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⋂
-compact modules

Tomáš Kepka

Abstract. The duals of ∪-compact modules are briefly discussed.
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In the following, R is a non-zero associative ring with unit and modules are
unitary left R-modules.
It is well known and easy to see that the following conditions are equivalent

for a module M :
(C1) IfMi, i ∈ ω, is a countable family of submodules ofM such that

∑
Mi =M ,

then
∑

i≤n
Mi =M for some n ∈ ω.

(C2) IfM0 ⊆ M1 ⊆ M2 ⊆ . . . is a chain of submodules ofM such that
⋃

Mi =M ,
then Mn =M for some n ∈ ω.

(C3) If ϕ :
∐

ω
Ai −→ M is an epimorphism, then ϕ(

∐
i≤n

Ai) = M for some
n ∈ ω.

(C4) If µ :M −→
∐

I
Ai is a homomorphism, then there is a finite subset J of I

such that Im(µ) ⊆
∐

J
Ai.

(C5) If µ : M −→
∐

ω
Ai is a homomorphism, then there is n ∈ ω such that

Im(µ) ⊆
∐

i≤n
Ai.

(C6) If Q is a cogenerator for R−Mod and if µ :M −→ Q(ω) is a homomorphism,

then there is n ∈ ω such that Im(µ) ⊆ Q(n).

Such a module M will be called ∪-compact in this paper (other names:
∑
-

compact,
∐
-slender, dually slender, small, etc.). A proper subclass of ∪-compact

modules is formed by modules M satisfying the following condition:

(C7) If N is a countably generated submodule of M , then there is a finitely
generated submodule K of M such that N ⊆ K.

These modules will be called strongly ∪-compact (other names: (ℵ0,ℵ0)-redu-
cing, countably finite, etc.).
Now, consider the duals of the above conditions:
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(D1) If Mi, i ∈ ω, is a countable family of submodules of M such that
⋂

Mi = 0,
then

⋂
i≤n

Mi = 0 for some n ∈ ω.

(D2) IfM0 ⊇ M1 ⊇ M2 ⊇ . . . is a chain of submodules ofM such that
⋂

Mi = 0,
then Mn = 0 for some N ∈ ω.

(D3) If ϕ : M −→
∏

ω
Ai is a monomorphism, then ϕ−1(

∏
i≥n

Ai) = 0 for some
n ∈ ω.

(D4) If µ :
∏

I
Ai −→ M is a homomorphism, then there is a cofinite subset J of

K such that
∏

J
Ai ⊆ Ker(µ).

(D5) If µ :
∏

ω
Ai −→ M is a homomorphism, then there is n ∈ ω such that∏

i≥n
Ai ⊆ Ker(µ).

(D6) If µ : Rω −→ M is a homomorphism, then there is n ∈ ω such that R(ω−n) ⊆

Ker(µ).

Clearly, the conditions (D1), (D2) and (D3) are equivalent (the corresponding
modules will be called ∩-compact), the conditions (D5) and (D6) are equivalent
(the corresponding modules are just the well known slender modules — see [1,
Chapter III ]), (D4) implies (D5) and modules satisfying (D4) form a subclass of
slender modules. In contrast to the dual situation, the classes of ∩-compact and
slender modules never coincide:

Proposition 1. (i) There exist finitely cogenerated (and hence ∩-compact) mod-
ules which are not slender.

(ii) If M 6= 0 is a slender module, then M (ω) is slender but not ∩-compact.

Proof: (i) No non-zero factormodule of Rω/R(ω) is slender but some of these
factors are finitely cogenerated.

(ii) Slender modules are closed under direct sums (see [3]). �

The next proposition collects several easy observations on ∩-compact modules:
Proposition 2. (i) The class of ∩-compact modules is closed under isomorphic
images, submodules, extensions and finite direct sums.

(ii) If Ai,i ∈ I, is an infinite family of non-zero modules, then neither
∐

Ai nor∏
Ai is ∩-compact.

(iii) The following are equivalent for a module M :

(1) M is artinian.
(2) Every factor of M is finitely cogenerated.
(3) Every factor of M is ∩-compact.

(iv) Every finitely cogenerated module is ∩-compact.

(v) Every countably cogenerated ∩-compact module is finitely cogenerated.

(vi) If N is an essential submodule of M and N is ∩-compact, then M is ∩-
compact.
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An interesting class of rings is that of (left) steady rings — see [2]. Of course,
we shall define the dual: The ring R is said to be (left) dually steady if every
∩-compact module is finitely cogenerated.
Lemma 1. The following conditions are equivalent:

(i) Every ∩-compact cyclic module is finitely cogenerated.

(ii) Every non-zero ∩-compact (cyclic) module has a non zero socle.

