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On the equivalence of algebraic

and geometric local cohomology
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Abstract. In this paper, we will present several necessary and sufficient conditions on
a commutative ring such that the algebraic and geometric local cohomologies are equiv-
alent.

Keywords: local cohomology, commutative ring, quasi-flabby, sheaf, localization

Classification: 13D45, 13C10, 13B30

1. Introduction

As is well known, one of the main features of local cohomology, permitting to
calculate it effectively in practice, is the equivalence of its geometric and algebraic
definitions (see Grothendieck [2], or Hartshorne [1, p. 217, 3.3 (b)]).
More precisely, let R be a commutative noetherian ring and Z a closed subset

of SpecR, say Z = SpecR−D(K) with K an ideal. Then for each R-module M ,
there are the following isomorphisms:

(∗) Hn
Z(M̃)

∼= H̃n
KM,

and

(∗∗) Hn
Z(X, M̃) ∼= Hn

KM

where Hn
Z = RnΓZ and Hn

Z(X,−) = RnΓZ(X,−) are the right derived functors
of the support functors ΓZ and ΓZ(X,−) with respect to Z, respectively, and
Hn

K is the right derived functor of the torsion functor τK determined by K (i.e.
τKM = {m ∈ M |Knm = 0 for some natural numbers n}).
In this paper, we will consider general commutative (not necessarily noetherian)

rings, and give several necessary and sufficient conditions on a commutative ring
R such that (∗) or (∗∗) holds (see Theorem 8 below), which shows that the
noetherian assumption in the above classical results is not necessary.

*The author gratefully acknowledges the support of the Australian Research Council.
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2. Preliminaries

In this paper, a ring means a commutative ring with an identity. We denote by
SpecR the set of all prime ideals of R, endowed with the Zariski topology whose
typical open subsets are of the form D(I) = {P ∈ SpecR |I * P} with an ideal I
of R.
For each ideal I, the intersection of all prime ideals containing I is called the

radical of I, and will be denoted
√

I.
For each ideal I of R, define T (I) to be the filter of ideals consisting of those

ideals J whose radical
√

I ⊇ I. For each R-module M , define

τIM = {m ∈ M |Jm = 0 for some J ∈ T (I)}.

Then τI is a left exact subfunctor of the identity functor on R -Mod. Note that if
I is finitely generated, then T (I) has a cofinal base consisting of {In |n ≤ ω}, and
hence τI coincides with the usual one (e.g., the one mentioned in the introduction).

For any subset Z of SpecR, each sheaf F of R̃-modules and each open subset
U of SpecR, let

ΓZF (U) = {s ∈ F (U) |sP = 0 for all P ∈ U \ Z}

(the support of F (U)). Then ΓZ defines a left exact endofunctor on R̃ -Mod, the

category of all sheaves of R̃-modules.

Let Hn
Z = RnΓZ and Hn

Z(SpecR,−) = RnΓZ(SpecR,−) be the right derived
functors of ΓZ and ΓZ(SpecR,−) respectively.
For any Y ∈ SpecR, let F (U ∩Y ) = colim V ⊇U∩Y F (V ) and for each s ∈ F (U)

let s |U ∩ Y denote the image of s under the canonical morphism.

Lemma 0. For any F ∈ R̃ -Mod, we have

(ΓZF )(U) = {s ∈ F (U) |s |U ∩ Y = 0}.

Proof: If s ∈ F (U) with s |U ∩Y = 0, then there is an open set V ⊇ U ∩Y such
that V ⊆ U and s |V = 0. Thus sx = 0 for each x ∈ V , in particular, for each
x ∈ U ∩ Y .
On the other hand, if s ∈ F (U) with sx = 0 for each x ∈ U ∩Y , then there are

open subsets Vx ⊆ U with x ∈ Vx and FU
VX
(s) = 0, and hence FU

V (s) = 0, where

V =
⋃

x∈U∩Y Vx, since F is separated. Now s |U ∩ Y = 0 follows from the fact
that V ⊇ U ∩ Y . �

For any subset Y of SpecR, we may also define a left exact endofunctor τY on
R -Mod by letting τY M = {m ∈ M | (∃ an ideal J)(Y ⊆ D(J))(Jm = 0)}.
Let Hn

Y be the n-th right derived functor of τY .
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3. Main results

We shall first give the following lemma, from which we will derive that in the
corresponding result in [1, Ex. 5.6 (d), p. 124] the noetherian hypothesis can be
omitted.

