Normal integrands and related classes of functions

Anna Kucia, Andrzej Nowak

Abstract. Let $D \subset T \times X$, where T is a measurable space, and X a topological space. We study inclusions between three classes of extended real-valued functions on D which are upper semicontinuous in x and satisfy some measurability conditions.

Keywords: normal integrand, Carathéodory function

Classification: 54C30, 28A20

1. Preliminaries

Throughout this paper (T, \mathcal{T}) is a measurable space, X a topological space, and D a subset of $T \times X$. For a set $A \subset T \times X$, $\operatorname{proj}_T A$ denotes the projection of A on T. We shall always assume that $\operatorname{proj}_T D = T$. We say that X is Souslin if it is a continuous image of a Polish space. By $\mathcal{B}(X)$ and $\mathcal{T} \otimes \mathcal{B}(X)$ we mean, respectively, the Borel σ -field on X and the product σ -field on $T \times X$. The set D is always considered with the trace σ -field $\mathcal{D} = \{D \cap A \mid A \in \mathcal{T} \otimes \mathcal{B}(X)\}$.

Let \mathcal{R} be a family of sets. By $S(\mathcal{R})$ we denote the family of all sets obtained from \mathcal{R} by the Souslin operation. If $S(\mathcal{R}) = \mathcal{R}$, we say \mathcal{R} is a Souslin family. If the σ -field \mathcal{T} is complete with respect to a σ -finite measure, then \mathcal{T} is a Souslin family. We refer to Wagner [14] and Levin [10, Theorem D.7] for other sufficient conditions for $S(\mathcal{T}) = \mathcal{T}$.

We shall use the following projection theorem.

Theorem 1.1 ([4, Theorem 1.3], [10, Theorem D.3]). Suppose \mathcal{T} is a Souslin family and X is a Souslin space. Then $\operatorname{proj}_T A \in \mathcal{T}$ for each $A \in S(\mathcal{T} \otimes \mathcal{B}(X))$.

Let $\psi: T \to \mathcal{P}(Y)$, where Y is a topological space and $\mathcal{P}(Y)$ is the family of all subsets of Y. The set-valued map ψ is measurable if

$$\psi^{-1}(V) = \{ t \in T \mid \psi(t) \cap V \neq \emptyset \} \in \mathcal{T}$$

for each open $V \subset Y$ (note that Himmelberg [5] calls such a mapping weakly measurable).

By D_t we denote t-section of D, i.e. $D_t = \{x \in X \mid (t, x) \in D\}, t \in T$. The set D may be treated as a graph of the multifunction $t \to D_t$. We say that D has a Castaing representation if there exists a countable family U of measurable functions $u: T \to X$ such that for each $t \in T$, $u(t) \in D_t$ and the set $\{u(t) \mid u \in U\}$ is dense in D_t .

The set D has a Castaing representation provided one of the following conditions is satisfied:

- (i) $D = T \times X$ and X is separable.
- (ii) There is a countable subset $E \subset X$ such that $E \cap D_t$ is dense in D_t for $t \in T$, and $D^x = \{t \in T \mid (t, x) \in D\}$ belongs to T for $x \in E$.
- (iii) X is a Souslin space, \mathcal{T} is a Souslin family and $D \in S(\mathcal{T} \otimes \mathcal{B}(X))$ (see e.g. [10, Theorem D.4]).
- (iv) X is separable and metrizable, D_t are complete, and the multifunction $t \to D_t$ is measurable (see [5, Theorem 5.6]).

Throughout this paper we deal with extended real-valued functions $f: D \to \mathbb{R} \cup \{-\infty\}$. By a set-valued map associated to f we mean $\phi: T \to \mathcal{P}(X \times \mathbb{R})$ defined by

$$\phi(t) = \{(x, r) \in X \times \mathbb{R} \mid (t, x) \in D \text{ and } f(t, x) \ge r\}.$$

Note that $\phi(t)$ is the subgraph of $f(t,\cdot)$. We say that such a function f is a Carathéodory integrand if it is finite, measurable (with respect to \mathcal{D}), and for each $t \in T$, $f(t,\cdot)$ is continuous on D_t . It is well known that if X has a countable base and $f: T \times X \to \mathbb{R}$ is measurable in t and continuous in t, then t is product measurable (i.e. t is a Carathéodory integrand).

