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Universal minimal dynamical system for reals

S lawomir Turek

Abstract. Our aim is to give a description of S(R) and M(R), the phase space of universal
ambit and the phase space of universal minimal dynamical system for the group of real
numbers with the usual topology.
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A dynamical system is a triple (G, X, π), where G is a topological T0 group
(therefore Tychonoff), X is a compact Hausdorff space and π is a continuous
action on X , that is, π: G × X → X is a continuous map such that:

(a) π(0, x) = x for each x ∈ X ,
(b) π(g + h, x) = π(g, π(h, x)) for each g, h ∈ G and each x ∈ X

(we use an additive notation for the group G, then 0 is the neutral element of G).
If (G, X, π) is a dynamical system then the space X is called a phase space of the
system (G, X, π). We use the notations πg and πx for homeomorphisms πg: X →
X and continuous maps πx: G → X defined in the following way: πg(x) := π(g, x)
and πx(g) := π(g, x). The set πx(G) is called the orbit of x ∈ X in the system
(G, X, π). If the orbit of a point x ∈ X is dense in the phase space X of dynamical
system (G, X, π) then the quadruple (G, X, π; x) is called an ambit and the point
x a base point of the ambit (G, X, π; x).

Let (G, X, π) and (G, Y, ̺) be dynamical systems and let φ: X → Y be a con-
tinuous map. If φ ◦πg = ̺g ◦φ for any g ∈ G then φ is called a homomorphism of
the system (G, X, π) into the system (G, Y, ̺). If we deal with ambits (G, X, π; x)
and (G, Y, ̺; y), then homomorphism of the systems φ: (G, X, π) → (G, Y, ̺) such
that φ(x) = y is called a homomorphism of ambits. In the case when φ is home-
omorphism (surjection) of spaces then φ is called an isomorphism (epimorphism)
of dynamical systems or ambits.

A dynamical system (G, X, π) is called minimal if there is no proper closed
non-empty set M ⊆ X such that πg(M) ⊆ M for each g ∈ G. The system is
minimal iff the orbit πx(G) is dense in X for each x ∈ X .

An ambit (G, X, π; x) is called universal for a group G, if for any ambit
(G, Y, ̺; y) there exists an epimorphism of ambits φ: (G, X, π; x) → (G, Y, ̺; y).
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The construction of universal ambit for any group was presented by Brook
in [3] (see also [6, IV.5] for other description). The phase space of universal ambit
for group G is Samuel compactification of G with respect to its right uniformity.
Equivalently, we can obtain the phase space of this ambit if we take space of
all so-called regular ultrafilters with respect to a strong inclusion “⋐” defined in
the following way: if F is closed and U open in G then F ⋐ U whenever there
exists an open neighborhood V of the neutral element such that V + F ⊆ U .
A family F of non-empty open subsets of G is called a regular ultrafilter whenever
the following conditions hold:

(i) if F ⋐ U , then either U ∈ F or G \ F ∈ F ,
(ii) for every U1, U2 ∈ F there is an open, non-empty subset U ⊆ G such that

U ∈ F and cl U ⋐ U1 ∩ U2.

Let S(G) = {F ⊆ P(G) : F is regular ultrafilter}. For every open, non-empty

subset U of G, we set Ũ = {F ∈ S(G) : U ∈ F}. The family {Ũ : U is an open
non-empty subset of G} generates compact, Hausdorff topology on S(G) and the
group G can be embedded in S(G) as a dense subspace {Fg: g ∈ G}, where Fg =
{U : U is open in G & g ∈ U}, see [1, IV.5.], where the notion of strong inclusion
corresponds with a notion of relation of subordination. Let πG: G×S(G) → S(G)
be defined in the following way:

πG(g,F) := Lg(F),

where Lg is an extension on S(G) of the left translation lg: G → G, expressed by
the formula Lg(F) = {g + U : U ∈ F}.

Proposition. The system (G, S(G), πG; 0) is a universal ambit for a group G.

Proof: (a) The map πG is a continuous action.
It is not hard to see that conditions (a) and (b) of the definition of action are

fulfilled. Let Lg(F) ∈ Ṽ , where V is non-empty, open subset of G. There is
W ∈ F such that g + W = V . Let U be an open set such that U ∈ F and
cl U ⋐ W . By the definition of “⋐”, there exists an open neighbourhood H of

the neutral element of G for which H + cl U ⊆ W . Thus (g + H) × Ũ is an open

neighbourhood of (g,F) and πG((g + H) × Ũ) ⊆ Ṽ .