Lemma 1. Let R be any commutative ring and M an R-module, and Z =
SpecR − Y for an arbitrary subset Y . Then there is a natural monomorphism

φM : τY M −→ ΓZM̃.

Proof: It suffices to show that it is true for those components at D(a) with

a ∈ R. First note that there is a canonical morphism φM : τ̃Y M → M̃ , whose
component at D(a) sends r/n ∈ (τY M)a to the element in r/an ∈ Ma.
This morphism is natural inM ∈ R -Mod: If f :M → N is an R-linear morphism,
then f̃ : M̃ → Ñ is defined by f̃(D(a)) : Ma → Na, which sends m/an to
f(m)/an. On the other hand, the restriction f |τY M factorizes through τY N .
Write τY (f) for the morphism f |τY M , it is an R-linear morphism from τY M

to τY N . Thus for each D(a), we have a morphism τ̃(f)(D(a)) : (τY M)a →
(τY N)a which sendsm/an ∈ (τY M)a to f(m)/an ∈ (τY N)a, and hence we obtain

a morphism τ̃(f) : τ̃Y M → τ̃Y N such that the following diagram commutes

τ̃Y M
φM−−−−→ M̃gτY f

y
yf̃

τ̃Y N −−−−→
φN ,

Ñ

since for each a ∈ R, the following diagram commutes:

(τY M)a
(φM )(D(a))−−−−−−−−→ Ma

(gτY f)D(A)

y
y(f̃)D(A)

(τY N)a −−−−−−−−→
(φN )(D(A))

Na .

Next we want further to show that φM factorizes through ΓZM̃ , or equivalently,
φM (D(a))((τY M)a) ⊆ ΓZ(D(a), M̃ ).

To prove this, note that m/an ∈ ΓZ(D(a), M̃) if and only if m/an = 0 in MP

for each P ∈ D(a) ∩ Y .
Suppose m/an ∈ (τY M)a with m ∈ τY M , then there exists an ideal J with

Y ⊆ D(J) such that Jm = 0. Now for each P ∈ Y , we have J * P , and hence
may find y ∈ J \ P such that ym ∈ Jm = {0}. That is, m/an is zero in MP .

Since it holds for each P ∈ D(a) ∩ Y , we have m/an ∈ ΓZ(D(a), M̃). That is to

say, φMD(a) factorizes through ΓZM̃(D(a)). It is clear that each φM (D(a)) is
injective, and hence so is φM . �
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Corollary 1. If Y is an open subset D(I) with a finitely generated ideal I of R,
then φM is an isomorphism.

Proof: It remains to show that each φM (D(a)) is surjective: Let m/an ∈
Γ(D(A), M̃ ) such that m/an = 0 in MP for each P ∈ D(a) ∩ D(I). Then
there exists an sP /∈ P such that sP m = 0. Let J =

∑
P∈Y RsP . Then

D(aI) = D(a) ∩ D(I) ⊆ D(J) and Jm = 0. Thus, aI ⊆
√

J and hence there

is a natural k such that Ikak = (aI)k ⊆ J which implies that Ikakm = 0 and

hence akm ∈ τIM . The conclusion follows from the fact that m/an = akm/an+k

in Ma. �

Corollary 2. If R is noetherian, then each φM is an isomorphism. �

Now we would like to introduce the following notion: Let X = SpecR.

Definition 3. A sheaf F is called quasi-flabby if for each quasi-compact open
subset U of X , the restriction map FX

U is surjective.

It is clear that each flabby sheaf is quasi-flabby, in particular, each injective
sheaf is quasi-flabby.

Lemma 4. If F is quasi-flabby, then H1(U, F ) = 0 for each quasi-compact open
subset U of X .

