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Normal integrands and related classes of functions

ANNA Kucia, ANDRZEJ NOWAK

Abstract. Let D C T x X, where T is a measurable space, and X a topological space.
We study inclusions between three classes of extended real-valued functions on D which
are upper semicontinuous in x and satisfy some measurability conditions.
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1. Preliminaries

Throughout this paper (7,7) is a measurable space, X a topological space,
and D a subset of T' x X. For aset A C T x X, projr A denotes the projection
of A on T'. We shall always assume that proj; D = T. We say that X is Souslin
if it is a continuous image of a Polish space. By B(X) and 7 ® B(X) we mean,
respectively, the Borel o-field on X and the product o-field on 7' x X. The set D
is always considered with the trace o-field D={DNA|AeT @ B(X)}.

Let R be a family of sets. By S(R) we denote the family of all sets obtained
from R by the Souslin operation. If S(R) = R, we say R is a Souslin family. If
the o-field 7 is complete with respect to a o-finite measure, then 7 is a Souslin
family. We refer to Wagner [14] and Levin [10, Theorem D.7] for other sufficient
conditions for S(7) =T.

We shall use the following projection theorem.

Theorem 1.1 ([4, Theorem 1.3], [10, Theorem D.3]). Suppose 7 is a Souslin
family and X is a Souslin space. Then projr A € T for each A € S(T ® B(X)).

Let ¢ : T — P(Y), where Y is a topological space and P(Y) is the family of
all subsets of Y. The set-valued map v is measurable if

PTIV) = {teT|pt)NV #0} €T

for each open V' C Y (note that Himmelberg [5] calls such a mapping weakly
measurable).

By D; we denote t-section of D, i.e. Dy = {x € X |(t,z) € D}, t € T. The
set D may be treated as a graph of the multifunction ¢ — D;. We say that D
has a Castaing representation if there exists a countable family U of measurable
functions u : T'— X such that for each ¢t € T, u(t) € Dy and the set {u(t) |u € U}
is dense in Dy.
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The set D has a Castaing representation provided one of the following condi-
tions is satisfied:

(i) D=T x X and X is separable.
(ii) There is a countable subset £ C X such that E N D; is dense in Dy for
teT,and D* ={t € T|(t,x) € D} belongs to T for z € E.
(iii) X is a Souslin space, 7 is a Souslin family and D € S(7 ® B(X)) (see e.g.
[10, Theorem D.4]).
(iv) X is separable and metrizable, D; are complete, and the multifunction
t — Dy is measurable (see [5, Theorem 5.6]).

Throughout this paper we deal with extended real-valued functions f : D —
R U {—o00}. By a set-valued map associated to f we mean ¢ : T — P(X x R)
defined by
o) ={(z,r) e X xR|(t,x) € D and f(t,x)>r}.
Note that ¢(t) is the subgraph of f(t,-). We say that such a function f is
a Carathéodory integrand if it is finite, measurable (with respect to D), and
for each t € T, f(¢,-) is continuous on D;. It is well known that if X has a count-
able base and f : T x X — R is measurable in ¢ and continuous in x, then f is
product measurable (i.e. f is a Carathéodory integrand).
We shall study inclusions between the following classes of functions:
Fi(D)={f:D —RU{—o0}|f is measurable and for each t € T', f(¢,-) is
upper semicontinuous on Dy},
Fy(D)={f:D —RU{—o0c}| f is the limit of a decreasing sequence
of Carathéodory integrands},
F3(D)={f:D — RU{—0c0}| the set-valued map associated to f is measurable
and for each t € T', f(¢,+) is upper semicontinuous on Dy }.

Elements of F3(D) are called normal integrands (cf. Rockafellar [12]; note that in
[7] we use a different terminology).

The study of these functional classes is motivated by their applications in
optimization and mathematical economy. In particular, they appear when we
deal with the following problem: Let f be a real-valued function on D. We ask
under which assumptions the function
(1.1) v(t) =sup{f(t,z) |z € D¢}, teT,
is measurable. Suppose for each ¢ € T this supremum is attained. Does there exist
measurable u : T'— X such that u(t) € Dy and v(t) = f(¢,u(t)), t € T? Such
a function u is called an optimal measurable selection. The following theorem
holds:

Theorem 1.2 ([13], [3]). Suppose X is separable and metrizable. If the multi-
function t — Dy, t € T, is measurable and compact-valued, and f € Fy(D), then
there exists an optimal measurable selection.

