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Attouch-Wets convergence and

Kuratowski convergence on compact sets

Paolo Piccione, Rosella Sampalmieri

Abstract. Let X be a locally connected, b-compact metric space and E a closed subset
of X. Let G be the space of all continuous real-valued functions defined on some closed
subsets of E. We prove the equivalence of the τ

aw
and τc

K
topologies on G, where τ

aw
is

the so called Attouch-Wets topology, defined in terms of uniform convergence of distance
functionals, and τc

K
is the topology of Kuratowski convergence on compacta.
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0. Introduction

The study of graph spaces, and more in general hyperspaces, has been applied
to different fields of mathematics, including calculus of variations, differential
equations, convex analysis, optimization etc.
In particular, the problem of continuous dependence on the data for the solu-

tions of functional differential equations leads to the problem of defining a suitable
notion of convergence in the space of real continuous functions whose domain can
vary in a fixed closed set [5], [6].
Several topologies have been introduced on the space G of such functions and

most of them are defined in terms of some notion of convergence of graphs or
epigraphs of functions. We recall here the graph topology of [12], [13], the Haus-
dorff metric topology [3], [7], the topology of Hausdorff convergence on compact
sets [7], the topology of Kuratowski convergence [10], the topology of Kuratowski
convergence on compact sets [14] and the Attouch-Wets topology [4], [8].
We prove the equivalence in G of the Attouch-Wets topology, τaw , and the

topology of Kuratowski convergence on compact sets, τc
K
, by showing that they

define the same converging nets. In this framework, by Kuratowski convergence
on compact sets, we mean Kuratowski convergence of the restriction of functions
on a compact subset of their domain, so that equiboundedness cannot be used.
Instead, we will use a result, proved in Lemma 3.4, that relates global and local
convergence in the sense of Kuratowski of closed sets locally connected and lo-
cally compact spaces. Proposition 3.5 then shows that, in G, τc

K
-convergence is

equivalent to local convergence in the sense of Kuratowski.
A crucial point in the definition of τc

K
-convergence is a non trivial assumption

about the relative position of the compact set and the domain of the limit function.
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A detailed discussion about the relative position of two closed sets in a metric
space is contained in Section 2. The results proved show the necessity of the
restriction to locally connected and locally compact spaces, where any closed set
can be covered by a family of compact sets without singular intersection points
on their boundary.
The Attouch-Wets topology on G derives from the notion of convergence of

closed convex sets in a normed space, introduced by U. Mosco in [11].
It is a uniform topology, with uniformity having a countable base, therefore it

is metrizable. The Attouch-Wets topology is widely used to study approximation
and optimization problems.

1. Preliminaries

Let us consider two metric spaces (X, dX) and (Y, dY ).
Let E ⊆ X be a closed, possibly unbounded subset of X and let C be the family

of all closed subsets of E.
For Ω ∈ C let C (Ω, Y ) be the space of all continuous functions from Ω to Y .

Let G be the space:

G = {f : Ω 7−→ Y ; Ω ∈ C, f continuous on Ω }.

For Ω a fixed closed subset of X , we also denote by GΩ the space of all continuous
functions from Ω to Y .

We think of an element of G as a pair
(

f,Ωf

)

, together with its graph Γ
(

f,Ωf

)

,
which is a closed subset of X ×Y . If ∆ is a closed subset of X , with a little abuse
of notation we will write Γ(f,Ωf ∩∆) to mean the graph of the restriction of f
to Ωf ∩∆.

We will be concerned with the three metric spaces (X, dX), (Y, dY ) and
(X × Y, dX × dY ), where dX × dY is the product metric on X × Y . We keep the
notation uniform for all of them and in the sequel, when not confusing, we will
refer to any of them as (Z, d).
Let us denote by B (z, δ), B [z, δ], δ ∈ R+, respectively the open and the closed

ball of Z with center in z and radius δ; and for A closed subset of Z and δ ∈ R+

the closed parallel body B[A, δ] of A with radius δ the set

B[A, δ] = {z ∈ Z ; inf
a∈A
d( z, a ) ≤ δ }.