Proof: To show H1(U, F ) = 0, it suffices to show that for any exact sequence of
sheaves

0 −→ F −→ E
β−→ G −→ 0,

the following sequence

Γ(U, E)
βU−→ Γ(U, G) −→ 0,

is exact. Let s ∈ Γ(U, G) and S = {(V, t) | t ∈ E(V ), V ⊆ U, βV (t) = s |V }. Then⋃{V | (V, t) ∈ S} = U since β is epic.
Since U is quasi-compact, it suffices to show that if (V1, t1) and (V2, t2) are two

members of S, then there is a t ∈ E(V1 ∪ V2) such that (V 1 ∪ V2, t) ∈ S. In fact,
t1 |V1∩V2−t2 |V1∩V2 ∈ F (V1∩V2) since βV1∩V2(t1 |V1∩V2−t2 |V1∩V2) = 0. Since
F is quasi-flabby and V1 ∩ V2 is quasi-compact open, there exists t′ ∈ F (V1) ⊆
E(V1) such that FV1

V1∩V2
(t′) = t1 |V1 ∩V2− t2 |V1 ∩V2. Now let t′1 = t1− t′. Then

t′1 |V1 ∩ V2 = t2 |V1 ∩ V2 and βV1(t
′
1) = s |V1. Since E is a sheaf, we may patch

t′1 and t2 together to get a section t ∈ E(V1 ∪ V2), whose image under βV1∪V2 is
s |V1 ∪ V2 since G is also a sheaf. �

Lemma 5. If 0→ F → E → G → 0 is an exact sequence of sheaves and F and
E are quasi-flabby, then so is G.

Proof: By Lemma 4, for each quasi-compact open subset U of SpecR, we have
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the following commutative exact diagrams:

0 −−−−→ Γ(X, F ) −−−−→ Γ(X, E) −−−−→ Γ(X, G) −−−−→ 0

F X
U

y EX
U

y GX
U

y

0 −−−−→ Γ(U, F ) −−−−→ Γ(U, E) −−−−→ Γ(U, G) −−−−→ 0.

Now the surjectivity of GX
U follows from the fact that both morphisms EX

U and
Γ(U, E)→ Γ(U, G) are surjective. �

Lemma 6. Let Z = SpecR−U with U quasi-compact open, and let F be quasi-
flabby. Then H1Z(X, F ) = 0 = H1ZF .

Proof: Consider the short exact sequence 0 → F → E → G → 0 of sheaves,
where E is an injective sheaf. To show H1Z(F ) = 0 is to show the induced
map ΓZ(E) → ΓZ(G) is epic. It suffices to show that each induced morphism
ΓZ(V, E) → ΓZ(V, G) is surjective, for each quasi-compact open subset V . In
fact, it follows from the following diagram,

0 0 0
y

y
y

0 −−−−→ ΓZ(V, F ) −−−−→ ΓZ(V, E) −−−−→ ΓZ(V, G)
y

y
y

0 −−−−→ Γ(V, F ) −−−−→ Γ(V, E) −−−−→ Γ(V, G) −−−−→ 0
y

y
y

0 −−−−→ Γ(U ∩ V, F ) −−−−→ Γ(U ∩ V, E) −−−−→ Γ(U ∩ V, G) −−−−→ 0
y

y
y

0 0 0

since the vertical sequences are exact by Lemma 5 and the row sequences are
exact by Lemma 4. �

Lemma 7. Let Z be a complement of a quasi-compact open subset of SpecR,
and F quasi-flabby. Then Hn

Z(V, F ) = 0 = Hn
ZF for any n ≥ 1 and any open V .

