A}, A \subset A_2 - Q\}$, there is an \mathcal{A} -set C satisfying $C \subset A_2 - Q$ and $\mu_*(B - Q) < \mu(C) + \frac{\varepsilon}{4}$. In addition, there exist sets $C_0 \in \mathcal{A}$ and $K_0 \in \mathcal{K}$ such that $C_0 \subset K_0 \subset C$ and $\mu(C) < \mu(C_0) + \frac{\varepsilon}{4}$. This together yields $\mu_*(B - Q) < \mu(C_0) + \frac{\varepsilon}{2}$. Furthermore, one can choose sets $C_1 \in \mathcal{A}$ and $K_1 \in \mathcal{K}$ such that $C_1 \subset K_1 \subset A_1$ and $\mu(A_1 - C_1) < \frac{\varepsilon}{2}$ which implies $\mu^*((A_1 \cap Q) - C_1) \leq \mu(A_1 - C_1) < \frac{\varepsilon}{2}$ and hence $\mu^*(A_1 \cap Q) \leq \mu^*((A_1 \cap Q) - C_1) + \mu^*(A_1 \cap Q \cap C_1) < \mu^*(C_1 \cap Q) + \frac{\varepsilon}{2}$. Now

 $B^* := (C_1 \cap Q) \cup (C_0 - Q) \in \mathcal{B}, \ K^* := (K_1 \cap Q) \cup K_0 \in \mathcal{K}, \ B^* \subset K^* \subset B \text{ and } \nu(B) = \mu^*(B \cap Q) + \mu_*(B - Q) < \mu^*(A_1 \cap Q) + \mu(C_0) + \frac{\varepsilon}{2} < \mu^*(C_1 \cap Q) + \mu(C_0) + \varepsilon = \mu^*(C_1 \cap Q) + \mu_*(C_0 - Q) + \varepsilon = \nu(B^*) + \varepsilon. \text{ Thus } \nu \in \mathrm{ba}(\mu, \mathcal{B}, \mathcal{K}).$

(3) To prove $\nu \in \operatorname{ex}\operatorname{ba}(\mu, \mathcal{B}, \mathcal{K})$ it suffices to show $\nu \in \operatorname{ex}\operatorname{ba}(\mu, \mathcal{B})$. For an arbitrary $\varepsilon > 0$, choose $A \in \mathcal{A}$ such that $Q \subset A$ and $\mu(A) < \mu^*(Q) + \varepsilon$. Then $\nu(A \bigtriangleup Q) = \nu(A - Q) = \mu_*(A - Q) = \mu(A) - \mu^*(Q) < \varepsilon$. From [9], Theorem 1 and the associated Remark 2, we infer $\nu \in \operatorname{ex}\operatorname{ba}(\mu, \mathcal{B})$.

If \mathcal{B} is an algebra satisfying $\mathcal{A} \cup \mathcal{K} \subset \mathcal{B}$, then $\operatorname{ba}(\mu, \mathcal{B}, \mathcal{K})$ is the family of all \mathcal{K} -regular contents on \mathcal{B} that extend μ . According to [1, Theorem 3.4], μ can be extended to a \mathcal{K} -regular content on $\alpha(\mathcal{A} \cup \mathcal{F}(\mathcal{K}))$. The following basic result shows that even an extremal extension exists.

Theorem 2.3. ex ba $(\mu, \alpha(\mathcal{A} \cup \mathcal{E}), \mathcal{K}) \neq \emptyset$ for every sublattice \mathcal{E} of $\mathcal{F}(\mathcal{K})$.

PROOF: (1) Fix some sublattice \mathcal{E} of $\mathcal{F}(\mathcal{K})$ and define $\Gamma := \{(\mathcal{M}, \varrho) : \mathcal{M} \text{ is a sublattice of } \mathcal{E} \text{ and } \varrho \in \exp(\mu, \alpha(\mathcal{A} \cup \mathcal{M}), \mathcal{K})\}$. Note that $(\{\varnothing\}, \mu) \in \Gamma$. We order the elements of Γ in the following way: $(\mathcal{M}, \varrho) \leq (\mathcal{M}', \varrho')$ iff $\mathcal{M} \subset \mathcal{M}'$ and ϱ' is an extension of ϱ .