If C is a closed set in Z, we denote by dC the distance functional associated with
C the function on Z defined by

Z ∋ z 7−→ dC (z) = inf
c∈C
d(z, c).

For any subset S ⊂ Z, we denote by So, S and Sc respectively the interior, the
closure and the complement of S in Z.
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Let us consider a directed set A. If Pα is a logical proposition indexed by the
elements of A, we will say that Pα holds eventually if there exists α ∈ A such
that Pα holds for every α ≥ α, and we will say that Pα holds frequently if for
every α ∈ A there exists β ≥ α in A such that Pβ holds (see [9]).

Recall that a net (generalized sequence) of closed sets {Cα}α∈A in a metric
space X , is Kuratowski convergent to the closed set C∞ ⊆ X if

K lim inf
α

Cα = K lim sup
α

Cα = C∞,

where

K lim inf
α

Cα = {x ∈ X : every neighbourhood of x meets Cα eventually}

and

K lim sup
α

Cα =
⋂

β





⋃

γ≥β

Cγ



.

The latter is easily seen to be the set of points x ∈ X that are cluster points for
the Cα’s frequently.

Definition 1.1. A net {(fα,Ωα)}α∈A in G is said to be τc
K
-convergent to (f0,Ω0)

∈ G if the sequence of graphs

Γ(fα,Ωα ∩∆)

Kuratowski converges to the graph

Γ(f0,Ω0 ∩∆)

for every compact set ∆ ⊂ X such that

(∗) ∆o ∩ Ω0 = ∆ ∩ Ω0.

An extensive discussion of property (∗) is postponed to the next section.

The Attouch-Wets topology on G is based on the notion of convergence of
distance functionals. Namely, a net Cα in G τaw converges to C∞ ∈ G iff the net
of functions dCα

converges to dC∞ uniformly on bounded sets.
Alternatively, the Attouch-Wets topology τaw on G can be described as a uni-

form topology, with uniform structure generated by the countable family of en-
tourages Vl, l ∈ N,

Vl = {
(

Γ(f,Ωf ),Γ(g,Ωg)
)

∈ G × G : Γ(f,Ωf ) ∩ B [x0, l] ⊆ B

[

Γ(g,Ωg),
1

l

]

and

Γ(g,Ωg) ∩ B [x0, l] ⊆ B

[

Γ(f,Ωf ),
1

l

]

},

where x0 is an arbitrary point in X .
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Definition 1.2. A net {(fα,Ωα)}α∈A in G is said to be τaw -convergent to
(f0,Ω0) ∈ G if for every bounded B ⊂ X × Y and every l ∈ N

Γ (fα,Ωα) ∩ B ⊆ B

[

Γ (f0,Ω0) ,
1

l

]

and

Γ (f0,Ω0) ∩ B ⊆ B

[

Γ (fα,Ωα) ,
1

l

]

eventually.

2. About the relative position of closed sets

In the definition of the τc
K
topology, it is requested a certain non triviality

property of the intersection between the domain of a function and a compact set.
We now formalize this property in a more general environment, showing that,
under certain conditions, given a closed set there exist enough compact sets that
satisfy the property.

Let (X, d) be a metric space and C, L ⊂ X closed subsets of X .

Definition 2.1. We say that L has property (∗) with respect to C if L ∩ C =
Lo ∩ C.

Notice that in general L ∩ C ⊃ Lo ∩ C. Since L ∩ C = (Lo ∩ C) ∪ (∂L ∩ C),
then L has property (∗) with respect to C iff the points of intersection between
the boundary of L and C are limits of points in L0 ∩ C.

Property (∗) is evidently preserved through homeomorphisms, but not through
projections, as the following counter-example shows.

If C = Γ (f0,Ω0) ⊂ R2 is the graph of the zero function on the interval [0, 1]
and L is the square [1, 2]× [1, 2], then L has the property (∗) with respect to C
since L ∩ Γ (f0,Ω0) = ∅.
Denote by π the projection R2 ∋ (x, y) 7−→ x ∈ R, then π (C) = C′ = [0, 1],

π (L) = L′ = [1, 2] and L′ ∩ C′ 6= (L′)o ∩ C′.