In general, the assumption f € Fy(D) cannot be replaced by the weaker con-
dition f € F1(D) (cf. [3]).
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2. Main result

We start with two auxiliary lemmata. Remind that we have assumed
projp D =1T.
Lemma 1. Suppose D has a Castaing representation. If A C D is such that
A € D and A is open in Dy for each t € T, then projp A€ T.
PRrROOF: Let U be a Castaing representation of D. Since A; are open in Dy,

projp A = {t € T'|u(t) € At for some u € U} = | J {t € T| (¢, u(t)) € A}.
uelU
The observation that the function from T to D given by ¢ — (¢, u(t)) is measur-

able, completes the proof.
O

The next lemma is a slight generalization of a result from [8, Lemma], but for
the sake of completeness we give its proof.

Lemma 2. Let f : D — RU{—o0}, and ¢ be the set-valued map associated
to f. Then:
(i) If ¢ is measurable then the function v defined by (1.1) is measurable.
(ii) If f is a Carathéodory integrand and D has a Castaing representation,
then f is a normal integrand.
(iii) If X is separable and metric, ¢ is measurable and g : X — R is uniformly
continuous, then the set-valued map 1) associated to h, h(t,z) = f(t,z) —
g(x), (t,x) € D, is also measurable.

PROOF: Observe that for any V C X, a,b € R, a < b, we have

(21) ¢~V x (a,b) = ¢~ 1(V x (a,00)) = projr (£~ ((a,00)) N (T x V).
Now the assertion (i) follows from the equalities

v ((a,00)) = {t € T| f(t,x) > a for some z € Dy} =

= projp £ ((a,00)) = ¢~ (X x (a,00)).
If f(t,-) is continuous, then the t-section of f~1((a,c0) N (T x V)) is open in Dy
for each open V' C X. The application of Lemma 1 together with the equality
(2.1) prove the assertion (ii).

In order to prove (iii), take for each n € N a number ¢, > 0 such that |g(x) —
g(y)| < % provided d(z,y) < 0y, where d is a metric on X. Let E C X be
countable and dense. It is not difficult to check that for open V' C X and a € R
we have

{(t,x) e DN(T x V)| h(t,x) > a} =

U U {0 enn@xBle,su) | f(t.2) > gle) +a+ ),

neN eeVNE

T
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where B(e, dy,) is the open ball with center e and radius d,,. This equality together
with (2.1) imply the measurability of ¢, which completes the proof. O

The following theorem summarizes our knowledge of relations between classes
F;(D), : = 1,2,3. Some of these inclusions were already known. We refer to
Remark 2 for the comparison of our theorem with previous results.

Theorem 2.1. Let X be separable and metrizable, and D C T x X such that
projp D =T. Then:
(i) F3(D) C Fa(D) C Fi(D).
(ii) If T is a Souslin family, X a Souslin space and D € S(T ® B(X)), then
Fi(D) = F»(D) = F3(D).
(iii) If T and X are Polish spaces, T = B(T) and D € S(7T ® B(X)), then
Fi(D) = By(D).
(iv) If X is o-compact, and D has a Castaing representation and closed t-
sections Dy, t € T, then Fo(D) = F3(D).

PRrROOF: (i) The inclusion F»(D) C Fi(D) is obvious, thus we prove F3(D) C
F5(D). Let h be an increasing homeomorphism of RU {—oc} and [-1,1). It is
immediate that if f € F3(D) then ho f € F3(D). Similarly, if g : D — R is
a Carathéodory integrand such that |g(t,z)| < 1, (t,z) € D, then h™log is a
Carathéodory integrand too. Hence, it suffices to prove that any f € F3(D) which
satisfies —1 < f(¢t,2) < 1 is the limit of a decreasing sequence of Carathéodory
integrands with values in the interval (—1,1).

We adopt the classical proof of the theorem of Baire on the approximation of
a semicontinuous function by a monotone sequence of continuous ones (see e.g.
[1, p.390]). Let the functions fp, : T x X — [-1,1) and g, : T x X — (—1,1) be
defined by the formulae

fn(t, ) =sup{f(t,y) — nd(z,y) |y € D¢},
gn(t,z) = max{fn(t,x), -1+ %}, n €N,

where d is a metric compatible with the topology of X. By Lemma 2, the functions
fn are measurable in t. Consequently, g, are also measurable in ¢. From the proof
of the theorem of Baire we know that gn(t,-) are continuous, and the sequence
gn | D is convergent to f. Being measurable in ¢ and continuous in x the functions
gn are product measurable. Hence, g, | D are also measurable. It means that
f € F(D).

(ii) It suffices to prove that F}(D) C F3(D). Note that under our assumptions
D C S(T ® B(X)). If f € F{(D) then f~1((a,00)) € D for each a € R. Now
(2.1) together with Theorem 1.1 imply the measurability of the set-valued map ¢
associated to f (cf. [10, Theorem D.6]).

