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On the existence of 2-fields in 8-dimensional

vector bundles over 8-complexes

Martin Čadek, Jiř́ı Vanžura

Abstract. Necessary and sufficient conditions for the existence of two linearly indepen-
dent sections in an 8-dimensional spin vector bundle over a CW-complex of the same
dimension are given in terms of characteristic classes and a certain secondary cohomology
operation. In some cases this operation is computed.
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1. Introduction

There are several papers devoted to the existence of tangent 2-fields on 4k-
dimensional manifolds. In [T1] E. Thomas used the method of the Postnikov
tower to show that a spin vector bundle ξ over a 4k-dimensional manifold M
has two linearly independent sections if and only if the Euler class e(ξ) = 0, the
Stiefel-Whitney class δw4k−2 = 0, and Φ(U) = 0, where U is the Thom class of
ξ and Φ is a certain secondary operation. In the case of the tangent bundle of
a compact spin manifold and under some additional assumptions onH∗(M ;Z2) he
found that the last condition is equivalent to the fact that the Euler characteristic
is divisible by 4.
For general 4k-dimensional manifolds the problem of the existence of tangent

2-fields was solved by D. Frank in [F] using K-theory and by M. Atiyah and
J. Dupont in [AD] using index theory. The necessary and sufficient conditions
here are the vanishing of the Euler characteristic and divisibility of the signature
by 4. In both papers the fact that the vector bundle is a tangent bundle is
essential.
The aim of this note is to present results concerning the existence of two linearly

independent sections in 8-dimensional spin vector bundles over a CW-complex X
of the same dimension. The main results (Theorems 5.1 and 5.2) use a secondary
cohomology operation Ω : H4(X ;Z)→ H8(X ;Z2) applied on a cohomology class
which can be computed from the Pontrjagin and Stiefel-Whitney classes. The
computation of Ω is often possible also for non-tangent bundles. As a corollary
we obtain the following theorem given in terms of the Euler and Pontrjagin classes.
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Theorem 1.1. Let M be a compact smooth spin manifold of dimension 8 and
let ξ be an 8-dimensional oriented vector bundle over M with w2(ξ) = 0 and
w4(ξ) = w4(M). Suppose H4(M, Z) has no element of order 4. Then ξ has two
linearly independent sections if and only if the Euler class of ξ vanishes and

{4p2(ξ)− 2p
2
1(ξ)− p21(M) + 2p1(ξ)p1(M)}[M ] ≡ 0 mod 32.

The computation of Ω needed in the proof of Theorem 1.1 was carried out
in [T2]. To prove our results we build the Postnikov tower for the fibrations
BSpin(6) → BSpin(8) and BSpin(6) → BSpin. In our considerations we use
the fact that the groups Spin(6) and SU(4) are isomorphic.
Notation and preliminary results on the cohomology groups of the classifying

spaces BSpin(n) and BSpin are introduced in Section 2. In Sections 3 and 4
we deal with spin characteristic classes and the secondary cohomology operation
mentioned above. Section 5 contains the main results together with examples
and proofs of their corollaries. There we also show that our results coincide with
those of Atiyah, Dupont and Frank in the case of the tangent bundle of an 8-
dimensional spin manifold (which is not quite obvious). In the last section the
remaining proofs are given.

2. Notation and preliminaries

All vector bundles will be considered over a connected CW-complex X and
will be oriented. The mapping δ : H∗(X ;Z2) → H∗(X ;Z) is the Bockstein
homomorphism associated with the exact sequence 0 → Z → Z → Z2 → 0. The
mappings i∗ : H∗(X ;Z2) → H∗(X ;Z4) and ̺k : H∗(X ;Z) → H∗(X ;Zk) are
induced from the inclusion Z2 → Z4 and reduction mod k, respectively.
In our considerations we will explore the Steenrod squares Sqi and the Pontr-

jagin square P, a cohomology operation from H2k(X ;Z2) into H4k(X ;Z4) satis-
fying the following relation

(1) P̺2x = ̺4x
2

for x ∈ H2k(X ;Z). See [MT, Chapter 2].
We will use ws(ξ) for the s-th Stiefel-Whitney class of the vector bundle ξ,

ps(ξ) for the s-th Pontrjagin class, and e(ξ) for the Euler class. For a complex
vector bundle ξ the symbol cs(ξ) denotes the s-th Chern class. The classifying
spaces for spinor groups Spin(n) and Spin will be denoted by BSpin(n) and
BSpin, respectively. The letters ws(n), ps(n), e(n) and ws, ps will stand for the
characteristic classes of the universal bundles over the classifying spaces BSpin(n)
and BSpin, respectively. The results on the cohomology groups of the classifying
spaces given below are based on the following relations among the characteristic
classes

(2) ̺4p1(ξ) = Pw2(ξ) + i∗w4(ξ)
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(3) ̺4p2(ξ) = Pw4(ξ) + i∗{w8(ξ) + w2(ξ)w6(ξ)}.