(2) Now we show that Γ is inductively ordered. Consider a chain $(\mathcal{M}_i, \varrho_i)_{i \in I}$ in Γ . Then $\mathcal{M} := \bigcup_{i \in I} \mathcal{M}_i$ is a sublattice of \mathcal{E} and $\alpha(\mathcal{A} \cup \mathcal{M}) = \bigcup_{i \in I} \alpha(\mathcal{A} \cup \mathcal{M}_i)$. For $C \in \alpha(\mathcal{A} \cup \mathcal{M})$, define $\varrho(C) := \varrho_i(C)$ provided that $C \in \alpha(\mathcal{A} \cup \mathcal{M}_i)$. ϱ is a content on $\alpha(\mathcal{A} \cup \mathcal{M})$ that extends every ϱ_i . It is easy to see that $\varrho \in ba(\mu, \alpha(\mathcal{A} \cup \mathcal{M}), \mathcal{K})$.

To prove $\varrho \in \operatorname{ex}\operatorname{ba}(\mu, \alpha(\mathcal{A} \cup \mathcal{M}), \mathcal{K})$ consider $\tau_1, \tau_2 \in \operatorname{ba}(\mu, \alpha(\mathcal{A} \cup \mathcal{M}), \mathcal{K})$ with $\varrho = \frac{1}{2}(\tau_1 + \tau_2)$. Fix some $i_0 \in I$ and define $\hat{\tau}_j := \tau_j \mid \alpha(\mathcal{A} \cup \mathcal{M}_{i_0})$ for j = 1, 2. Then $\hat{\tau}_j \in \operatorname{ba}(\mu, \alpha(\mathcal{A} \cup \mathcal{M}_{i_0})), j = 1, 2$, and $\varrho_{i_0} = \frac{1}{2}(\hat{\tau}_1 + \hat{\tau}_2)$. Since $\varrho_{i_0} \in \operatorname{ex}\operatorname{ba}(\mu, \alpha(\mathcal{A} \cup \mathcal{M}_{i_0}), \mathcal{K})$, we infer $\hat{\tau}_1 = \hat{\tau}_2$ from 2.1.

Now consider an arbitrary $A \in \alpha(\mathcal{A} \cup \mathcal{M})$. Then $A \in \alpha(\mathcal{A} \cup \mathcal{M}_{i_0})$ for some $i_0 \in I$ and hence $\tau_1(A) = \hat{\tau}_1(A) = \hat{\tau}_2(A) = \tau_2(A)$. Thus $\tau_1 = \tau_2$ which proves $\varrho \in \operatorname{ex}\operatorname{ba}(\mu, \alpha(\mathcal{A} \cup \mathcal{M}), \mathcal{K})$.

Consequently, $(\mathcal{M}_i, \varrho_i) \leq (\mathcal{M}, \varrho) \in \Gamma$ for all $i \in I$. So Γ is inductively ordered. (3) By Zorn's lemma, there is a maximal element $(\widetilde{\mathcal{M}}, \widetilde{\varrho})$ in Γ . We will show $\widetilde{\mathcal{M}} = \mathcal{E}$ which implies that $\widetilde{\varrho}$ is the desired extremal element of $\operatorname{ba}(\mu, \alpha(\mathcal{A} \cup \mathcal{E}), \mathcal{K})$.

Assume that there is a set $Q \in \mathcal{E} - \widetilde{\mathcal{M}}$. Denoting by $\check{\mathcal{K}}$ the lattice generated by $\widetilde{\mathcal{M}} \cup \{Q\}$, we have $\alpha(\mathcal{A} \cup \check{\mathcal{K}}) = \alpha(\mathcal{B} \cup \{Q\})$ with $\mathcal{B} := \alpha(\mathcal{A} \cup \widetilde{\mathcal{M}})$. It follows $Q \notin \mathcal{B}$. By 2.2, there exists an element $\check{\mu} \in \operatorname{ex}\operatorname{ba}(\widetilde{\varrho}, \alpha(\mathcal{A} \cup \check{\mathcal{K}}), \mathcal{K})$.

Next we shall prove $\check{\mu} \in \operatorname{ex} \operatorname{ba}(\mu, \alpha(\mathcal{A} \cup \check{\mathcal{K}}), \mathcal{K})$ which implies $(\check{\mathcal{K}}, \check{\mu}) \in \Gamma$. On the other hand, $(\widetilde{\mathcal{M}}, \widetilde{\varrho}) \leq (\check{\mathcal{K}}, \check{\mu})$ and $\widetilde{\mathcal{M}} \neq \check{\mathcal{K}}$ which, however, is in contrast to the maximality of $(\widetilde{\mathcal{M}}, \widetilde{\varrho})$.