We start with two introductory lemmas.

Lemma 2.2. Let C ⊂ X be a closed set. Then

(i) If L1, L2, · · · , Ln is a finite collection of closed subsets of X satisfying

property (∗) with respect to C, then L =
⋃n

i=1 Li has property (∗) with
respect to C;

(ii) If C′ is a closed set such that Lo ⊂ C′ and L has property (∗) with respect
to C, then L has property (∗) with respect to C∩C′. Conversely, if L ⊂ C′

and L has property (∗) with respect to C ∩ C′, then L has property (∗)
with respect to C.
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Proof: (i) By induction, it is clearly enough to take n = 2. Then

(L1 ∪ L2) ∩ C = (L1 ∩ C) ∪ (L2 ∩ C) =
(

Lo
1 ∩ C

)

∪
(

Lo
2 ∩ C

)

=

=
(

Lo
1 ∪ Lo

2

)

∩ C ⊆ (L1 ∪ L2)
o ∩ C,

therefore (L1 ∪ L2) ∩ C = (L1 ∪ L2)
o ∩ C.

(ii) If L has property (∗) with respect to C and Lo ⊂ C′ then

Lo ∩ (C ∩ C′) = Lo ∩ C ⊃ L ∩ C ⊃ L ∩
(

C ∩ C′
)

,

so Lo ∩ (C ∩ C′) = L ∩
(

C ∩ C′
)

.

Conversely, if L has property (∗) with respect to C ∩ C′ and L ⊂ C′ then

L ∩ C = L ∩
(

C ∩ C′
)

= Lo ∩ (C ∩ C′) = (Lo ∩ C′) ∩ C = Lo ∩ C,

so L has property (∗) with respect to C.

At this point, to get stronger results we need to assume more properties of the
space X . �

In the following lemma, local connectedness plays a crucial role, as the counter-
example at the end of the proof shows.
The idea of the proof is a topological version of the mean value theorem, which

says that if a connected set V intersects both A and Ac, then V contains at least
one point in ∂A.

Lemma 2.3. Suppose X locally connected.
If {Lk }k∈N is a countable collection of closed set and L is the closure of the set
⋃∞

k=1 Lk, then every point in ∂L is a limit of points in
⋃∞

k=1 ∂Lk.

In particular, if all the Lk’s have property (∗) with respect to a closed set C,
then also L has property (∗) with respect to C.

Proof: Take x0 ∈ ∂L. If x0 belongs to some Lk, then x0 is in ∂Lk and there is
nothing to prove. Suppose x0 ∈ ∂L \

⋃

k Lk and choose any connected neighbor-
hood V of x0.
Since x0 is limit of points in

⋃

k Lk, then there existsm ∈ N such that V ∩Lm 6=
∅.

V is a connected set that contains points in Lm and x0 ∈ Lc
m.

It follows that V has to contain points in ∂Lm, otherwise V would be the union
of the non empty open sets V ∩ Lo

m and V ∩ Lc
m.

The conclusion comes from the fact that the family of connected neighborhoods
of x0 forms a neighborhood system around x0. �

If the local connectedness is not assumed, then the thesis of Lemma 2.3 does
not hold, even if X is connected. An easy counter-example comes from a variation
of the classical ladder, which is the subspace X of the euclidean plane formed by



556 P.Piccione, R. Sampalmieri

the union of segments of the form In = { 1n} × [ 0, 1 ], n ∈ N \ {0}, together with
the segments [ 0, 1 ]× {0}, [ 0, 1 ]× {1} and the square [−1, 0 ]× [ 0, 1 ].

If we take the sequence of the In’s, which are closed, then the closure of their
union L contains the segment I0 = {0} × [ 0, 1 ]. Every point in I0 is in the
boundary of L, whereas the only boundary points of the In’s are the extremes.

We come now to the main result of this section, which is about the existence
of enough compact sets satisfying property (∗) with respect to a given closed
set. The proof presented is rather technical and the extra assumption of local
compactness is made.