See [M] and [T3].
We say that x ∈ H∗(X ;Z) is an element of order r (r = 2, 3, 4, . . . ) if and only

if x 6= 0 and r is the least positive integer such that rx = 0 (if it exists).
The Eilenberg-MacLane space with n-th homotopy group G will be denoted

K(G, n) and ιn will stand for the fundamental class in Hn(K(G, n);G). Writing
the fundamental class it will be always clear which group G we have in mind.
The classifying space BSpin(n) can be considered as the fibration

K(Z2, 1)
l
→ BSpin(n)→ BSO(n)

induced by the map w2 : BSO(n)→ K(Z2, 2) from the fibration

ΩK(Z2, 2) = K(Z2, 1)→ PK(Z2, 2)→ K(Z2, 2).

In this way the natural multiplication

m : BSpin(n)×K(Z2, 1)→ BSpin(n)

can be defined. The letter l will stand for the inclusion of the fibre K(Z2, 1) into
BSpin(n).
There are several papers concerning the cohomology groups of BSpin(n) and

BSpin. The ring H∗(BSpin;Z2) has been completely computed and the gener-
ators of the ring H∗(BSpin;Z) have been described in [T4]. The complete ring
structure of H∗(BSpin(n);Z2) is described in [Q], and in [K] the computation of
the groups Hs(BSpin(n);Z) has been carried out. As far as the authors know
the ring structure of H∗(BSpin(n);Z) has not been determined yet for general n.
Here we summarize and complete some of these results in the case of BSpin(6),
BSpin(8) and BSpin.

Lemma 2.1. The cohomology rings of BSpin(6) are

H∗(BSpin(6);Z2) ∼= Z2[w4(6), w6(6), ε(6)],

H∗(BSpin(6);Z) ∼= Z[q1(6), q2(6), e(6)],

where q1(6), q2(6) and ε(6) are uniquely determined by the relations

(4) p1(6) = 2q1(6), p2(6) = q21(6) + 4q2(6), ε(6) = ̺2q2(6).

Moreover,

̺2q1(6) = w4(6), ̺2e(6) = w6(6)(5)

m∗q1(6) = q1(6)⊗ 1, m∗e(6) = e(6)⊗ 1(6)

m∗q2(6) = q2(6)⊗ 1 + e(6)⊗ δι1 + q1(6)⊗ δι31 + 1⊗ δι71.(7)
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Proof: The group SU(4) acts naturally on Λ2(C4). On this complex vector
space there is an involutive antihomomorphism, which commutes with the action
of SU(4). It means that Λ2(C4) is the complexification of a 6-dimensional real
vector space and this real space is a real representation of SU(4). It yields a ho-
momorphism SU(4) → SO(6) with kernel ±Id. Hence SU(4) is isomorphic to
Spin(6) and consequently

H∗(BSpin(6);Z) ∼= H∗(BSU(4);Z) ∼= Z[c2, c3, c4]

where c2, c3, c4 are the Chern classes of the complex vector bundle η which is
associated with the universal SU(4)-bundle. Let µ be the fibration BSU(4) ∼=
BSpin(6)→ BSO(6) given by the double covering of SO(6). Then Λ2η is a com-
plexification of the real vector bundle µ∗γ where γ is the real vector bundle over
BSO(6) associated with the universal SO(6)-bundle. Then

pr(6) = µ∗pr(γ) = (−1)
rc2r(Λ

2η)

−e2(6) = −µ∗e2(γ) = e((Λ2η)R)

for r = 1, 2. According to [H] we have

1 +
∑

1≤t≤6

ct(Λ
2η)xt =

∏

1≤r<s≤4

(1 + (αr + αs)x),

where

1 +
∑

1≤t≤4

ct(η)x
t =

4
∏

r=1

(1 + αrx).

That is why

c2(Λ
2η) = 2c2(η), c4(Λ

2η) = c22(η) − 4c4(η), c6(Λ
2η) = −c23(η).

We put q1(6) = −c2(η), q2(6) = −c4(η). Moreover, we can arrange that e(6) =
c3(η). Then H∗(BSpin(6);Z) ∼= Z[q1(6), q2(6), e(6)] and we get the first two
relations in (4). The first relation in (5) follows from (2). Define ε(6) = ̺2q2(6).
Then H∗(BSpin(6);Z2) ∼= Z2[w4(6), w6(6), ε(6)]. Comparing this result with [Q]
we obtain that

l∗ε(6) = ι81, ε(6) = w8(∆)

where ∆ is the spin representation of the group Spin(6) in C
4. Since l∗w4(6) = 0,

we get l∗q1(6) = 0 and m∗q1(6) = q1(6)⊗ 1.
Further m∗ε(6) = ε(6)⊗ 1+ aw6(6)⊗ ι21+ bw4(6)⊗ ι41+1⊗ ι81 where a, b ∈ Z2.