It is obvious that $\check{\mu} \in ba(\mu, \alpha(\mathcal{A} \cup \check{\mathcal{K}}), \mathcal{K})$. To prove the extremality of $\check{\mu}$, let $\check{\mu} = \frac{1}{2}(\mu_1 + \mu_2)$ with $\mu_1, \mu_2 \in ba(\mu, \alpha(\mathcal{A} \cup \check{\mathcal{K}}), \mathcal{K})$ and define $\tilde{\mu}_i := \mu_i \mid \alpha(\mathcal{A} \cup \widetilde{\mathcal{M}}), i = 1, 2$. For $B \in \mathcal{B}, \ \tilde{\varrho}(B) = \check{\mu}(B) = \frac{1}{2}(\tilde{\mu}_1(B) + \tilde{\mu}_2(B)), \text{ i.e. } \tilde{\varrho} = \frac{1}{2}(\tilde{\mu}_1 + \tilde{\mu}_2).$

Since $\tilde{\varrho} \in \operatorname{ex} \operatorname{ba}(\mu, \alpha(\mathcal{A} \cup \widetilde{\mathcal{M}}))$ by 2.1, we infer $\tilde{\mu}_1 = \tilde{\mu}_2 = \tilde{\varrho}$. Consequently, $\mu_1, \mu_2 \in \operatorname{ba}(\tilde{\varrho}, \alpha(\mathcal{A} \cup \check{\mathcal{K}}))$. As $\check{\mu} \in \operatorname{ex} \operatorname{ba}(\tilde{\varrho}, \alpha(\mathcal{A} \cup \check{\mathcal{K}}))$ by 2.1, we obtain $\mu_1 = \mu_2$ proving $\check{\mu} \in \operatorname{ex} \operatorname{ba}(\mu, \alpha(\mathcal{A} \cup \check{\mathcal{K}}), \mathcal{K})$.

Corollary 2.4. ex ba $(\mu, \alpha(\mathcal{A} \cup \mathcal{E}), \mathcal{L}) \neq \emptyset$ for every sublattice \mathcal{E} of $\mathcal{F}(\mathcal{L})$.

PROOF: Since $\mathcal{K} \subset \mathcal{L}$ and $\mathcal{K} \mu$ -approximates \mathcal{A} , so does \mathcal{L} . Thus our claim follows from 2.3 (with \mathcal{L} instead of \mathcal{K}).

In case $\mathcal{A} = \alpha(\mathcal{K})$, the assumption that $\mathcal{K} \mu$ -approximates \mathcal{A} is equivalent to \mathcal{K} -regularity of μ . Thus we obtain from 2.4

Corollary 2.5 ([2, Theorem 2.3]). Every \mathcal{K} -regular content on $\alpha(\mathcal{K})$ admits an extremal extension to an \mathcal{L} -regular content on $\alpha(\mathcal{L})$.

Our next result is concerned with the existence of extremal measure extensions. **Theorem 2.6.** If μ is a measure and \mathcal{K} is sequentially dominated by \mathcal{A} , then $\exp(\alpha(\mathcal{A} \cup \mathcal{E}), \mathcal{K}_{\delta}) \neq \emptyset$ for every sublattice \mathcal{E} of $\mathcal{F}(\mathcal{K}_{\delta})$.

PROOF: Fix some sublattice \mathcal{E} of $\mathcal{F}(\mathcal{K}_{\delta})$ and define $\mathcal{B} := \alpha(\mathcal{A} \cup \mathcal{E})$. By 2.4, there exists an element $\varrho \in \operatorname{ex} \operatorname{ba}(\mu, \mathcal{B}, \mathcal{K}_{\delta})$. To show the countable additivity of ϱ , consider a sequence (B_n) of sets from \mathcal{B} with $B_n \downarrow \varnothing$. For any $\varepsilon > 0$ and $n \in N$, choose $C_n \in \mathcal{B}$ and $K_n \in \mathcal{K}_{\delta}$ such that $C_n \subset K_n \subset B_n$ and $\varrho(B_n - C_n) < \varepsilon \cdot 2^{-n}$. Then $D_n := \bigcap_{i=1}^n C_i \subset \bigcap_{i=1}^n K_i \subset B_n$ and $\varrho(B_n - D_n) \leq$ $\varrho(\bigcup_{i=1}^n (B_i - C_i)) \leq \sum_{i=1}^n \varrho(B_i - C_i) < \varepsilon$ for $n \in N$. Furthermore, $K'_n :=$ $\bigcap_{i=1}^n K_i \in \mathcal{K}_{\delta}$ and $K'_n \downarrow \varnothing$. Since also \mathcal{K}_{δ} is sequentially dominated by \mathcal{A} , there is a sequence (A_n) of \mathcal{A} -sets satisfying $A_n \downarrow \varnothing$ and $K'_n \subset A_n$ for $n \in N$. This implies $\varrho(B_n) \leq \varrho((B_n - D_n) \cup A_n) \leq \varrho(B_n - D_n) + \varrho(A_n) < \varepsilon + \mu(A_n) < 2\varepsilon$ for all sufficiently large n. Therefore ϱ is a measure.