Proposition 2.4. Suppose X is locally connected and locally compact and C
a closed subset of X . Then

(i) Every point x0 ∈ X has a compact neighborhood Vx0 that has property

(∗) with respect to C; the family of all such neighborhoods forms a neigh-
borhood system of x0.

(ii) If L is any compact set, then there exists a compact set L′ ⊇ L that
has property (∗) with respect to C. If L is connected and the space X is
locally connected, then also L′ can be found connected.

(iii) C is covered by the family of compact sets satisfying property (∗) with
respect to C.

Proof: (i) If x0 ∈ Co we can choose δ > 0 such that Vx0 = B[x0, δ] is compact

and contained in Co. Then V o
x0 ∩ C = V o

x0 ⊇ Vx0 = Vx0 ∩ C, therefore Vx0 has
property (∗) with respect to C. If x0 /∈ C we choose Vx0 a compact ball around
x0 that has empty intersection with C; then Vx0 ∩ C = ∅ = V o

x0 ∩ C and Vx0 has
property (∗) with respect to C.
For the general case, we are going to define recursively an increasing sequence

Vn of compact neighborhoods of x0 in the following way.
Let l > 0 be such that the closed ball B[x0, 2l] is compact and set V0 = B[x0, l],

which is a compact neighborhood of x0.
Let now n > 0. We describe how to build Vn once Vn−1 is given.

Consider the set Wn = (Vn−1 ∩ C) \
(

V o
n−1 ∩ C

)

⊂ ∂Vn−1, i.e. Wn is the set
of points in Vn−1 ∩ C which are not limit points for V o

n−1 ∩ C.

Wn is relatively compact because it is a subset of Vn−1, therefore it is covered

by a finite number of open balls U
(n)
1 , U

(n)
2 , . . . , U

(n)
kn
of radius l · 2−n centered in

its points.

Define Vn as the union of Vn−1 and the closure of the U
(n)
j ’s.

Evidently Vn ⊇ Vn−1, moreover Vn is compact, since it is a closed subset
of B[x0, 2l]. Namely, if y ∈ Vn, then by the triangle inequality d (x0, y) ≤ l ·
∑n

m=0 2
−m < 2l.

Let us look at the points in ∂Vn.
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If y ∈ ∂Vn then either y ∈ ∂Vn−1, or there exists a point z ∈ V o
n ∩ C with

d (z, y) ≤ l · 2−n. In fact, if y /∈ ∂Vn−1, then y belongs to one of the balls U
(n)
j ,

whose center is in V o
n and has distance less than or equal to l · 2−n from y.

Plus, if y ∈ ∂Vn∩C, then, by construction, either y is a limit point of V 0n−1∩C or

y is in one of the U
(n)
j ’s, in which case there exists z ∈ V o

n ∩C with d(z, y) ≤ l·2−n.

Define Vx0 to be the closure of
⋃∞

n=0 Vn, which is a compact neighborhood
of x0.
We claim that Vx0 has property (∗) with respect to C. To prove this, we need

to show that if x ∈ ∂Vx0 ∩ C then there exists a sequence in V o
x0 ∩ C converging

to x.
From Lemma 2.3 we have that every point x ∈ ∂Vx0 is limit of points in ∂Vn.
Now, if x ∈ ∂Vx0 ∩ C and (ym)m∈N ⊆

⋃

n∈N
∂Vn is a sequence converging to

x, then either for some n ∈ N, ym ∈ ∂Vn for m ≥ n, or there exists a subsequence
(ymk

)k∈N of (ym)m∈N and a subsequence (Vnk
)k∈N of (Vn)n∈N such that ymk

∈
∂Vnk

\ Vnk−1 for k ∈ N.
Suppose ym ∈ ∂Vn for all m ≥ n.
Then x ∈ ∂Vn ∩ ∂Vx0 , therefore x ∈ ∂Vn for every n ≥ n. Indeed x ∈ Vn ⊆ Vn

for all n ≥ n, and x /∈ V o
x0 ⊇ V o

n . Thus, either x is a limit point for one of the
V o

n ∩C ⊆ V o
x0 ∩C, or, for n ≥ n, there exists a point zn ∈ V o

n ∩C ⊆ V o
x0 ∩C with

d(zn, x) ≤ l · 2−n. In both cases, x is a limit point of V o
x0 ∩ C.