(iii) Every ∩-compact injective module is finitely cogenerated.

(iv) R is dually steady.

Proof: (ii) implies (iv). Let M be ∩-compact. By (ii), S = Soc(M) is essential
in M . But S is also ∩-compact, and hence S is finitely generated and it follows
that M is finitely cogenerated. �

Left noetherian rings, left perfect rings and left semiartinian rings of countable
Soc-length are known to be steady. As concerns the dual case, the following result
is available:

Proposition 3. R is dually steady in each of the following cases:

(1) R possesses only countably many left ideals I such that RR/I is cocyclic.

(2) R is a countable ring.

(3) R is right noetherian and every left ideal is a (two-sided) ideal.

(4) R is commutative noetherian.

(5) R is left semiartinian.

(6) For every non-zero left ideal I, the cyclic module RR/I is artinian.

Proof: (i) If (1) is true, then every cyclic module is countably cogenerated and
the result follows by combination of Proposition 2 (v) and Lemma 1.

(ii) In this case, every cyclic module is countably cogenerated.

(iii) Suppose, on the contrary, that (3) is satisfied and R is not (left) dually
steady. Denote byM the set of proper (left) ideals I such that the cyclic module

RR/I is ∩-compact and with zero socle. According to Lemma 1,M is non-empty,
and so let K ∈ M be a maximal element ofM.
Now, let r ∈ R−K andM = R/(K : r)l. ThenM ∼= (Rr+K)/K ⊆ RR/K and

consequentlyM is ∩-compact and Soc(M) = 0. On the other hand, K ⊆ (K : r)l,
and hence K = (K : r)l. We have proved that K is a prime ideal.
Since Soc(R/K) = 0, K is not a maximal ideal and R 6= K + Rr for some

r ∈ R−K. PutKi = K+Rri for every i ≥ 0. ThenR = K0 ⊇ K1 ⊇ K2 ⊇ . . . and
Ki 6= K. Since R/K is ∩-compact, we can take s ∈

⋂
Ki −K. Then s = ai+ rir

i

for some ai ∈ K, ri ∈ R and we have ai − ai+1 = (ri+1r − ri)r
i ∈ K and

bi = ri+1r− ri ∈ K. Thus ri ∈ K+ ri+1R, K+ r0R ⊆ K+ r1R ⊆ K+ r2R ⊆ . . .
and there is n ≥ 0 such that K + rnR = K + rn+1R. Now, rn+1 = a + rnb,
a ∈ K, b ∈ R, and rn = rn+1r − bn = ar + rnbr − bn, rn(1 − br) = ar − bn ∈ K.
But 1− br /∈ K, and therefore rn ∈ K and s = an + rnrn ∈ K, a contradiction.
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(iv) This case follows immediately from the preceding one.

(v) This case follows immediately from Lemma 1.

(vi) If Socl(R) 6= 0, then Lemma 1 applies. Assume Socl(R) = 0. Then R is not
left artinian and there is a sequence I0 ⊇ I1 ⊇ I2 ⊇ . . . of left ideals such that
In 6= I =

⋂
Ii for every n ≥ 0. According to (6), I = 0 and it implies that RR is

not ∩-compact. Now, R is dually steady by Lemma 1 again. �

The following observation will help us to construct an example of a non-dually-
steady ring:

Observation 1. Let R be an integral domain with a quotient field Q 6= R. The
following conditions are equivalent:

(1) R is ∩-compact.
(2) RQ is strongly ∪-compact.

Moreover, if R is a valuation domain, then these conditions are equivalent to:

(3) RQ is ∪-compact.
(4) RQ is not countably generated.

Example 1. Let G(+) = Z(+)(ω1) and let H be the set of a ∈ G such that
either a = 0 or a 6= 0 and a(α) > 0, where α = max(supp(a)). Then H(+)
is a subsemigroup of G(+) and we denote by S the corresponding semigroup-
ring Z2[H ]. Further, denote by P the set of x ∈ S such that ai 6= 0H , where
x = r0a0 + · · · + rnan, ri ∈ Z2, ai ∈ H . Then P is a prime ideal of S and we
finally put R = S(S−P )−1 ⊆ Q, Q being a quotient field of S. It is easy to check
that R is a valuation domain and R is ∩-compact. Consequently, R is not dually
steady. In view of Observation 1, R is not steady either.

Remark 1. It would be of some interest to know other examples of dually steady
and non-dually-steady rings, especially from the following classes of rings: left
noetherian rings, left perfect rings, (von Neumann) regular rings, left V -rings
(or, more generally, left conoetherian rings). In this respect, it would be also
nice to obtain some information on rings without non-zero slender modules (see
Proposition 1). Among such rings we shall certainly find many left semiartinian
rings, all right perfect rings and all complete principal ideal domains.
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