We have

Sq2ε(6) = Sq2w8(∆) = (w2w8)(∆) = w8(∆)w2(∆) = 0
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since w2(∆) = 0. (See [Q].) Hence

0 = m∗Sq2ε(6) = Sq2m∗ε(6) = aw6(6)⊗ ι41 + bw6 ⊗ ι41

and that is why a = b. According to [Q], w4(∆) = w4(6) and therefore Sq4ε(6) =
Sq4w8(∆) = w4(6)ε(6). It yields

w4(6)ε(6)⊗ 1 + aw4(6)w6(6)⊗ ι21 + aw24(6)⊗ ι41 + w4(6)⊗ ι81 =

m∗(w4(6)ε(6)) = m∗Sq4ε(6) = Sq4m∗ε(6) =

w4(6)ε(6)⊗ 1 + aw4(6)w6(6)⊗ ι21 + aw24(6)⊗ ι41 + aw4(6)⊗ ι81

which implies a = 1. Now, since ̺2q2(6) = ε(6) and

H8(BSpin(6)×K(Z2, 1);Z) ∼= ⊕
8
r=0{H

r(BSpin(6);Z)⊗H8−r(K(Z2, 1);Z)},

we get (7) for m∗q2(6). In the similar way we can show that m∗e(6) = e(6)⊗ 1.
�

The fibrations BSpin(6)→ BSpin(8) and BSpin(6)→ BSpin will be denoted
by π. It will be always clear from the context which case we consider.

Lemma 2.2. The mod 2 cohomology ring of BSpin(8) is

H∗(BSpin(8);Z2) ∼= Z2[w4(8), w6(8), w7(8), w8(8), ε(8)].

The only nonzero integer cohomology groups through dimension 8 are

H0(BSpin(8);Z) ∼=Z

H4(BSpin(8);Z) ∼=Z with generator q1(8)

H7(BSpin(8);Z) ∼=Z2 with generator δw6(8)

H8(BSpin(8);Z) ∼=Z⊕ Z⊕ Z with generators q21(8), q2(8), e(8)

where q1(8), q2(8) and ε(8) are defined by the relations

(8) p1(8) = 2q1(8), p2(8) = q21(8) + 2e(8) + 4q2(8), ̺2q2(8) = ε(8).

Moreover

̺2q1(8) = w4(8), ̺2e(8) = w8(8)(9)

m∗q1(8) = q1(8)⊗ 1, m∗e(8) = e(8)⊗ 1(10)

m∗q2(8) = q2(8)⊗ 1 + δ(w6(8)⊗ ι1) + q1(8)⊗ δι31 + 1⊗ δι71(11)

π∗q1(8) = q1(6), π∗q2(8) = q2(6), π∗e(8) = 0.(12)



382 M. Čadek, J. Vanžura

Remark. It can be shown that

H∗(BSpin(8);Z) ∼= Z[q1(8), q2(8), p3(8), e(8), δw6(8)]/(2δw6(8)).

The proof will be given elsewhere. �

Proof of Lemma 2.2: From (1), (2) and (3) we get the existence of q1(8) and
q2(8) such that the first two formulas in (8) hold. Using the Serre exact sequences
for the fibrations S6 → BSpin(6)→ BSpin(7) and S7 → BSpin(7)→ BSpin(8)
we can compute H∗(BSpin(8);Z) through dimension 8 from H∗(BSpin(6);Z).
Simultaneously, we get (9) and (12). Comparison with [Q] gives the formula for
the mod 2 cohomology ring where ε(8) is defined in (8) and satisfies l∗ε(8) = ι81.
The first formula in (10) is a consequence of the fact that l∗w4(8) = 0.
It remains to prove the second formula in (10) and (11), which is similar to the

proof of (7) in Lemma 2.1. From [Q] it follows that there is ε′ = ε(8) + rw24(8) +
sw8(8), r, s ∈ {0, 1} such that

(13) ε′ = w8(∆)

where ∆ is the real spin representation of Spin(8) in R8. We look for m∗ε′ in the
form

(14) ε′ ⊗ 1 + aw7(8)⊗ ι1 + bw6(8)⊗ ι21 + cw4(8)⊗ ι41 + 1⊗ ι81.

Computing Sq2m∗ε′, Sq4m∗ε′ and Sq1m∗ε′ from (13) and (14) and using the
formula w4(8) = w4(∆) from [Q], we obtain a = b = c = 1. Using l∗w8(8) = 0
we can show that m∗w8(8) = w8(8) ⊗ 1 in the similar way. Now we can easily
find out that the formula for m∗ε(8) has the same form as that for m∗ε′. It gives
the only possibility for m∗q2(8), namely the formula (11). The same applies to
m∗e(8). This completes the proof. �

Lemma 2.3. In the cohomology ring H∗(BSpin;Z2) the Stiefel-Whitney classes
w2r+1are equal to zero for r ≥ 0 and

H∗(BSpin;Z2) ∼= Z2[w4, w6, w7, w8, w10, . . . ].