We shall study inclusions between the following classes of functions:

- $F_1(D) = \{f : D \to \mathbb{R} \cup \{-\infty\} \mid f \text{ is measurable and for each } t \in T, f(t, \cdot) \text{ is upper semicontinuous on } D_t\},$
- $F_2(D) = \{f : D \to \mathbb{R} \cup \{-\infty\} \mid f \text{ is the limit of a decreasing sequence of Carathéodory integrands}\},$
- $F_3(D) = \{f : D \to \mathbb{R} \cup \{-\infty\} \mid \text{ the set-valued map associated to } f \text{ is measurable and for each } t \in T, f(t, \cdot) \text{ is upper semicontinuous on } D_t\}.$

Elements of $F_3(D)$ are called normal integrands (cf. Rockafellar [12]; note that in [7] we use a different terminology).

The study of these functional classes is motivated by their applications in optimization and mathematical economy. In particular, they appear when we deal with the following problem: Let f be a real-valued function on D. We ask under which assumptions the function

(1.1)
$$v(t) = \sup\{f(t, x) \mid x \in D_t\}, \quad t \in T,$$

is measurable. Suppose for each $t \in T$ this supremum is attained. Does there exist measurable $u: T \to X$ such that $u(t) \in D_t$ and $v(t) = f(t, u(t)), t \in T$? Such a function u is called an optimal measurable selection. The following theorem holds:

Theorem 1.2 ([13], [3]). Suppose X is separable and metrizable. If the multifunction $t \to D_t$, $t \in T$, is measurable and compact-valued, and $f \in F_2(D)$, then there exists an optimal measurable selection.

In general, the assumption $f \in F_2(D)$ cannot be replaced by the weaker condition $f \in F_1(D)$ (cf. [3]).

2. Main result

We start with two auxiliary lemmata. Remind that we have assumed $\operatorname{proj}_T D = T$.

Lemma 1. Suppose D has a Castaing representation. If $A \subset D$ is such that $A \in \mathcal{D}$ and A_t is open in D_t for each $t \in T$, then $\operatorname{proj}_T A \in \mathcal{T}$.

PROOF: Let U be a Castaing representation of D. Since A_t are open in D_t ,

$$\operatorname{proj}_T A = \{ t \in T \mid u(t) \in A_t \text{ for some } u \in U \} = \bigcup_{u \in U} \{ t \in T \mid (t, u(t)) \in A \}.$$

The observation that the function from T to D given by $t \to (t, u(t))$ is measurable, completes the proof.

The next lemma is a slight generalization of a result from [8, Lemma], but for the sake of completeness we give its proof.

Lemma 2. Let $f: D \to \mathbb{R} \cup \{-\infty\}$, and ϕ be the set-valued map associated to f. Then:

- (i) If ϕ is measurable then the function v defined by (1.1) is measurable.
- (ii) If f is a Carathéodory integrand and D has a Castaing representation, then f is a normal integrand.
- (iii) If X is separable and metric, ϕ is measurable and $g: X \to \mathbb{R}$ is uniformly continuous, then the set-valued map ψ associated to h, h(t,x) = f(t,x) g(x), $(t,x) \in D$, is also measurable.

PROOF: Observe that for any $V \subset X$, $a, b \in \mathbb{R}$, a < b, we have

(2.1)
$$\phi^{-1}(V \times (a,b)) = \phi^{-1}(V \times (a,\infty)) = \operatorname{proj}_T(f^{-1}((a,\infty)) \cap (T \times V)).$$

Now the assertion (i) follows from the equalities

$$v^{-1}((a,\infty)) = \{t \in T \mid f(t,x) > a \text{ for some } x \in D_t\} =$$

= $\operatorname{proj}_T f^{-1}((a,\infty)) = \phi^{-1}(X \times (a,\infty)).$

If $f(t,\cdot)$ is continuous, then the t-section of $f^{-1}((a,\infty)\cap (T\times V))$ is open in D_t for each open $V\subset X$. The application of Lemma 1 together with the equality (2.1) prove the assertion (ii).