Suppose now that (ymk
)k∈N and (Vnk

)k∈N are subsequences, respectively, of
(ym)m∈N and (Vn)n∈N, such that ymk

∈ ∂Vnk
\ Vnk−1 for every k ∈ N.

Then there is a sequence (zk)k∈N such that zk ∈ V o
nk

∩ C ⊆ V o
x0 ∩ C and

d(zk, ymk
) ≤ l · 2−nk for every k ∈ N; therefore lim

k
zk = lim

k
ymk

= lim
m

ym = x

and x is a limit point for V o
x0 ∩ C.

The second statement of (i) follows easily from the fact that the number l can
be arbitrarily small.
(ii) For x ∈ L, take Vx as in (i).
Then the family {V o

x }x∈L covers L, and since L is compact, L is covered by
a finite number of them, say Vx1 , Vx2 , · · · , Vxn .
Take L′ =

⋃n
i=1 Vxi . L′ is a compact superset of L that has property (∗) with

respect to C from part (i) of Lemma 2.2.
Moreover, if X is locally connected, the Vx’s can be chosen to be connected.

If L is connected, since each of the Vxi ’s has non empty intersection with L and
L ⊂

⋃n
i=1 Vxi , then also

⋃n
i=1 Vxi is connected.

(iii) Obvious from (i). �

Remark 2.5. As it was pointed out by our referee, in Proposition 2.4 (i), local
compactness is not essential, since every point has a local basis of closed neigh-
borhoods with property (∗) with respect to C. It is also true that each bounded
and separable subset L of X admits a bounded superset L′ which has property
(∗) with respect to C.
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3. Equivalence of τaw and τc
K
on G

Let X and Y be two locally connected, locally compact metric spaces.
We will show the equivalence of τaw and τc

K
in G by proving that the two

topologies have the same converging generalized sequences.
Let us consider a directed set A and a net Γ (fα,Ωα) in G indexed by elements

of A.

Lemma 3.1. If Γ (fα,Ωα) is τaw -convergent to Γ (f0,Ω0), then for every closed
and bounded set B ⊂ X × Y

K lim sup
α
[Γ (fα,Ωα) ∩ B] ⊆ Γ (f0,Ω0) ∩ B .

Proof: It follows easily from the well known fact that the τaw -convergence implies
the Kuratowski convergence. See [7], [8] for reference. �

To revert the inclusion in Lemma 3.1 we need property (∗), discussed in the
previous section.

Lemma 3.2. If Γ (fα,Ωα) is τaw -convergent to Γ (f0,Ω0), then for every closed
set B satisfying property (∗) with respect to Γ (f0,Ω0) it follows

K lim inf
α
[Γ (fα,Ωα) ∩ B] ⊃ Γ (f0,Ω0) ∩ B .

Proof: Let us consider the closed sets Cα = Γ (fα,Ωα) ∩ B.
Since K lim infα Cα is a closed set, we will need to show that every point

x ∈ Γ (f0,Ω0) ∩ B is a cluster point for K lim infα Cα. Due to the property (∗),
it will suffice to consider only points x ∈ Γ (f0,Ω0) ∩ Bo.
Let x ∈ Γ (f0,Ω0) ∩ Bo. Since Γ (fα,Ωα) is τaw -convergent to Γ (f0,Ω0), for

every ε > 0, the point x lies in B [Γ (fα,Ωα) , ε] eventually. Bo is open, therefore
we can find ε small enough so that that ball B(x, ε) is entirely contained in Bo.
It follows that B(x, ε) has non empty intersection with Γ (fα,Ωα)∩B eventually
and x ∈ K lim infα Cα. �

Observe that one can easily produce a counter-example to Lemma 3.2 if the
assumption of property (∗) is dropped.