The only nonzero integer cohomology groups through dimension 8 are

H0(BSpin;Z) ∼=Z

H4(BSpin;Z) ∼=Z with generator q1

H7(BSpin;Z) ∼=Z2 with generator δw6

H8(BSpin;Z) ∼=Z⊕ Z with generators q21, q2

where q1 and q2 are determined by the relations

p1 = 2q1, p2 = q21 + 2q2.
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Moreover,

̺2q1 = w4, ̺2q2 = w8

m∗q1 = q1 ⊗ 1, m∗q2 = q2 ⊗ 1(15)

π∗q1 = q1(6), π∗q2 = 2q2(6).(16)

Proof: Much more on H∗(BSpin) was proved in [T4]. (4) of Lemma 2.1 implies
(16) and (15) follows from (7) using the fact that π ◦m = m ◦ (π × id). �

3. Spin characteristic classes

Let ξ be an 8-dimensional oriented vector bundle over a CW-complex X with
w2(ξ) = 0. Then there is a mapping η : X → BSpin(8) such that the following
diagram is commutative.

K(Z2,1)

?

i

BSpin(8)

. . .
. .
. .*η

?

µ

X -
ξ BSO(8)

We define
q1(ξ) = η∗q1(8).

The definition is correct since for two liftings η1, η2 of ξ we have η2 = m(η1, ζ),
where ζ : X → K(Z2, 1) ∼= ΩK(Z2, 2) and

η∗2q1(8) = (η1 × ζ)∗m∗q1(8) = η∗1q1(8).

Further, we define
Q2(ξ) = {η

∗q2(8);µ ◦ η = ξ}.

The indeterminacy of this class is given by m∗q2(8) (see Lemma 2.2) and is equal
to

Indet (Q2, ξ, X) = {δ(w6(ξ)x) + q1(ξ)δx
3 + δx7;x ∈ H1(X ;Z2)}.

Analogously,
E(ξ) = {η∗ε(8);µ ◦ η = ξ}.

and the indeterminacy of this class is equal to

Indet (E, ξ, X) = {w7(ξ)x + w6(ξ)x
2 + w4(ξ)x

4 + x8;x ∈ H1(X ;Z2)}.

In the same way we can define stable spinor classes qs
1(ξ) and qs

2(ξ) for every
oriented stable vector bundle ξ with w2(ξ) = 0. These classes are determined
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uniquely since m∗qr = qr ⊗ 1 for r = 1, 2 (see Lemma 2.3). Moreover, for every
8-dimensional oriented vector bundle ξ with w2(ξ) = 0 we get that

qs
1(ξ) = q1(ξ)

qs
2(ξ) ∈ 2Q2(ξ) + e(ξ).

So we will abandon the upper index in qs
1(ξ).

Lemma 3.1. Let one of the following conditions be satisfied

(i) H8(X ;Z) has no element of order 2,
(ii) X is simply connected.

Then

Indet (Q2, ξ, X) = Indet (E, ξ, X) = 0.

Proof: (i) Since 2Indet (Q2, ξ, X) = 0 and Indet (E, ξ, X) = ̺2Indet (Q2, ξ, X),
we get the conclusion immediately.

(ii) is obvious since H1(X ;Z2) = 0. �

Notation: If the indeterminacy of Q2(ξ) or E(ξ) is zero, we shall write q2(ξ)
and ε(ξ) instead of Q2(ξ) and E(ξ), respectively, to emphasize this fact. Then
qs
2(ξ) = 2q2(ξ) + e(ξ). �

Lemma 3.2 (Computation of q1(ξ)). IfH
4(X ;Z) has no element of order 4, then

the class q1(ξ) is uniquely determined by the relations

2q1(ξ) = p1(ξ)

̺2q1(ξ) = w4(ξ).

Proof: Let two classes x1 and x2 satisfy the above relations. Then x2 = x1+2y
for some y ∈ H4(X ;Z), and

p1(ξ) = 2x2 = 2x1 + 4y = p1(ξ) + 4y.

Hence 4y = 0 implies 2y = 0, and we get x1 = x2. �

Lemma 3.3 (Computation of q2(ξ) and qs
2(ξ)). If H8(X ;Z) has no element of

order 2, then the classes q2(ξ) and qs
2(ξ) are uniquely determined by the relations

16q2(ξ) = 4p2(ξ) − p21(ξ)− 8e(ξ)

8qs
2(ξ) = 4p2(ξ) − p21(ξ).

Proof: q2(ξ) and qs
2(ξ) ∈ H8(X ;Z) satisfy the formulas. �
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4. Secondary operation

On integral classes of dimension 4 we have

Sq2̺2(δSq2̺2u) = Sq2Sq1Sq2̺2u = Sq2Sq3̺2u = Sq1Sq4̺2u+ Sq4Sq1̺2u

= Sq1̺2u
2 = 0.