In order to prove (iii), take for each $n \in \mathbb{N}$ a number $\delta_n > 0$ such that $|g(x) - g(y)| < \frac{1}{n}$ provided $d(x,y) < \delta_n$, where d is a metric on X. Let $E \subset X$ be countable and dense. It is not difficult to check that for open $V \subset X$ and $a \in \mathbb{R}$ we have

$$\{(t,x) \in D \cap (T \times V) \mid h(t,x) > a\} =$$

$$= \bigcup_{n \in \mathbb{N}} \bigcup_{e \in V \cap E} \left\{ (t,x) \in D \cap (T \times B(e,\delta_n)) \mid f(t,x) > g(e) + a + \frac{1}{n} \right\},$$

П

where $B(e, \delta_n)$ is the open ball with center e and radius δ_n . This equality together with (2.1) imply the measurability of ψ , which completes the proof.

The following theorem summarizes our knowledge of relations between classes $F_i(D)$, i = 1, 2, 3. Some of these inclusions were already known. We refer to Remark 2 for the comparison of our theorem with previous results.

Theorem 2.1. Let X be separable and metrizable, and $D \subset T \times X$ such that $\operatorname{proj}_T D = T$. Then:

- (i) $F_3(D) \subset F_2(D) \subset F_1(D)$.
- (ii) If \mathcal{T} is a Souslin family, X a Souslin space and $D \in S(\mathcal{T} \otimes \mathcal{B}(X))$, then $F_1(D) = F_2(D) = F_3(D)$.
- (iii) If T and X are Polish spaces, $\mathcal{T} = \mathcal{B}(T)$ and $D \in S(\mathcal{T} \otimes \mathcal{B}(X))$, then $F_1(D) = F_2(D)$.
- (iv) If X is σ -compact, and D has a Castaing representation and closed t-sections D_t , $t \in T$, then $F_2(D) = F_3(D)$.

PROOF: (i) The inclusion $F_2(D) \subset F_1(D)$ is obvious, thus we prove $F_3(D) \subset F_2(D)$. Let h be an increasing homeomorphism of $\mathbb{R} \cup \{-\infty\}$ and [-1,1). It is immediate that if $f \in F_3(D)$ then $h \circ f \in F_3(D)$. Similarly, if $g: D \to \mathbb{R}$ is a Carathéodory integrand such that |g(t,x)| < 1, $(t,x) \in D$, then $h^{-1} \circ g$ is a Carathéodory integrand too. Hence, it suffices to prove that any $f \in F_3(D)$ which satisfies $-1 \le f(t,x) < 1$ is the limit of a decreasing sequence of Carathéodory integrands with values in the interval (-1,1).

We adopt the classical proof of the theorem of Baire on the approximation of a semicontinuous function by a monotone sequence of continuous ones (see e.g. [1, p. 390]). Let the functions $f_n: T \times X \to [-1,1)$ and $g_n: T \times X \to (-1,1)$ be defined by the formulae

$$f_n(t, x) = \sup\{f(t, y) - nd(x, y) | y \in D_t\},\$$

$$g_n(t, x) = \max\left\{f_n(t, x), -1 + \frac{1}{n}\right\}, \quad n \in \mathbb{N},\$$

where d is a metric compatible with the topology of X. By Lemma 2, the functions f_n are measurable in t. Consequently, g_n are also measurable in t. From the proof of the theorem of Baire we know that $g_n(t,\cdot)$ are continuous, and the sequence $g_n \mid D$ is convergent to f. Being measurable in t and continuous in x the functions g_n are product measurable. Hence, $g_n \mid D$ are also measurable. It means that $f \in F_2(D)$.

- (ii) It suffices to prove that $F_1(D) \subset F_3(D)$. Note that under our assumptions $\mathcal{D} \subset S(\mathcal{T} \otimes \mathcal{B}(X))$. If $f \in F_1(D)$ then $f^{-1}((a,\infty)) \in \mathcal{D}$ for each $a \in \mathbb{R}$. Now (2.1) together with Theorem 1.1 imply the measurability of the set-valued map ϕ associated to f (cf. [10, Theorem D.6]).
 - (iii) This is a consequence of Theorem 3.1 from [7].