Namely, if B = [0, 1] × [0, 1] ⊂ R2, fn(x) ≡ 1 +
1

n
and f0(x) ≡ 1 on [0, 1],

then Γ (fn, [0, 1]) is τaw -convergent to Γ (f0, [0, 1]), Γ (f0,Ω0) ∩ B = Γ (f0,Ω0),
but Γ (fn, [0, 1]) ∩ B = ∅ for every n.

If we put together the results of Lemma 3.1 and Lemma 3.2 we get the following:

Corollary 3.3. If Γ (fα,Ωα) is τaw -convergent to Γ (f0,Ω0), then for every closed
and bounded set B ⊂ X×Y satisfying the property (∗) with respect to Γ (f0,Ω0),
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the sequence Cα = Γ (fα,Ωα) ∩ B is convergent to Γ (f0,Ω0) ∩ B in the sense of
Kuratowski.

Proof: It follows directly from the inclusion K lim infα Cα ⊆ K lim supα Cα.
�

The following step is to relate global and local Kuratowski convergence of closed
sets.

Lemma 3.4. If Dα is a net of closed sets in X × Y converging in the sense of
Kuratowski to the closed set D0 and B ⊂ X×Y is a closed set satisfying property
(∗) with respect to D0,
then sequence Dα ∩ B converges in the sense of Kuratowski to D0 ∩ B.

Proof: If Dα∩B = ∅ frequently, then K lim infα (Dα ∩ B) = ∅. Moreover, since
Dα converges, then (K limα Dα)∩Bo = D0∩Bo = ∅, thus D0∩B = D0 ∩ Bo = ∅.
Then K lim supα (Dα ∩ B) ⊆ (K lim supα Dα) ∩ B = D0 ∩ B = ∅ and

K limα (Dα ∩ B) = D0 ∩ B.
If Dα ∩ B 6= ∅ eventually, then we can assume without loss of generality that

Dα ∩ B 6= ∅ for all α. If that was not the case, we could work with the net D′
α

defined by:

D′
α =

{

Dα if Dα ∩ B 6= ∅;

B otherwise,

which has the same asymptotic properties of Dα.
We need to show the following facts:

(a) if yαβ
∈ Dαβ

∩ B is a net converging to y0, then y0 is in D0 ∩ B;

(b) if y0 is in D0 ∩ B then there exists a net yα ∈ Dα ∩ B converging to y0.

For (a), consider that sinceDα converges in the sense of Kuratowski toD0, then
y0 ∈ D0. Moreover, since yαβ

∈ B and B is closed, then y0 ∈ B, so y0 ∈ D0 ∩B.

For (b), it will be enough to consider a point y0 in D0∩Bo, since this is a dense
subset of D0 ∩ B by hypothesis and since K lim supα (Dα ∩ B) is closed.
Let y0 ∈ D0 ∩ Bo. Since Dα converges to D0 and y0 ∈ D0, then there exists

a net y′α ∈ Dα converging to y0. B is a neighborhood of y0, so that the sequence
y′α is eventually in B. If we choose arbitrarily a net zα ∈ Dα and we define

yα =

{

y′α if y′α ∈ B,

zα otherwise,

then yα ∈ Dα ∩ B and limα yα = y0, so that (b) holds and the lemma is proved.
�

Notice that Lemma 3.4 holds in any metric space, without any compactness
or connectedness assumption, although the request of property (∗) may trivialize
the conclusion.

We now use this result to prove that, for a sequence of functions, Kuratowski
convergence on compact subsets of their domains is the same as Kuratowski con-
vergence on compact subsets of their graphs.
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Proposition 3.5. The sequence Γ (fα,Ωα) is τc
K
-convergent to Γ (f0,Ω0) in G if

and only if the sequence
Cα = Γ (fα,Ωα) ∩ B

converges in the sense of Kuratowski to Γ (f0,Ω0) ∩ B for every compact set
B ⊂ X × Y satisfying the property (∗) with respect to Γ (f0,Ω0).