Let Ω denote a secondary operation associated with the relation

(17) (Sq2̺2) ◦ (δSq2̺2) = 0.

Its indeterminacy on the CW-complex X is

Indet (Ω, X) = Sq2̺2H
6(X ;Z).

The operation is not uniquely specified by the above relation, for Ω
′

= Ω + Sq4

is a second operation also associated with (17). We normalize the operation
as follows. Let HP 2 denote the quaternionic projective plane. We can regard
HP 2 as 8-skeleton of the classifying space for the special unitary group SU(2).
Let x ∈ H4(HP 2;Z) denote the restriction of the universal Chern class c2 to
HP 2. Then H∗(HP 2;Z) ∼= Z[x]/x3. We will let Ω denote the unique operation
associated with (17) such that

̺2x
2 ∈ Ω(x).

According to [T2] this operation satisfies the following

Lemma 4.1. (i) Let u, v ∈ H4(X ;Z) be elements from the domain of Ω. Then

Ω(u + v) = Ω(u) + Ω(v) + {u · v},

where {u · v} denotes the image of ̺2(u · v) in H8(X ;Z2)/Sq2̺2H
6(X ;Z).

(ii) Let w be any element in H4(X ;Z). Then 2w belongs to the domain of Ω,
and Ω(2w) = {w2}.

Let M be a smooth 8-dimensional spin manifold, i.e. w1(M) = w2(M) = 0.
We denote by τM the tangent bundle of M . The indeterminacy of Q2 and E on
the manifold M is zero and we write q1(M), q2(M), ε(M) and qs

2(M) instead of
q1(τM ), Q2(τM ), E(τM ) and qs

2(τM ), respectively.

Lemma 4.2. LetM be an 8-dimensional compact spin manifold, and letH4(M ;Z)
have no element of order 4. Then

Ω(q1(M)) = 0,
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where Ω is the secondary cohomology operation associated with the relation (17).

Proof: First, Indet (Ω, M) = Sq2̺2H
6(M ;Z) = w2(M) · ̺2H

6(M ;Z) = 0.
Further, let M6 denote the 6-skeleton of M . Since δw2(M) = 0, τM restricted to
M6 has a stable complex structure ω. Let ci(ω) denote the i-th Chern class of ω.
E. Thomas in [T2] proved that

w24(M) ∈ Ω(c2(ω)).

Since p1(M) = c21(ω)− 2c2(ω) and ̺2c1(ω) = w2(M) = 0 we have

2q1(M) = p1(M) = 2(2x
2 − c2(ω))

for some x ∈ H2(M ;Z). Further

̺2(2x
2 − c2(ω)) = w4(M) = ̺2(q1(M)).

Due to Lemma 3.2 we get

q1(M) = 2x
2 − c2(ω).

Consequently, Lemma 4.1 yields

Ω(q1(M)) = Ω(2x
2) + Ω(−c2(ω)) = ̺2x

4 +Ω(c2(ω)) + Ω(−2c2(ω))

= ̺2x
4 + w24(M) + w24(M) = ̺2x

4.

Since ̺2x
4 = Sq2̺2x

3 = w2(M) · ̺2x
3 = 0, we obtain Ω(q1(M)) = 0. �

5. Existence of 2-fields

In this section ξ will denote either an 8-dimensional oriented vector bundle or
a stable oriented vector bundle of geometric dimension 8 over an 8-dimensional
CW-complex X with w2(ξ) = 0. The maximal number of linearly independent
sections in a vector bundle ξ is called span of ξ. If a stable vector bundle ξ (over
an 8-dimensional complex) is stably equivalent to a 6-dimensional vector bundle,
we say that stable span of ξ is ≥ 2. Now we are in position to state the main
results.

Theorem 5.1. Let ξ be an 8-dimensional oriented vector bundle over a CW-
complex X of dimension 8 with w2(ξ) = 0. Then span (ξ) ≥ 2 if and only if

(i) e(ξ) = 0, δw6(ξ) = 0,
(ii) There is ε ∈ E(ξ) such that

ε ∈ Ω(q1(ξ)),

where q1(ξ) and E(ξ) are the spin characteristic classes defined in Section 3, and
Ω is the secondary cohomology operation defined in Section 4.
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Theorem 5.2. Let ξ be a stable oriented vector bundle of geometric dimension
8 over a CW-complex X of dimension 8 with w2(ξ) = 0. Then stable span (ξ) ≥ 2
if and only if

(i) w8(ξ) = 0, δw6(ξ) = 0,
(ii) ̺4q

s
2(ξ) ∈ i∗Ω(q

s
1(ξ)),

where qs
1(ξ) and qs

2(ξ) are the spin characteristic classes defined in Section 3, and
Ω is the secondary cohomology operation defined in Section 4.

Remark. The condition (ii) of Theorem 5.2 can be replaced by

(iii) qs
2(ξ) = 2q and ̺2q ∈ Ω(q

s
1(ξ)).