(b) The system (G, S(G), πG; 0) is universal.
Let (G, X, π; x) be an ambit. The map πx: G → X is uniformly continuous with
respect to the ordinary inclusion on X (the unique strong inclusion on compact,
Hausdorff space) and strong inclusion on topological group G defined above. In-
deed, if F is closed, U is open in X and F ⊆ U then using compactness of X
we can find an open neighbourhood H of 0 such that H + π−1

x (F ) ⊆ π−1
x (U),

i.e. π−1
x (F ) ⋐ π−1

x (U). By the theorem of Tăımanov (see e.g. [4, 3.2.1.]) there
exists a continuous map φ: S(G) → X such that φ ↾ G = πx. Since φ(0) = x and
φ ◦ π

g
G ↾ G = πg ◦ φ ↾ G for each g ∈ G then φ is an epimorphism of ambits. �

It is worth to notice that for discrete group G, S(G) is equivalent to βG,
Čech-Stone compactification of the discrete space G.
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If we take a minimal closed invariant non-empty subset M in the system
(G, S(G), πG) (such a set is called shortly minimal), and consider the system
(G, M, πG ↾ G × M), then we get a universal minimal dynamical system for the
group G. This means that for any minimal dynamical system (G, Y, ̺) there is an
epimorphism φ: (G, M, πG ↾G × M) → (G, Y, ̺). It is known that such universal
minimal system is unique up to an isomorphism of dynamical systems (see e.g. [6,
IV.3.17, IV.4.34.3]). Let M(G) denote the phase space of this system.

First, we will describe space S(R), where R is the additive group of real numbers
with usual topology. Let I denote [0; 1], the closed interval of R and Z the group
of integers.

Let h: Z → Z be the shift map, i.e. h(n) = n+1, and H : βZ → βZ the extension
of h over the Čech-Stone compactification of Z. If we identify points (p, 1) with
points (H(p), 0) in product βZ × I, then we obtain a quotient space βZ × I/H ,
which is a compactification of real line. For any integer n ∈ Z and any real number
x ∈ (0; 1) we define homeomorphisms Λn and Λx of βZ × I/H in the following
way:

Λn([(p, t)]H ) := [(Hn(p), t)]H

and

Λx([(p, t)]H ) :=

{
[(p, t + x)]H if t + x < 1,

[(H(p), t + x − 1)]H otherwise.

For arbitrary x ∈ R, let Λx := Λ[x] ◦ Λ{x}, where [x] and {x} denote integer and

fractional part of x respectively. Define a map ̺: R× (βZ× I/H) → βZ× I/H by
the formula

̺(x, w) := Λx(w).

Let q denote the quotient map from βZ × I onto βZ × I/H .

Lemma. The system (R, βZ × I/H, ̺; z), where z = [(0, 0)]H is an ambit.

Proof: Conditions (a) and (b) of the definition of action are obviously fulfilled.
We will show continuity of ̺ at points of the form (n, w), where n ∈ Z. Let V
be an open neighbourhood of ̺(n, w). Suppose, that w = [(p, t)]H and t ∈ (0; 1).
Since ̺(n, w) = [(Hn(p), t)]H then there exist an open set W ⊆ βZ and ε > 0
such that (Hn(p), t) ∈ W × (t − ε; t + ε) ⊆ q−1(V ). A set

(n −
ε

2
; n +

ε

2
) × q

(
H−n(W ) × (t −

ε

2
; t +

ε

2
)
)

is an open neighbourhood of (n, w) and its image by ̺ is contained in V . If
w = [(p, 1)]H then we can find an open set W ⊆ βZ and ε > 0 such that
(Hn(p), 1) ∈ W ×(1−ε; 1] ⊆ q−1(V ) and (Hn+1(p), 0) ∈ H(W )×[0; ε) ⊆ q−1(V ).
In this situation a set

U = (n −
ε

2
; n +

ε

2
) × q

(
(H−n(W ) × (1 −

ε

2
; 1]) ∪ (H−n+1(W ) × [0;

ε

2
))

)
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is open neighbourhood of (n, w) and ̺(U) ⊆ V . Proof of continuity of ̺ at points
of the form (x, w), where x ∈ (0; 1) is similar. Let x ∈ R \ Z be arbitrary. If V
is an open set such that ̺(x, w) ∈ V then there exist open sets V1, V2 such that

{x} ∈ V1 ⊆ (0; 1), w ∈ V2 ⊆ βZ × I/H and ̺(V1 × V2) ⊆ Λ−1
[x]

(V ). Obviously

̺(([x] + V1) × V2) ⊆ V .
The orbit of point z = [(0, 0)]H equals Z× I/H , thus is dense in βZ× I/H . �

Theorem. The universal ambit for the group of reals with usual topology is

isomorphic to the ambit (R, βZ × I/H, ̺; z).

