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Linear transforms supporting circular convolution
over a commutative ring with identity

M.M. NESSIBI

Abstract. We consider a commutative ring R with identity and a positive integer N.
We characterize all the 3-tuples (Li,L2,L3) of linear transforms over RN, having the
“circular convolution” property, i.e. such that z*y = L3 (L (2)®La(y)) for all z,y € RN,
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1. Introduction

Let R be a commutative ring with identity, N a positive integer and A = (a;;)
(0 < 4,5 < N —1) a square matrix of order N over R. The linear transform
L4 : RN — RN defined by

LA(.IO,.Il," ! aIN—l) = (y07y15' o 7yN—1)a

where y, = apoxo + ap121 + - + apy_12ny_1 (0 < k < N — 1) is the linear
transform over RY with matrix A.

For the case R being the field C of complex numbers and A = (ay;) the square
matrix defined by

ap = (€ 2™N) (0<kI<N—1),

the linear transform L4 is the discrete Fourier transform D. This transform
is often used to compute the circular convolution product of two elements z =
(z0, 21, ,on—1) and y = (yo,y1, - ,yn—1) of CV as follows:

(1) zxy =D (D(x) ® D(y)),

1 _ /1 42k, . . . .
where D" = (e N') is the inverse discrete Fourier transform and

(2) T @y = (LYo, T1Y1, -+ s TN —1UN—1);
(3) ‘T*y:('zOuzla"'uzN—l)a

where z;, = Z;\I:_Ol zyp—; (0 <k < N—1)and y,_; = ym for the integer m such
that m = k—j (mod N) and 0 < m < N —1. The discrete Fourier transform plays
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a key role in physics because it can be used as a mathematical tool to describe
the relationship between the time domain and frequency domain representation
of a discrete signal (see [5, p. 211]). In this paper, we characterize all 3-tuples
(L1, Lo, L3) of linear transforms over RN, having the “circular convolution” prop-
erty, i.e. such that z +y = L3(Ly () ® La(y)) for all z,y € RN, where * and ® are
defined as in (2) and (3).

This question for an integral domain and for the case N = 2 was completely
solved by L. Skula in [3]. For the case N > 3, L. Skula gave in [3] a sufficient
condition for linear transforms over a commutative ring with identity to have the
“circular convolution” property. The converse direction (necessary condition) was
established by P. Cikdnek ([1, p. 74]). This gives another characterization of the
linear transforms supporting circular convolution over a commutative ring R with
identity.

In this work, by applying Theorem 2.2 we characterize all linear transforms
supporting circular convolution over a residue class ring Z/mZ for any integer
m > 2.

In [4], L. Skula, by means of p-adic integers, described all linear transforms
supporting circular convolution over a residue class ring Z/m Z, for any integer
m > 2.

2. Characterization of linear transforms supporting circular
convolution over R.

Definition 2.1. Let A = (ag;), B = (bg;) and C = (¢xy) (0 < k,l < N—1) be
square matrices over the ring R. We say that the matrices A, B, C support circular
convolution or briefly are SCC-matrices if for each u,v and w in {0,1,--- ,N—1}
the following relation holds:

1 for u+ v =w (modN)

N-1
Z O bryChw = { 0
k=0

otherwise.

Theorem 2.1. The matrices A, B,C support circular convolution if and only if
the 3-tuple (L 4, Lg, Lo+) supports circular convolution, where C* = (cj;) is the
square matrix of order N over R defined by

u=cj (O<kI<SN-1)

with0 < j <N —1and j=—k(modN).
(See [3, p. 12-14]).

Proposition 2.1. Let A, B,C be SCC-matrices over R. Then the determinants
of A, B,C are not zero-divisors in R.
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Corollary 2.1. Let A, B,C be SCC-matrices over R. We suppose that each non
zero-divisor element of R is invertible. Then for each k (0 < k < N — 1) there
exists g € R such that

(1) gy =1.

(2) aku = 93 ako, bku = 93 bko, Cru = giicko for eachu € {0,--- N —1}.

(3) Foreachi,j € {0,---,N —1} such that i # j, g; — g; is not a zero-divisor
in R.

Corollary 2.2. If N.1 is invertible in R and if there exist gg, - ,gn—1 € R such
that

(1) g}j:lforeachke{o,...’N_l}'

(2) N
Z_ m_{N for m =0 (modN),
=0 Ik = 0 otherwise.

Then for eachi,j € {0,---,N — 1} such that i # j, (g; — g;) is not a zero-divisor
in R.
Proposition 2.2. Let gg,---,gN _1 € R satisfying
(1) g =1 for each k € {0,--- ,N — 1}.
(2) g9i — g; is not a zero-divisor in R for each i,j € {0,--- ,N — 1} such that
i # .