�

Proof of Theorem 1.1: In [Ma] the author proved that δw2n−2(M) = 0 on
2n-dimensional compact smooth manifolds. Hence

δw6(ξ) = δSq2w4(ξ) = δSq2w4(M) = δw6(M) = 0.

Since ̺2q1(ξ) = w4(ξ) = w4(M) = ̺2q1(M) there is y ∈ H4(M ;Z) such that
2y = q1(ξ)− q1(M), and consequently

4y = p1(ξ)− p1(M).

Due to Lemma 4.1 and 4.2 we get

Ω(q1(ξ)) = Ω(q1(M) + 2y) = Ω(q1(M)) + Ω(2y) = ̺2y
2.

Then (ii) of Theorem 5.1 is equivalent to

̺2q2(ξ) = ̺2y
2.

Since H8(M ;Z) ∼= Z, this is the same as

0 = ̺32(16q2(ξ)− (p1(ξ)− p1(M))
2) =

= ̺32(4p2(ξ)− p21(ξ)− p21(ξ) + 2p1(ξ)p1(M)− p21(M)),

which yields the formula in Theorem 1.1. �

Remark. Using Theorem 5.2 and the remark following it, one can prove a similar
result for the stable span replacing the condition e(ξ) = 0 by w8(ξ) = 0. �

In the case of tangent bundle, Theorem 1.1 yields a necessary and sufficient
condition for the existence of 2 linearly independent vector fields in the form
χ(M) = 0 and ̺2q2(M) = 0. The second condition is equivalent to 2 | q2(M)[M ].
In [AD] and [F] this condition is given in terms of the Euler characteristic and
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the signature: χ(M) = 0 and 4 | σ(M). Using the Signature Theorem, the second
condition reads for spin manifolds as

4 | q21(M)[M ].

Now, we shall show that the both conditions are equivalent. According to [H,

Theorem 26.3.1], the Â-genus of the spin manifold M

Â2[M ] =
1

28
·
2

45
· (−4p2(M) + 7p

2
1(M))[M ]

is an integer. In terms of the spin characteristic classes this implies that

(

3q21(M)

4
−

q2(M)

2

)

[M ]

is an integer, which yields the equivalence of the above conditions.

Corollary 5.3. Let ξ be an 8-dimensional oriented vector bundle over a CW-
complex X of dimension 8 with w2(ξ) = w4(ξ) = 0. Then span (ξ) ≥ 2 if and
only if

(i) e(ξ) = 0, δw6(ξ) = 0,
(ii) There is ε ∈ E(ξ) such that

ε+ ̺2y
2 ∈ Sq2̺2H

6(X ;Z)

where 2y = q1(ξ).

Remark. A similar corollary can be formulated for the stable span. �

Proof: Since ̺2q1(ξ) = w4(ξ) = 0, there is y ∈ H4(X ;Z) such that q1(ξ) = 2y.
Lemma 4.1 implies that

Ω(q1(ξ)) = Ω(2y) = ̺2y
2 + Sq2̺2H

6(X ;Z).

After substituting this formula into (ii) of Theorem 5.1, we obtain (ii) of Corol-
lary 5.3.

�

Next we show two examples where Theorem 5.1 can be directly applied.

Example 5.4. Let us consider an 8-dimensional oriented vector bundle ξ over
X = S4 × S4 with e(ξ) = 0. We take generators g1, g2 ∈ H4(S4 × S4;Z) and
g ∈ H8(S4 × S4;Z) with g1g2 = g. All characteristic classes in this example are
the characteristic classes of ξ. There are k1, k2 ∈ Z such that q1 = k1g1 + k2g2.
Then

(18) p1 = 2(k1g1 + k2g2).
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Now we get (the indeterminacy of Ω is zero)

Ω(q1) = Ω(k1g1 + k2g2) = Ω(k1g1) + Ω(k2g2) + ̺2(k1k2g) = ̺2(k1k2g).

Let q2 = mg. Because p2 = q21 + 4q2, we get easily

(19) p2 = 2k1k2g + 4mg.

Thus, according to Theorem 5.1, ξ admits two linearly independent sections if
and only if

̺2(mg) = ̺2(k1k2g).

Now it suffices to change the form of this condition. We get easily

̺8((4m− 4k1k2)g) = 0.

Using (19), we obtain
̺32(4p2 − 24k1k2g) = 0.

(18) implies
p21 = (8k1k2)g.

Using this we have
̺32(4p2 − p21 − 16k1k2g) = 0.

From (19) we have ̺32(8p2 − 16k1k2g) = 0. Using this relation we get finally

̺32(4p2 + p21) = 0.

Summarizing, we have proved that an oriented 8-dimensional vector bundle ξ
over S4× S4 admits two linearly independent sections if and only if e(ξ) = 0 and
̺32(4p2(ξ) + p21(ξ)) = 0. �

Example 5.5. Let us take the complex Grassmann manifold G4,2(C). It is
a compact real manifold of dimension 8. We shall consider a spin vector bundle
ξ over G4,2(C).