Denote by $\tilde{\varrho}$ the unique measure extension of ϱ to $\sigma(\mathcal{B}) = \sigma(\mathcal{A} \cup \mathcal{E})$. Then $\tilde{\varrho} \in \operatorname{ca}(\mu, \sigma(\mathcal{B}), \mathcal{K}_{\delta})$ by [8, (2.10)]. To prove $\tilde{\varrho} \in \operatorname{ex}\operatorname{ca}(\mu, \sigma(\mathcal{B}), \mathcal{K}_{\delta})$ consider $\tilde{\varrho}_{1}, \tilde{\varrho}_{2} \in$ $\operatorname{ca}(\mu, \sigma(\mathcal{B}), \mathcal{K}_{\delta})$ with $\tilde{\varrho} = \frac{1}{2}(\tilde{\varrho}_{1} + \tilde{\varrho}_{2})$. Let $\varrho_{i} := \tilde{\varrho}_{i} \mid \mathcal{B}$ for i = 1, 2. Then $\varrho = \frac{1}{2}(\varrho_{1} + \varrho_{2})$. As $\mathcal{K}_{\delta} \ \varrho$ -approximates \mathcal{B} and $\frac{1}{2}\varrho_{i} \leq \varrho$, \mathcal{K}_{δ} also ϱ_{i} -approximates \mathcal{B} which implies $\varrho_{i} \in \operatorname{ba}(\mu, \mathcal{B}, \mathcal{K}_{\delta})$ for i = 1, 2. Since $\varrho \in \operatorname{ex}\operatorname{ba}(\mu, \mathcal{B}, \mathcal{K}_{\delta})$, we conclude $\varrho_{1} = \varrho_{2}$ and hence $\tilde{\varrho}_{1} = \tilde{\varrho}_{2}$.

Corollary 2.7. If \mathcal{K} is semicompact, then $\exp(\alpha(\mathcal{A} \cup \mathcal{E}), \mathcal{K}_{\delta}) \neq \emptyset$ for every sublattice \mathcal{E} of $\mathcal{F}(\mathcal{K}_{\delta})$.

PROOF: The semicompactness of \mathcal{K} implies that both μ is a measure and \mathcal{K} is sequentially dominated by \mathcal{A} . Thus the assertion follows from 2.6.

Under the additional assumption $\mathcal{K} \subset \mathcal{A}$, the previous results can be strengthened in the following way, thus obtaining an "extremal version" of the extension theorem 3.6 of [1].

Theorem 2.8. Assume $\mathcal{K} \subset \mathcal{A}$.

(a) Then $\exp(\mu, \mathcal{B}, \mathcal{L}) \neq \emptyset$ for every algebra \mathcal{B} satisfying $\mathcal{A} \cup \mathcal{L} \subset \mathcal{B} \subset \alpha(\mathcal{A} \cup \mathcal{F}(\mathcal{K}) \cup \mathcal{F}(\mathcal{L})).$

(b) If, in addition, μ is a measure and \mathcal{L} is sequentially dominated by $\sigma(\mathcal{A} \cup \mathcal{F}(\mathcal{K}_{\delta}))$, then $\exp(\alpha, \mathcal{B}, \mathcal{L}_{\delta}) \neq \emptyset$ for every σ -algebra \mathcal{B} satisfying $\mathcal{A} \cup \mathcal{L} \subset \mathcal{B} \subset \sigma(\mathcal{A} \cup \mathcal{F}(\mathcal{K}_{\delta}) \cup \mathcal{F}(\mathcal{L}_{\delta}))$.

PROOF: We only prove (b), since the (simpler) proof of (a) can be performed in the same way.