(iii) This is a consequence of Theorem 3.1 from [7].
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(iv) We prove the inclusion Fy(D) C F3(D). Any f € Fy(D) is the limit of
a decreasing sequence { f | n € N} of Carathéodory integrands. Denote by ¢ and
én, respectively, the set-valued maps associated to f and fy,. It is not difficult to
check that

¢(t) = [ {on(t) In € N}.

By Lemma 2 (ii), each ¢, is measurable (and closed-valued). Since X is o-
compact, it implies the measurability of ¢ ([5, Corollary 4.2]). It means that
f is a normal integrand, which completes the proof. O

Remarks. 1. Theorem 2.1 is a generalization of the main result from [8], where
we studied the case D =T x X.

2. We shall discuss some previous results, but note that the definition of the
normal integrand varies from paper to paper. An analogous result to (ii) for
D =T x X was already given by Berliocchi and Lasry ([2, Theorem 2 and The-
orem 2']). In Theorem 2 they studied the case when T is a locally compact
Polish space endowed with a Radon measure, and the corresponding properties
of f(t,-) are required for almost all ¢t € T. Theorem 2’ for an abstract mea-
sure space was given without proof. Rockafellar ([12, Theorem 2A]) proved that
Fi(T xR™) = F3(T x R™), under assumption that the o-field 7 is complete. The
equality F1(T x X) = F5(T x X) was given by Pappas ([11, Corollary 1]) for
the case, when 7 is complete and X is a locally compact Polish space. Levin
([9, Theorem 7]) gave the equality Fo(T x X) = F3(T x X) for compact X, but
without proof. Related result to (ii) for D = T x X was obtained by Zygmunt
([15, Theorem 3.4]).

3. If there is a function f : D — RU {—o0} such that its associated set-valued
map ¢ is measurable, then D is the graph of a measurable multifunction. In the
proof of this fact we may assume that —1 < f(t,z) < 1 for (¢t,z) € D (cf. the
proof of (i)). Then for any open V C X,

{teT|DiNV £0y={teT|(t,z) e D forsomez € V}=¢ '(VxR)eT.
Hence, t — Dy, t € T, is a measurable multifunction.

3. Examples

In this section we give two examples which show that in general, the classes
F;(D), i =1,2,3, do not coincide.

Example 1. Recently the first author ([6]) gave an example of a non-Borel func-
tion g : T — [0,1] with the graph W being a Gg-set in T x [0, 1], where T is
a coanalytic subset of the plane. It is based on the Sierpinski example from
1931. Let X be the interval [0,1], 7 = B(T) and D = T x X. We show that

F1(D) # F»(D).
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Let f be the characteristic function of the set W. It is obvious that f € Fy (D).
We claim that f does not belong to F»(D). If not, there is a decreasing sequence
of Carathéodory functions f,, which converges to f. Replacing fy, by min{ fn, 1},
we may assume that 0 < fr(t,2) <1, (t,z) € D, and fr(t,z) =1 for (t,x) € W.

Denote
nm i (]) s ()
Ap ={(t,z) €T x X |z € cl (An)}.

We have

(3.1) WcA,CA,CB, neN

It is easy to see that

(3.2) W =({Bn|neN}

Since vertical sections of A,, are open in [0,1], the set-valued map ¢ — (Ap)¢
is measurable. Indeed, for each open V C X,

{teT|[(A)iNV #0} =projp(AnNT x V) e T,

because of Lemma 1. Consequently, A, is a graph of a measurable multifunction
too. It follows from (3.1) and (3.2) that

W =(){An|neN}.

The intersection of countably many measurable multifunctions with compact val-
ues is a measurable set-valued map ([5, Theorem 4.1]). Hence W is a graph of
a Borel function, which is a contradiction.

This example gives a negative answer to the question from [7]. Recently Burgess
and Maitra [3] constructed a function f € Fy(T x X), where X is a compact
metric space, for which there is no optimal measurable selection. It follows from
Theorem 1.2 that such a function does not belong to Fa(T x X).

Example 2. Let X be the set of irrationals, T the interval [0,1], 7 = B(T') and
D =TxX. Let ACTxX be closed and such that proj A is not Borel. Finally,
let f be the characteristic function of A. It is immediate that f € Fy (D), and the
function v corresponding to f by (1.1) is the characteristic function of projr A.
It follows from Lemma 2 (i) that f ¢ F3(D). Thus Fy(D) = F»(D) # F3(D).

Note that in Example 1 we have F1(D) # F3(D) = F3(D). Therefore it is
interesting to construct a set D such that Fy(D) # Fa(D) # F3(D). It can be
done by combining Examples 1 and 2; we omit the details.
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