(iv) We prove the inclusion $F_2(D) \subset F_3(D)$. Any $f \in F_2(D)$ is the limit of a decreasing sequence $\{f_n \mid n \in \mathbb{N}\}$ of Carathéodory integrands. Denote by ϕ and ϕ_n , respectively, the set-valued maps associated to f and f_n . It is not difficult to check that

$$\phi(t) = \bigcap \{ \phi_n(t) \mid n \in \mathbb{N} \}.$$

By Lemma 2 (ii), each ϕ_n is measurable (and closed-valued). Since X is σ -compact, it implies the measurability of ϕ ([5, Corollary 4.2]). It means that f is a normal integrand, which completes the proof.

Remarks. 1. Theorem 2.1 is a generalization of the main result from [8], where we studied the case $D = T \times X$.

- 2. We shall discuss some previous results, but note that the definition of the normal integrand varies from paper to paper. An analogous result to (ii) for $D = T \times X$ was already given by Berliocchi and Lasry ([2, Theorem 2 and Theorem 2']). In Theorem 2 they studied the case when T is a locally compact Polish space endowed with a Radon measure, and the corresponding properties of $f(t,\cdot)$ are required for almost all $t \in T$. Theorem 2' for an abstract measure space was given without proof. Rockafellar ([12, Theorem 2A]) proved that $F_1(T \times \mathbb{R}^n) = F_3(T \times \mathbb{R}^n)$, under assumption that the σ -field T is complete. The equality $F_1(T \times X) = F_2(T \times X)$ was given by Pappas ([11, Corollary 1]) for the case, when T is complete and X is a locally compact Polish space. Levin ([9, Theorem 7]) gave the equality $F_2(T \times X) = F_3(T \times X)$ for compact X, but without proof. Related result to (ii) for $D = T \times X$ was obtained by Zygmunt ([15, Theorem 3.4]).
- 3. If there is a function $f: D \to \mathbb{R} \cup \{-\infty\}$ such that its associated set-valued map ϕ is measurable, then D is the graph of a measurable multifunction. In the proof of this fact we may assume that $-1 \le f(t,x) < 1$ for $(t,x) \in D$ (cf. the proof of (i)). Then for any open $V \subset X$,

$$\{t \in T \mid D_t \cap V \neq \emptyset\} = \{t \in T \mid (t, x) \in D \text{ for some } x \in V\} = \phi^{-1}(V \times \mathbb{R}) \in \mathcal{T}.$$

Hence, $t \to D_t$, $t \in T$, is a measurable multifunction.

3. Examples

In this section we give two examples which show that in general, the classes $F_i(D)$, i = 1, 2, 3, do not coincide.

Example 1. Recently the first author ([6]) gave an example of a non-Borel function $g: T \to [0,1]$ with the graph W being a G_{δ} -set in $T \times [0,1]$, where T is a coanalytic subset of the plane. It is based on the Sierpiński example from 1931. Let X be the interval [0,1], $T = \mathcal{B}(T)$ and $D = T \times X$. We show that $F_1(D) \neq F_2(D)$.

Let f be the characteristic function of the set W. It is obvious that $f \in F_1(D)$. We claim that f does not belong to $F_2(D)$. If not, there is a decreasing sequence of Carathéodory functions f_n , which converges to f. Replacing f_n by $\min\{f_n, 1\}$, we may assume that $0 \le f_n(t, x) \le 1$, $(t, x) \in D$, and $f_n(t, x) = 1$ for $(t, x) \in W$. Denote

$$A_n = f_n^{-1}\left(\left(\frac{1}{2}, 1\right]\right), \quad B_n = f_n^{-1}\left(\left[\frac{1}{2}, 1\right]\right),$$
$$\overline{A}_n = \{(t, x) \in T \times X \mid x \in \operatorname{cl}(A_n)_t\}.$$

We have

$$(3.1) W \subset A_n \subset \overline{A}_n \subset B_n, \quad n \in \mathbb{N}.$$

It is easy to see that

$$(3.2) W = \bigcap \{B_n \mid n \in \mathbb{N}\}.$$

Since vertical sections of A_n are open in [0,1], the set-valued map $t \to (A_n)_t$ is measurable. Indeed, for each open $V \subset X$,

$$\{t \in T \mid (A_n)_t \cap V \neq \emptyset\} = \operatorname{proj}_T(A_n \cap T \times V) \in \mathcal{T},$$

because of Lemma 1. Consequently, \overline{A}_n is a graph of a measurable multifunction too. It follows from (3.1) and (3.2) that

$$W = \bigcap \{ \overline{A}_n \mid n \in \mathbb{N} \}.$$

The intersection of countably many measurable multifunctions with compact values is a measurable set-valued map ([5, Theorem 4.1]). Hence W is a graph of a Borel function, which is a contradiction.