Proof: Consider the short exact sequence 0 → F → E → G → 0 of sheaves,
where E is an injective sheaf. By the long exact sequence of cohomology of the
short sequence above, we have Hn+1

Z (V, F ) ∼= Hn
Z(V, G) for n ≥ 1. The conclusion

follows, by induction, from Lemma 5 and Lemma 6. �
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Theorem 8. For a commutative ring R, the following are equivalent:

(1) The associated sheaf Ẽ is quasi-flabby for each injective R-module E;

(2) Hn
Z(Ẽ) = 0, for all injective E, n ≥ 1 and for all complement Z of quasi-
compact open subsets;

(3) Hn
Z(M̃)

∼= H̃n
KM , for all R-modules M , n ≥ 1 and Z = SpecR − D(K)

with K finitely generated;

(4) Hn
Z(SpecR, M̃) ∼= Hn

KM , for all M , n ≥ 1 and Z = SpecR − D(K) with
K finitely generated;

(5) H1Z(SpecR, Ẽ) = 0, for all injective E and all complements Z of quasi-
compact open subsets of SpecR;

Proof: (1) ⇒ (2) follows from Lemma 7.
(2) ⇒ (3) Consider the following exact sequence

0 −→ M −→ E −→ E/M −→ 0,

where E is an injective hull of M ; which induces the following exact sequence

0 −→ M̃ −→ Ẽ −→ Ẽ/M −→ 0,

since the structure sheaf functor is exact.
Therefore we have another exact sequence:

0 −→ ΓZM̃ −→ ΓZẼ −→ ΓZẼ/M −→ H1ZM̃ −→ H1ZẼ = 0,

and Hn+1
Z M̃ ∼= Hn

ZẼ/M for n ≥ 1 by (2). In particular, H1ZM̃ is the cokernel of

ΓZẼ → ΓZẼ/M .
On the other hand,

0 −→ M −→ E −→ E/M −→ 0

also induces another exact sequence

0 −→ τKM −→ τKE −→ τKE/M −→ H1KM −→ H1KE = 0

and hence induces the following exact sequence

0 −→ τ̃KM −→ τ̃KE −→ ˜τKE/M −→ H̃1KM −→ H̃1KE = 0,

Hn+1
K M̃ ≃ Hn

K Ẽ/M
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for all n ≥ 1.
By Corollary 1, we have the following commutative diagram:

0 −−−−→ ΓZM̃ −−−−→ ΓZẼ −−−−→ ΓZẼ/M −−−−→ H1ZM̃ −−−−→ 0

φM

x φE

x
xφE/M

0 −−−−→ τ̃KM −−−−→ τ̃KE −−−−→ ˜τKE/M −−−−→ H̃1KM −−−−→ 0

so that H1ZM̃ ≃ H̃1KM .

Now the conclusion follows from the fact that

Hn+1
Z M̃ ≃ Hn

ZẼ/M

Hn+1
K M̃ ≃ Hn

K Ẽ/M

for all n ≥ 1.
(3) ⇒ (2) is obvious since the right hand side is zero when E is injective.

The proof of (2) ⇒ (4) is similar to that (2) ⇒ (3) (or by using the result of
Grothendieck that Hn

Z(M̃)
∼= Hn

Z(S̃pecR, M̃), see [2]).

(4) ⇒ (5) is trivial.
(5) ⇒ (1) Consider the exact sequence of functors, where K is a finitely gen-

erated ideal:

0 −→ ΓZ(X,−) −→ Γ(X,−) −→ Γ(D(K),−),

which is exact on injective sheaves. It induces the following exact sequence

0 −→ ΓZ(X, Ẽ) −→ Γ(X, Ẽ) −→ Γ(D(K), Ẽ)
−→ H1Z(X, Ẽ) −→ H1(X, Ẽ) −→ H1(D(K), Ẽ).

By (5), H1Z(X, Ẽ) = 0, so we have the surjective map

Γ(X, Ẽ) −→ Γ(D(K), Ẽ).

That is to say, E is quasi-flabby. �

Example 9. The following example is due to Hartshorne ([1, p. 218, Exam-
ple 3.8]), which shows that not all commutative ring satisfies (1) in Theorem 8.

Let R = k[x0, x1, x2 . . . ] with the relations xn
0xn = 0 for n = 1, 2 . . . . Let E

be an injective R-module containing R. Then E → Ex0 is not surjective.
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Example 10. If R is a commutative von Neumann regular ring, then for each
injective R-module E, Ẽ is quasi-flabby.