H∗(G4,2(C);Z) ∼= Z[x1, x2]/(x
3
1−2x1x2, x

2
2−x21x2). The isomorphism is given

by x1 7→ c1, x2 7→ c2, where c1 and c2 are Chern classes of the canonical complex
vector bundle γ2 over G4,2(C).
Let us write

p1(ξ) = Ac21 +Bc2, p2(ξ) = Cc21c2, e(ξ) = Dc21c2.

We have p1(ξ) = 2q1(ξ), and consequently A and B are even.
We shall now investigate the relation ε ∈ Ω(q1(ξ)). An easy computation

gives δSq2̺2(c
2
1) = δSq2̺2(c2) = 0, which shows that the domain of Ω is the

whole group H4(G4,2(C);Z). Furthermore, Sq2̺2(c1c2) = 0, which implies that
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Indet (Ω, G4,2(C)) = 0. Let us compute now Ω(c
2
1),Ω(c2) ∈ H8(G4,2(C);Z2).

E. Thomas [T2] proved that the stable Chern classes ci(∞) ∈ H∗(BU ;Z) satisfy

(20) ̺2(c4(∞) + c22(∞) + c21(∞)c2(∞)) ∈ Ω(c2(∞)).

For the total Chern class of the complex vector bundle γ2 ⊕ γ2 over G4,2(C) we
find easily

c(γ2 ⊕ γ2) = 1 + 2c1 + (2c2 + c21) + 2c1c2 + c22.

Using (20), we get

̺2(c
2
2 + (2c2 + c21)

2 + 4c21(2c2 + c21)) ∈ Ω(2c2 + c21),

or equivalently
Ω(2c2 + c21) = w22w4.

Now, we have

Ω(c21) = Ω((2c2 + c21) + (−2c2)) =

= Ω(2c2 + c21) + Ω(−2c2) =

= w22w4 + ̺2(c
2
2) = 0.

An easy induction shows that

Ω(nc21) = 0 for every n ∈ Z.

Using (20) for the vector bundle γ2, we get

̺2(c
2
2 + c21c2) ∈ Ω(c2),

or equivalently
Ω(c2) = 0.

Here the induction gives

Ω(nc2) = ̺2

(

n(n− 1)

2
c21c2

)

for every n ∈ Z.

Using the above results, we can compute

Ω(q1(ξ)) = Ω

(

A

2
c21 +

B

2
c2

)

=

= Ω

(

A

2
c21

)

+ Ω

(

B

2
c2

)

+ ̺2

(

AB

4
c21c2

)

=

= ̺2

((

1

2
·
B

2

(

B

2
− 1

)

+
AB

4

)

c21c2

)

=

= ̺2

((

1

8
B(B − 2) +

1

4
AB

)

c21c2

)

.
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On the other hand, it is obvious that Indet (E, ξ, G4,2(C)) = 0. Consequently,

E(ξ) = ̺2(q2(ξ)).

Obviously span (ξ) ≥ 2 if and only if

̺2(q2(ξ)) = ̺2

((

1

8
B(B − 2) +

1

4
AB

)

c21c2

)

,

or equivalently

̺32(16q2(ξ)) = ̺32((2B(B − 2) + 4AB)c21c2).

Setting D = 0, we get

16q2(ξ) = 4p2(ξ)− p21(ξ) = 4Cc21c2 − (Ac21 +Bc2)
2 =

= (4C − 2A2 − 2AB −B2)c21c2.

The above condition can now be written in the form

4C − 2A2 − 2AB −B2 ≡ 2B(B − 2) + 4AB mod 32,

or equivalently

(21) 4C ≡ 2A2 + 6AB + 3B2 − 4B mod 32.

We have proved that an 8-dimensional spin vector bundle ξ over G4,2(C) has
two linearly independent sections if and only if D = 0 and the condition (21) is
satisfied. �

The results on the stable span make possible further applications; for instance
to decide whether a given map f : M8 → M14 between two spin manifolds of
dimension 8 and 14 is homotopic to an immersion. See [Ng].

6. Proof of Theorems 5.1 and 5.2

In this section we prove Theorem 5.1 in detail and we only sketch the proof of
Theorem 5.2 since using Lemma 3.3 it proceeds in a very similar way.
We will build the Postnikov tower for the fibration

V8,2 → BSpin(6)
π
→ BSpin(8).

According to [P], V8,2 is 5-connected, π6(V8,2) ∼= Z and π7(V8,2) ∼= Z⊕Z2. In [B]

it is shown that H6(V8,2;Z) ∼= Z with a generator a6 and H7(V8,2;Z) ∼= Z with

a generator a7. Moreover, their transgressions are δw6(8) ∈ H7(BSpin(8);Z) and
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the Euler class e(8) ∈ H8(BSpin(8);Z), respectively. Denote by E the first stage
of the Postnikov tower.