(1) We first consider the special case $\mathcal{B} = \sigma(\mathcal{A} \cup \mathcal{F}(\mathcal{K}_{\delta}) \cup \mathcal{F}(\mathcal{L}_{\delta}))$. Define $\mathcal{C} = \sigma(\mathcal{A} \cup \mathcal{F}(\mathcal{K}_{\delta}))$, and let ν be the \mathcal{K}_{δ} -regular measure on \mathcal{C} extending μ that has been constructed in the proof of [1, 3.6 (b)]. Since \mathcal{L} is sequentially dominated by \mathcal{C} , so is \mathcal{L}_{δ} . In addition, $\mathcal{K}_{\delta} \subset \mathcal{L}_{\delta}$ and $\mathcal{B} = \sigma(\mathcal{C} \cup \mathcal{F}(\mathcal{L}_{\delta}))$. Thus, by 2.6, there exists an element $\tau \in \operatorname{ex}\operatorname{ca}(\nu, \mathcal{B}, \mathcal{L}_{\delta})$. Clearly $\tau \in \operatorname{ca}(\mu, \mathcal{B}, \mathcal{L}_{\delta})$. To prove $\tau \in \operatorname{ex}\operatorname{ca}(\mu, \mathcal{B}, \mathcal{L}_{\delta})$ consider $\tau_1, \tau_2 \in \operatorname{ca}(\mu, \mathcal{B}, \mathcal{L}_{\delta})$ with $\tau = \frac{1}{2}(\tau_1 + \tau_2)$. Then

(2.1)
$$\nu(C) \le \tau_i(C) \text{ for } C \in \mathcal{C} \text{ and } i = 1, 2.$$

Assume that (2.1) fails to be true. Then $\nu(C) > \tau_i(C)$ for some $C \in C$ and some $i \in \{1, 2\}$. Thus we can find a \mathcal{K}_{δ} -set \overline{K} satisfying $\overline{K} \subset C$ and $\nu(\overline{K}) > \tau_i(C)$. Choosing a sequence (K_n) in \mathcal{K} such that $K_n \downarrow \overline{K}$, we obtain the contradiction $\inf_n \mu(K_n) = \inf_n \nu(K_n) = \nu(\overline{K}) > \tau_i(C) \ge \tau_i(\overline{K}) = \inf_n \tau_i(K_n) = \inf_n \mu(K_n)$. Thus (2.1) holds true.

Since also $\tau_i(X) = \mu(X) = \nu(X)$ for i = 1, 2, we infer from (2.1) $\tau_1 \mid \mathcal{C} = \tau_2 \mid \mathcal{C} = \nu$. Thus $\tau_1, \tau_2 \in \operatorname{ca}(\nu, \mathcal{B}, \mathcal{L}_{\delta})$ which together with $\tau \in \operatorname{ex}\operatorname{ca}(\nu, \mathcal{B}, \mathcal{L}_{\delta})$ implies $\tau_1 = \tau_2$. So $\tau \in \operatorname{ex}\operatorname{ca}(\mu, \mathcal{B}, \mathcal{L}_{\delta})$.

(2) Now we consider an arbitrary σ -algebra \mathcal{B} satisfying $\mathcal{A} \cup \mathcal{L} \subset \mathcal{B} \subset \mathcal{E}$ where $\mathcal{E} := \sigma(\mathcal{A} \cup \mathcal{F}(\mathcal{K}_{\delta}) \cup \mathcal{F}(\mathcal{L}_{\delta}))$. By the special case (1), there exists an element $\varrho \in \operatorname{ex}\operatorname{ca}(\mu, \mathcal{E}, \mathcal{L}_{\delta})$. Then $\nu := \varrho \mid \mathcal{B} \in \operatorname{ca}(\mu, \mathcal{B}, \mathcal{L}_{\delta})$. To prove $\nu \in \operatorname{ex}\operatorname{ca}(\mu, \mathcal{B}, \mathcal{L}_{\delta})$ consider $\nu_1, \nu_2 \in \operatorname{ca}(\mu, \mathcal{B}, \mathcal{L}_{\delta})$ with $\nu = \frac{1}{2}(\nu_1 + \nu_2)$. For every $E \in \mathcal{E}, \ \varrho(E) = \sup\{\varrho(L) : L \in \mathcal{L}_{\delta}, L \subset E\} = \sup\{\nu(L) : L \in \mathcal{L}_{\delta}, L \subset E\} = \frac{1}{2}(\sup\{\nu_1(L) : L \in \mathcal{L}_{\delta}, L \subset E\}) \leq \frac{1}{2}(\widetilde{\nu}_1(E) + \widetilde{\nu}_2(E))$ where $\widetilde{\nu}_i$ denotes an arbitrary content on \mathcal{E} that extends $\nu_i, \ i = 1, 2$. It follows $\varrho \leq \frac{1}{2}(\widetilde{\nu}_1 + \widetilde{\nu}_2)$ as well as $\frac{1}{2}(\widetilde{\nu}_1(X) + \widetilde{\nu}_2(X)) = \frac{1}{2}(\nu_1(X) + \nu_2(X)) = \mu(X) = \varrho(X)$ which implies