Then we have

gogi - gn-1= ()N
ProOOF: We denote by D(gg, - ,gn_1) the Vandermonde determinant defined
as follows: N—1
1 g0 - g5
D(go, -+ ,9n—-1) = o :
1 gno1 o 9N
Using the assertion (1) we obtain
o o0 9
D(go,--- ;9N —-1) = : :
gN-1 - 9Nt N,

We deduce that
D(go,-+- »9n—1) = (=N "'gog1---gn —1D(g0, - 9N -1).
The result follows from the last relation, the assertion (2) and the following
equality:
D(go,-+»on-1)= ] (9i—9y)-
0<i<j<N -1
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Corollary 2.3. Under the same hypothesis as in Proposition 2.2 we have

(1) D(g0, - ,9n—-1) = Ng:D;, (0 < r,s < N — 1), where D}, means the

h

cofactor of the rth row and the st column of the determinant D.

(2)
N if m =0 (modN),

N-1

m
> o= | .
par 0 otherwise.

Using Corollaries 2.1-2.3 and considering the total quotient ring of R (see [6,
p. 221]) we deduce the following theorem:

Theorem 2.2. Let A, B,C be square matrices of order N over R. Then the
following statements are equivalent:

(1) The matrices A, B, C' support circular convolution.
(2) Nagobrocro = 1 (0 < k < N — 1) and there exist gg, - ,gn_1 in R
satisfying
(i) g¥ =1forke{0,--- ,N —1}.
(i) apu = 9akos bku = 9500, Cku = gjicko (0 < k,u <N-1).
(ili) For each i,j in {0,---,N — 1} such that i # j, (9; — g;) is not
a zero-divisor in R.

Remark. For the case R being an integer domain, the condition (2) (iii) of The-
orem 2.2 becomes g; # g; for i # j and we find the result of L. Skula [3, p. 20].

Theorem 2.3. Let T' = (t;;) (0 <4,j < N — 1) be an invertible square matrix
of order N over R. Then the following statements are equivalent:

(1) The matrices T, T~ support circular convolution.
(2) N.1 is invertible in R and there exist go,--- ,gn —1 in R such that
(i) gy =1forke{0,--- ,N—1}.
(ii) thy = g5 (0 < k,u <N-1).
(iii) (g;—g;) is not a zero-divisor in R for each,j in {0,--- , N —1} such
that i # j.
Furthermore, T~% = (T;;) (0 < i,5 < N—1) with
Ty =(N1) g " (0<i,j<N-1).
3. Matrices supporting circular convolution over a residue class
ring Z/mZ, m integer > 2

First we suppose that m = p”, where n is a positive integer and p is a prime.
In [3], [4] L. Skula showed that there exist SCC-matrices A, B,C of order N
over the ring Z/p" Z if and only if N divides p — 1. In [4] he described all the
linear transforms supporting circular convolution over Z/p™ Z by means of p-adic
integers.

Using another method we give in this section another characterization of all
the linear transforms supporting circular convolution over Z/p" Z.



Linear transforms supporting circular convolution over a commutative ring with identity

Theorem 3.1. We suppose that N divides (p—1). Let A, B, C be square matrices
of order N over Z/p™ Z. The following statements are equivalent:

(1) The matrices A, B, C support circular convolution.
(2) Nagobrocko = 1 for k € {0,--- ,N — 1} and agy = gjaro, bku = 9gibros
Chu = gpcko (0 < k,u < N—1), where

{90, on—1} ={a € (z/p"Z)| N =1}.

PROOF: By using the fact that the multiplicative group (Z/p" Z)* is cyclic (see
[2, p. 55-58]) and by applying the Hensel’s lemma (see [2, p. 169]) we deduce that
if N divides p — 1 we have the two following results:

- The set Hy, = {x € Z/p"Z | 2N = 1} contains exactly N elements.
- For each z,y € Hy, such that « # y,  — y is not a zero-divisor in Z/p™ Z.
The result follows from these properties together with Theorem 2.2.

For general integer m; m > 2 we write m = p‘f‘l ---p2r, where a1, .-+, oy are
positive integers and p; (1 < i < r) are primes such that p; # p; for i # j. Hence
we have

ZimL =~ (T/p3 2) - © (Z/p" T).

We denote by II; (1 < i < r) the canonical homomorphism from the ring Z/m Z
onto the ring (Z/p}" Z). O

By using Theorem 3.1 and Proposition 2.6 in [3, p. 14] we deduce the following
theorem:

Theorem 3.2. Let A, B,C be square matrices of order N over Z/mZ. The
following statements are equivalent:

(1) The matrices A, B, C' support circular convolution.
(2) Naggbrgcro =1 (0 <k < N-—1) and there exist go, - ,gn_1 € (Z/mZ)
such that
(i) gy =1forke{0,--- ,N —1}.
(il) aky = 94ak0s Dku = 9ibk0s Cku = gjicko (0 < k,u <N -1).
(iii) I;(gx) # I;(g;) for each k,l in {0,--- , N — 1} such that k # .
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