F̄ −−−−→ V8,2
q̄

−−−−→ K(Z,6)×K(Z,7)




y





y

j

F −−−−→ BSpin(6)
q

−−−−→ E




y

π





y

p

BSpin(8) BSpin(8)
(δw6(8),e(8))
−−−−−−−−−→ K(Z,7)×K(Z,8)

Consider the situation described by the diagram. F and F̄ are homotopy
equivalent. Hence F is 6-connected and π7(F ) ∼= Z2. That is why the next
invariant k belongs to H8(E;Z2). Using the Serre exact sequence for the fibration

K(Z, 6)×K(Z, 7)
j
→ E

p
→ BSpin(8)

we get that H8(E;Z2) ∼= Z2 ⊕ Z2 ⊕ Z2 and p∗w24(8), p
∗ε(8) ∈ H8(E;Z2). Since

q∗p∗w24(8) = π∗w24(8) = w24(6), q
∗p∗ε(8) = ε(6), we obtain that there is just one

class k such that

(22) j∗k = Sq2̺2ι6 ⊗ 1, q∗k = 0.

For the secondary operation Ω associated with the relation (17) we will prove
that

(23) Ω(π∗q1(8)) = Ω(q1(6)) = ε(6)

in H8(BSpin(6);Z2). Using the identification BSpin(6) ∼= BSU(4), the inclusion

BSU(4)
h
→֒ BU and the computations from [T2], we get

Ω(q1(6)) = Ω(−h∗c2) ⊇ h∗(Ω(−c2)) = h∗(Ω(c2 + 2(−c2))) =

= h∗(Ω(c2) + ̺2c
2
2) ∋ h∗(̺2(c4 + c22 + c21c2) + ̺2c

2
2) =

= h∗̺2c4 = ε(6).

Since Indet (Ω, BSpin(6)) = 0, we get equality (23).
Now we are able to finish the proof of Theorem 5.1. Let ξ : X → BSpin(8) be

a bundle such that e(ξ) = δw6(ξ) = 0. Then there is a mapping ζ : X → E such
that p ◦ ζ = ξ. Define

k(ξ) = {ζ∗k, p ◦ ζ = ξ}.

This class is the coset of Sq2̺2H
6(X, Z), which is the same as the indeterminacy

of the secondary operation Ω. So Theorem 5.1 is proved when we show

(24) k + p∗(ε(8)) ∈ Ω(p∗q1(8)),
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since the application of ζ∗ yields (ii) of Theorem 5.1.
Consider the following diagram

K(Z,6)×K(Z,7) K(Z,6)×K(Z,7)




y
j̄





y

j

Y ×K(Z,7)
f

←−−−− E
q

←−−−− BSpin(6)




y





y

p





y

π

K(Z,7)×K(Z,8)
(δSq2̺2ι4,0)
←−−−−−−−− K(Z,4)

q1(8)
←−−−− BSpin(8) BSpin(8)

where Y is the universal example for the operation Ω and ω ∈ H8(Y ;Z2) defines Ω.
We have

j∗(f∗(ω ⊗ 1)) = j̄∗(ω ⊗ 1) = Sq2̺2ι6 ⊗ 1

f∗(ω ⊗ 1) ∈ Ω(p∗q1(8)).

Consequently

q∗f∗(ω ⊗ 1) ∈ Ω(q∗p∗(q1(8))) = Ω(q1(6)) = ε(6).

It means

j∗(f∗(ω ⊗ 1) + p∗(ε(8))) = j̄∗(ω ⊗ 1) = Sq2̺2ι6 ⊗ 1

q∗(f∗(ω ⊗ 1) + p∗(ε(8))) = 0

and consequently, (22) yields k = f∗(ω ⊗ 1) + p∗(ε(8)), which implies (24).

Remark. q1 is a generating class for the invariant k in the sense of [T5]. �

Sketch of the proof of Theorem 5.2: For similar objects as in the previous proof
we will use the same letters (j, p, E). First we will build the Postnikov tower for
the fibration

V → BSpin(6)
π
→ BSpin.

Since π6(V ) ∼= Z and π7(V ) ∼= Z4, the first obstruction is equal to δw6. Let E be
the first stage of the Postnikov tower. The next invariant is i∗k ∈ H8(E;Z4) where
i∗ : H

8(E;Z2)→ H8(E;Z4) is an isomorphism and k is uniquely determined by
the relations

j∗k = Sq2ι6

q∗k = 0.

As in the previous proof we define i∗k(ξ) and get

i∗k + p∗̺4q
s
2 ∈ i∗Ω(p

∗q1) in H8(E, Z4)

using the facts that π∗qs
2 = 2q2(6) and i ◦ ̺2 = ̺4 ◦ 2. It yields the condition (ii)

in Theorem 5.2 and completes the proof. �
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