This example gives a negative answer to the question from [7]. Recently Burgess and Maitra [3] constructed a function $f \in F_1(T \times X)$, where X is a compact metric space, for which there is no optimal measurable selection. It follows from Theorem 1.2 that such a function does not belong to $F_2(T \times X)$.

Example 2. Let X be the set of irrationals, T the interval [0,1], $T = \mathcal{B}(T)$ and $D = T \times X$. Let $A \subset T \times X$ be closed and such that $\operatorname{proj}_T A$ is not Borel. Finally, let f be the characteristic function of A. It is immediate that $f \in F_1(D)$, and the function v corresponding to f by (1.1) is the characteristic function of $\operatorname{proj}_T A$. It follows from Lemma 2 (i) that $f \notin F_3(D)$. Thus $F_1(D) = F_2(D) \neq F_3(D)$.

Note that in Example 1 we have $F_1(D) \neq F_2(D) = F_3(D)$. Therefore it is interesting to construct a set D such that $F_1(D) \neq F_2(D) \neq F_3(D)$. It can be done by combining Examples 1 and 2; we omit the details.

Acknowledgement. This research was supported by Silesian University Mathematics Department (Iterative Functional Equations and Real Analysis Program).

References

- [1] Ash R.B., Real Analysis and Probability, Academic Press, New York, 1972.
- Berliocchi H., Lasry J.-M., Intégrandes normales et mesures paramétrées en calcul de variations, Bull. Soc. Math. France 101 (1973), 129–184.
- [3] Burgess J., Maitra A., Nonexistence of measurable optimal selections, Proc. Amer. Math. Soc. 116 (1992), 1101–1106.
- [4] Christensen J.P.R., Topology and Borel Structure, North Holland, Amsterdam, 1974.
- [5] Himmelberg C.J., Measurable relations, Fund. Math. 87 (1975), 53–72.
- [6] Kucia A., Some counterexamples for Carathéodory functions and multifunctions, submitted to Fund. Math.
- [7] Kucia A., Nowak A., On Baire approximations of normal integrands, Comment. Math. Univ. Carolinae 30:2 (1989), 373-376.
- [8] ______, Relations among some classes of functions in mathematical programming, Mat. Metody Sots. Nauk 22 (1989), 29–33.
- Levin V.L., Measurable selections of multivalued mappings into topological spaces and upper envelopes of Carathéodory integrands (in Russian), Dokl. Akad. Nauk SSSR 252 (1980), 535-539; English transl.: Sov. Math. Dokl. 21 (1980), 771-775.
- [10] ______, Convex Analysis in Spaces of Measurable Functions and its Applications to Mathematics and Economics (in Russian), Nauka, Moscow, 1985.
- [11] Pappas G.S., An approximation result for normal integrands and applications to relaxed controls theory, J. Math. Anal. Appl. 93 (1983), 132–141.
- [12] Rockafellar R.T., Integral functionals, normal integrands and measurable selections, in: Nonlinear Operators and Calculus of Variations (L. Waelbroeck, ed.), Lecture Notes in Mathematics 543, Springer, Berlin, 1976, pp. 157–207.
- [13] Schäl M., A selection theorem for optimization problem, Arch. Math. 25 (1974), 219–224.
- [14] Wagner D.H., Survey of measurable selection theorems, SIAM J. Control 15 (1977), 859-903
- [15] Zygmunt W., Scorza-Dragoni property (in Polish), UMCS, Lublin, 1990.

Instytut Matematyki, Uniwersytet Ślaski, 40-007 Katowice, Poland

(Received September 15, 1994, revised June 8, 1995)