Note that there are many examples which are von Neumann regular rings but
not noetherian (e.g., a product of infinite copies of a field).
It is almost immediate that X in equivalence (∗∗) may be replaced by any basic

open subset D(a) with a ∈ R, by the fact that Hn
Z(D(a), Ẽ)

∼= Hn
Z(X, Ẽa) since

the functor (−)a is exact.
Proposition 11. For a commutative ring R, R satisfies (1) in Theorem 8 iff

Hn
Z∩D(a)(D(a), M̃)

∼= Hn
KMa for each basic open subset D(a) of SpecR and for

each R-module M and for any f · g · K with Z = SpecR \ K.

Lastly, we would like to ask one question: Is the quasi-flabbiness equivalent to
the weaker one that all restriction maps to basic open subset are surjective? We
do not know the answer, but we will give some information instead.

Lemma 12. Let R be a commutative ring and I, J be two finitely generated

ideals of R. Then for each R-module M , M̃(D(IJ)) ∼= ˜M̃(D(I))(D(J)), in par-

ticular, M̃(D(Ia)) ∼= (M̃(D(I)))a, where a ∈ R.

Proof: Let I =
∑n

i Rbi. Note that (Mbi)a ∼= Mbia and consider the equalizer
diagram

M̃(D(I))→ Πi≤nMbi
⇉ Πi≤nΠj≤nMbibj

.

We have the following equalizer diagram

(M̃(D(I)))a → Πi≤nMbia ⇉ Πi≤nΠj≤nMbibja .

On the other hand, we also have the following equalizer diagram

M̃(D(Ia))→ Πi≤nMbia ⇉ Πi≤nΠj≤nMbibja .

Thus M̃(D(Ia)) ∼= (M̃(D(I)))a. The conclusion follows by using a similar proof
once more. �

Theorem 13. If a quasi-coherent sheaf F satisfies that all restriction maps to
basic open subsets are surjective, then Hn(U, F ) = 0 for each quasi-compact open
subset U , n ≥ 1; and Hn

Z(X, F ) = 0 for all n ≥ 2, where Z is a complement of
a quasi-compact open subset of SpecR.

Proof: If 0 → F → E → G → 0 is an exact sequence of sheaves, and U is
a quasi-compact open subset of SpecR, we want to prove that Γ(U, E)→ Γ(U, G)
is surjective.
For each s ∈ Γ(U, G), since E → G → 0 is exact, there exists a basic open

cover D(ai) of U with the property that there is a ti ∈ E(D(ai)) such that
the image of ti is s |D(ai) for all i. Since U is quasi-compact, we may assume
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U =
⋃

i≤n D(ai). Let I1 = Ra1 and Il =
∑l

i Rai for each l ≤ n. We claim

that for each Il there exists ul ∈ E(D(Il)) such that the image of ul is s |D(Il).
For l = 1 it is true. Assume that it is true for l, we want to show that it is
true for l+1. Now the image of ul |D(Ilal+1)− tl+1 |D(Ilal+1) is s |D(Ilal+1)−
s |D(Ilal+1) = 0, and hence it is in F (D(Ilal+1)). However, by Lemma 12, we see
F (D(Ilal+1)) ∼= (F (D(Il)))al+1 . Now by assumption, there exists w ∈ FD(Il)

such that w |D(Ilal+1) = ul |D(Ilal+1) − tl+1 |D(Ilal+1). Let u′l = ul − w ∈
E(D(Il)). Then u′l |D(Ilal+1) = tl+1 |D(Ilal+1). Thus there exists an extension

ul+1 ∈ E(D(Il+1)) of u
′
l and tl+1. Note that the image of u

′
l is also s |D(Il), so

that the image of ul+1 is s |D(Il+1). This completes the induction.

Thus we have shown that H1(U, F ) = 0. Now observe that if E is flabby, then

G is quasi-flabby and Hn
Z(X, G) ∼= Hn+1

Z (X, F ) for all n ≥ 1. We finally have
Hn(U, F ) = 0 for all n ≥ 1 and Hn

Z(X, F ) = 0 for all n ≥ 2 and all Z, where Z’s
are complements of quasi-compact open subsets of SpecR.
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