Proof: Suppose Γ (fα,Ωα) is τc
K
-convergent to Γ (f0,Ω0) and B ⊂ X × Y is

a compact set satisfying the property (∗) with respect to Γ (f0,Ω0).
Let π : X×Y 7−→ X be the projection onto the first factor and ∆ = π (B) ⊂ X .
We can assume that ∆ satisfies property (∗) with respect to Ω0. If not, we can

change ∆ in the rest of the proof with a suitable compact superset ∆′ ⊃ ∆ that
satisfies (∗) with respect to Ω0.
Since B has property (∗) with respect to Γ (f0,Ω0) and B ⊂ ∆×Y , then from

part (ii) of Proposition 2.1 it follows that B has property (∗) with respect to
Γ (f0,Ω0) ∩ (∆× Y ) = Γ (f0,Ω0 ∩∆).
The sequence Γ (fα,Ωα ∩∆) converges in the sense of Kuratowski to

Γ (f0,Ω0 ∩∆), and by Lemma 3.4 also Γ (fα,Ωα ∩∆) ∩ B = Γ (fα,Ωα) ∩ B con-
verges in the sense of Kuratowski to Γ (f0,Ω0 ∩∆) ∩ B = Γ (f0,Ω0) ∩ B.

Conversely, suppose that for every compact B ⊂ X ×Y satisfying property (∗)
with respect to Γ (f0,Ω0) the sequence Γ (fα,Ωα) ∩ B converges in the sense of
Kuratowski to Γ (f0,Ω0) ∩ B.
Let ∆ ⊂ X be a compact set such that ∆ ∩ Ω0 = ∆o ∩ Ω0 6= ∅.
Consider the compact set K = f0 (∆ ∩ Ω0), let L ⊂ Y be a compact set such

that Lo ⊃ K and define B = ∆× L ⊂ X × Y .
Then Bo ∩ Γ (f0,Ω0) = Γ (f0,Ω0 ∩∆

o), therefore Bo ∩ Γ (f0,Ω0) =
Γ (f0,Ω0 ∩∆) = B∩Γ (f0,Ω0) and B has property (∗). It follows that Γ (fα,Ωα)∩
B converges in the sense of Kuratowski to Γ (f0,Ω0) ∩ B = Γ (f0,Ω0 ∩∆).
Since Γ (fα,Ωα ∩∆) ⊇ Γ (fα,Ωα) ∩ B, then

K lim inf
α
Γ (fα,Ωα ∩∆) ⊇ K lim

α
(Γ (fα,Ωα) ∩ B) = Γ (f0,Ω0 ∩∆) .

To prove that K lim supα Γ (fα,Ωα ∩∆) ⊆ Γ (f0,Ω0 ∩∆) suppose that
(xαβ

, fαβ
(xαβ

)) is a net in ∈ Γ
(

fαβ
,Ωαβ

∩∆
)

converging to a point (x0, y0) ∈
X × Y .
Then x0 ∈ ∆ since xαβ

∈ ∆. Moreover, since the net (xαβ
, fαβ

(xαβ
)) is

convergent andX×Y is locally compact, we can find a compact subset C ofX×Y
that satisfies property (∗) with respect to Ω0 and such that (xαβ

, fαβ
(xαβ

)) ∈ C
eventually.
Since Γ (fα,Ωα) ∩ C converges in the sense of Kuratowski to Γ (f0,Ω0) ∩ C, it

follows that (x0, y0) ∈ Γ (f0,Ω0), so (x0, y0) ∈ Γ (fα,Ωα ∩∆).
This says that

K lim sup
α
Γ (fα,Ωα ∩∆) ⊆ Γ (f0,Ω0 ∩∆) ,

so that K limα Γ (fα,Ωα ∩∆) = Γ (f0,Ω0) and the proposition is proved. �

Putting together the results of 3.3 and 3.5, we have the following
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Corollary 3.6. If Γ (fα,Ωα) is τaw -convergent to Γ (f0,Ω0), then Γ (fα,Ωα) is
τc
K
-convergent to Γ (f0,Ω0). In other words, τaw is finer than τc

K
.

We now prove the converse to Corollary 3.6. A little technical problem arises
from the asssumption of property (∗) in the definition of τc

K
, where the same

assumption is not requested in the definition of τaw .
We make now a stronger assumption on the metric spaces X , Y , that from

now on will be assumed to be b-compact spaces (in such spaces, closed bounded
sets are compact).