Proof: Since (R, βZ × I/H, ̺; z) is an ambit, we have an epimorphism

φ: (R, S(R), πR; 0) → (R, βZ × I/H, ̺; z).

Since φ(0) = z, φ ↾ R: R → Z × I/H is a map of form φ(x) = [([x], {x})]H . We
will show that φ is one-to-one. Let F ,F ′ ∈ S(R) and F 6= F ′. Let U ∈ F ,
U ′ ∈ F ′ and U ∩ U ′ = ∅. We can find open sets V, V ′ such that V ∈ F , V ′ ∈ F ′

and clR V ⋐ U, clR V ′ ⋐ U ′. By the definition of “⋐”, there is ε > 0 such that
((−ε; ε) + clR V )∩ clR V ′ = ∅. Obviously, F ∈ clS(R) clR V and F ′ ∈ clS(R) clR V ′.

Let denote F1 = φ(clR V ) and F2 = φ(clR V ′). In additon, for brevity sake, we
denote βZ×I/H by K and βZ×I by K ′. It suffices to prove that clK F1∩clK F2 =
∅. Suppose there exists [(p, t)]H ∈ clK F1 ∩ clK F2. Let δ < ε/2.

Case 1. 0 < t < 1

In this case (p, t) ∈ clK ′ q−1(F1) ∩ clK ′ q−1(F2). Let

Aj = {k ∈ Z : ({k} × (t − δ; t + δ)) ∩ q−1(Fj) 6= ∅}, j ∈ {1, 2}.

One can verify that A1,A2 ∈ p, so A1 ∩ A2 ∈ p. Thus there exists k ∈ A1 ∩ A2.
By the definition of A1 and A2 there are [(k, t1)]H ∈ F1 and [(k, t2)]H ∈ F2 where
|t1 − t2| < 2δ < ε. This is impossible because ((−ε; ε) + clR V ) ∩ clR V ′ = ∅.

Case 2. t ∈ {0, 1}

We can assume that t = 1, because for t = 0 the proof is analogous. Then
q−1([(p, 1)]H) = {(p, 1), (H(p), 0)} and for j ∈ {1, 2} we have that (p, 1) ∈
clK ′ q−1(Fj) or (H(p), 0) ∈ clK ′ q−1(Fj). Let us consider the case (p, 1) ∈

clK ′ q−1(F1) and (H(p), 0) ∈ clK ′ q−1(F2) (we can proceed quite similarly as
with other cases). A set

A1 = {k ∈ Z : ({k} × (1 − δ; 1]) ∩ q−1(F1) 6= ∅}

belongs to p, and by similar reasons a set

A2 = {k ∈ Z : ({k} × [0; δ)) ∩ q−1(F2) 6= ∅}

belongs to H(p). Since A2 ∈ H(p) then A2 − 1 ∈ p. Let k ∈ A1 ∩ (A2 − 1). Thus
there exist points [(k, t1)]H ∈ F1, [(k + 1, t2)]H ∈ F2 such that 1− δ < t1 6 1 and
0 6 t2 < δ; a contradiction.

So, φ is the isomorphism of ambits. �
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Corollary. The phase space of the universal minimal dynamical system for the

group R is homeomorphic to the quotient space E(D2ω

)×I/H , where E(D2ω

) de-

note the absolute of the Cantor cube D2ω

and H is a homeomorphism of E(D2ω

).

Proof: As the systems (R, S(R), πR) and (R, βZ × I/H, ̺) are isomorphic, the
minimal subsets of these systems are isomorphic. In order to describe the structure
of M(R), it suffices to consider arbitrary minimal subset in the system (R, βZ ×
I/H, ̺). Let M be a minimal non-empty closed and invariant subset in βZ for
H : βZ → βZ. Then M is homeomorphic to M(Z), the phase space of universal
minimal dynamical system for group Z. It is not hard to see that a set M×I/H ⊆
βZ × I/H is closed and invariant in the system (R, βZ × I/H, ̺). Moreover, an
orbit of any point of M × I/H is dense in M × I/H . So, M × I/H is a minimal
subset in (R, βZ × I/H, ̺). Balcar and B laszczyk proved in [2] that the space

M(Z) is an absolute of the Cantor cube D2ω

. Therefore, we can obtain M(R) if

in the product of the absolute of Cantor cube D2ω

and closed segment [0; 1]; the
points (x, 1) and (H(x), 0) are identified. �

Remark. Since homeomorphism H ↾M has dense orbit then the space M(R)
top
=

M × I/H is an indecomposable continuum (see [5]). Therefore, M(R) is so-called
generalized solenoid.
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