(2.2)
$$\varrho = \frac{1}{2} (\tilde{\nu}_1 + \tilde{\nu}_2).$$

From (2.2) we infer both the countable additivity and the \mathcal{L}_{δ} -regularity of $\tilde{\nu}_i$, i = 1, 2. Therefore $\rho \in \exp(\alpha(\mu, \mathcal{E}, \mathcal{L}_{\delta}))$ and (2.2) imply $\tilde{\nu}_1 = \tilde{\nu}_2$ and hence $\nu_1 = \nu_2$. So $\nu \in \exp(\alpha(\mu, \mathcal{B}, \mathcal{L}_{\delta}))$.

An immediate consequence of 2.8 (b) is [2, Theorem 2.4], various applications of which are gathered in Section 3 of [2].

The assumptions of 2.8 (b) are, in particular, satisfied if the lattice \mathcal{L} is semicompact. Thus we obtain **Corollary 2.9.** If \mathcal{L} is semicompact and $\mathcal{K} \subset \mathcal{A}$ holds, then $\exp(\alpha, \mathcal{B}, \mathcal{L}_{\delta}) \neq \emptyset$ for every σ -algebra \mathcal{B} satisfying $\mathcal{A} \cup \mathcal{L} \subset \mathcal{B} \subset \sigma(\mathcal{A} \cup \mathcal{F}(\mathcal{K}_{\delta}) \cup \mathcal{F}(\mathcal{L}_{\delta}))$.

The following result is an application of 2.9.

Corollary 2.10. Let \mathcal{C} , \mathcal{D} be lattices of subsets of X such that $\mathcal{C} \subset \mathcal{D} \subset \mathcal{F}(\mathcal{C}_{\delta})$. If \mathcal{C} is semicompact and $\mathcal{A} \subset \sigma(\mathcal{D})$, then every $\mathcal{C} \cap \mathcal{A}$ -regular content on \mathcal{A} admits an extremal extension to a \mathcal{C}_{δ} -regular measure on $\sigma(\mathcal{D})$.

PROOF: The claim follows with $\mathcal{K} = \mathcal{C} \cap \mathcal{A}$ and $\mathcal{L} = \mathcal{C}$ from 2.9.

The assumptions of 2.10 are, in particular, satisfied if C, D are the lattices of compact, respectively closed, subsets of a Hausdorff topological space. Thus one obtains from 2.10 an "extremal version" of Henry's extension theorem (cf. [10, Theorem 16, p. 51]).

References

- Adamski W., On regular extensions of contents and measures, J. Math. Anal. Appl. 127 (1987), 211–225.
- [2] _____, On extremal extensions of regular contents and measures, Proc. Amer. Math. Soc. 121 (1994), 1159–1164.
- [3] Bierlein D., Stich W.J.A., On the extremality of measure extensions, Manuscripta Math. 63 (1989), 89–97.
- [4] Hackenbroch W., Measures admitting extremal extensions, Arch. Math. 49 (1987), 257–266.
- [5] Lipecki Z., Components in vector lattices and extreme extensions of quasi-measures and measures, Glasgow Math. J. 35 (1993), 153-162.
- [6] Los J., Marczewski E., Extensions of measure, Fund. Math. 36 (1949), 267–276.
- [7] Marczewski E., On compact measures, Fund. Math. 40 (1953), 113-124.
- [8] Pfanzagl J., Pierlo W., Compact systems of sets, Lecture Notes in Math., Vol. 16, Springer-Verlag, 1966.
- [9] Plachky D., Extremal and monogenic additive set functions, Proc. Amer. Math. Soc. 54 (1976), 193–196.
- [10] Schwartz L., Radon measures on arbitrary topological spaces and cylindrical measures, Oxford UP, 1973.
- [11] von Weizsäcker H., Remark on extremal measure extensions, Lecture Notes in Math., Vol. 794, Springer-Verlag, 1980.

Mathematisches Institut, Universität München, Theresienstr. 39, D-80333 München, Germany

(Received September 21, 1994)