Proposition 3.7. If Γ (fα,Ωα) ∩ B is convergent in the sense of Kuratowski to
Γ (f0,Ω0)∩B for every compact B ⊂ X × Y satisfying property (∗) with respect
to Γ (f0,Ω0), then Γ (fα,Ωα) is τaw -convergent to Γ (f0,Ω0).

Proof: Suppose Γ (fα,Ωα)∩B Kuratowski convergent to Γ (f0,Ω0)∩B for every
B compact satisfying property (∗) with respect to Γ (f0,Ω0) and let C ⊂ X × Y
be a closed and bounded set, therefore compact.
We need to show that, for every l ∈ N, Γ (f0,Ω0) ∩ C ⊂ B

[

Γ (fα,Ωα) ,
1
l

]

and

Γ (fα,Ωα) ∩ C ⊂ B
[

Γ (f0,Ω0) ,
1
l

]

eventually.
We can assume that C satisfies property (∗) with respect to Γ (f0,Ω0), other-

wise we could consider, instead of C, a suitable compact superset C′ ⊃ C that
does.
Since Γ (fα,Ωα)∩C ⊂ K lim infα [Γ (fα,Ωα) ∩ C], then for every p ∈ Γ (fα,Ωα)

∩ C and l ∈ N the intersection B
[

p, 1
l

]

∩ [Γ (fα,Ωα) ∩ C ] is not empty. It fol-

lows that p ∈ B
[

Γ (fα,Ωα) ∩ C, 1
l

]

⊂ B
[

Γ (fα,Ωα) ,
1
l

]

, thus Γ (f0,Ω0) ∩ C ⊂

B
[

Γ (fα,Ωα) ,
1
l

]

.

For the other inclusion, suppose by absurd that
Γ (fα,Ωα)∩C 6⊂ B

[

Γ (f0,Ω0) ,
1
l

]

infinitely often. Then we could find an integer

l and a net pαβ
∈ Γ

[

fαβ
,Ωαβ

]

∩ C such that dΓ(f0,Ω0)(pαβ
) ≥ 1

l
.

The sequence pαβ
has at least one cluster point p, since it is contained in the

compact set C. The point p is therefore in K lim supα [Γ (fα,Ωα) ∩ C], but not in

Γ (f0,Ω0) ∩ C, since dΓ(f0,Ω0)(p) ≥
1
l
, which is an absurd, since Γ (f0,Ω0) ∩ C ⊃

K lim supα [Γ (fα,Ωα) ∩ C].

This shows that Γ (fα,Ωα) ∩ C ⊂ B
[

Γ (f0,Ω0) ,
1
l

]

and the proposition is
proved. �

Corollary 3.8. Let X and Y be locally connected b-compact metric spaces.
Then the topologies τaw and τc

K
are equivalent on G.

4. Conclusions

In [7], the authors have introduced on G the topology τ of Hausdorff conver-
gence on compact sets when Y = Rn and X is a closed connected subset of R. It
has been proved that the net Γ (fα,Ωα) in G is τ convergent if and only if it is τc

K

convergent and equibounded (see [14] for reference). This fact, after the result of
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Corollary 3.8, allows us to insert the τc
K
topology in the framework of the most

usual topologies of graph spaces ([7]).
In particular, from Theorem 2 and Corollaries 2 and 3 in [8], we have:

Theorem 4.1. If Ω is a locally connected subspace of the b-compact metric space
X and Y is a locally connected b-compact metric space, then τc

K
is equivalent to

the compact-open topology on GΩ.

Theorem 4.2. Under the hypothesis of Theorem 4.1, if X is compact, then τc
K

is equivalent to the Hausdorff metric topology on GΩ.

We refer the reader to [1], [2], [7], [8], [14], for a more general view about the
relationships among the different topologies in function spaces.

Acknowledgements. We would like to thank the referee for his helpful sugges-
tions, concerning, in particular, the proof of Proposition 2.4 (i) and the statement
of Proposition 3.7.
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