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On the sequence of integer parts

of a good sequence for the ergodic theorem

Emmanuel Lesigne

Abstract. If (un) is a sequence of real numbers which is good for the ergodic theorem,
is the sequence of the integer parts ([un]) good for the ergodic theorem ? The answer is
negative for the mean ergodic theorem and affirmative for the pointwise ergodic theorem.
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Introduction

Let us specify at once the notion of good sequence for the ergodic theorem.

Definition 1. A sequence u = (un)n≥0 of real positive numbers is a good se-
quence for the mean ergodic theorem if, given a probability space (Ω, T , µ) and
a measure preserving flow (St)t≥0 on Ω, for all f ∈ L2(µ), the sequence

( 1

N

N−1
∑

n=0

f ◦ Sun

)

N>0

converges in L2(µ).

(In this definition the space L2 does not play a particular role. The exponent 2
can be replaced by any exponent in [1,+∞[.)

Definition 2. Let p ∈ [1,+∞]. A sequence u = (un)n≥0 of real positive numbers
is a good sequence for the pointwise ergodic theorem in Lp if, given a probability

space (Ω, T , µ) and a measure preserving flow (St)t≥0 on Ω, for all f ∈ Lp(µ), the
sequence

( 1

N

N−1
∑

n=0

f(Sunω)
)

N>0

converges for µ-almost all ω.
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Examples

1. Numerous and interesting examples of sequences of integers good for the
ergodic theorem can be found in the literature. If (an) is such a sequence, then,
for all reals α and β, the sequence (αan+β) is also a good sequence for the ergodic
theorem.

2. For all real number α > 0, the sequence (nα) is good for the mean ergodic
theorem (see for example [1]).

3. For all real numbers α except perhaps a countable family, and in particular
for all numbers α rational non integer, the sequence (nα) is not a good sequence
for the pointwise ergodic theorem in L∞. This is proved in [1].

Any good sequence for the pointwise ergodic theorem in one space Lp is a good
sequence for the mean ergodic theorem. This can be easily justified, using the den-
sity of the space of bounded measurable functions in Lp and Lebesgue dominated
convergence theorem.

Christian Mauduit and the author wondered if the sequence of integer parts
of a good sequence for the ergodic theorem is still a good sequence. The answer
is surprising: it is negative for the mean ergodic theorem but positive for the
pointwise ergodic theorem!

Theorem 1. Let p ∈ [1,+∞[. If a sequence u = (un)n≥0 of real positive numbers
is good for the pointwise ergodic theorem in Lp, then the sequence [u] := ([un])n≥0
of its integer parts is good for the pointwise ergodic theorem in Lp.

Remark 1. There exists a good sequence for the mean ergodic theorem whose

sequence of integer parts is not good for the mean ergodic theorem.

This remark is easy to justify; an example can be constructed by perturbation
of a good sequence for example the sequence of all integers (see Section 1).
Proof of Theorem 1 is based on the following deep result which is due to

J. Bourgain, answering a question posed by A. Bellow.

Theorem 2 ([3]). Let (an)n≥0 be a sequence of non zero real numbers which
converges to zero.

There exists a bounded measurable function f on the torus T such that the

sequence
( 1

N

N−1
∑

n=0

f(x+ an)
)

N>0

diverges for all x in a set of positive Lebesgue measure.

1. On the mean theorem

Good sequences for the mean ergodic theorem are characterized by the next
proposition which is well known as a consequence of the spectral theorem.
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Proposition 1. A sequence (un) is good for the mean ergodic theorem if and

only if, for all t ∈ R, the sequence
(

1
N

∑N−1
n=0 exp(itun)

)

converges.

As a direct consequence we have the following result on perturbations of good
sequences.

Proposition 2. If (un) is a good sequence for the mean ergodic theorem and if
(ǫn) is a real sequence which tends to zero, then the sequence (un + ǫn) is still
a good sequence for the mean ergodic theorem.

It is now easy to justify the Remark 1: let (an) be a sequence of 0 and -1’s
such that the sequence

1

N

N−1
∑

n=0

(−1)n+an

diverges. Consider the sequence un := n+ an
n+1 . By Proposition 2, the sequence

(un) is good. By construction, the sequence of its integer parts is not good.

It is of course possible to wonder to which dynamical systems these coun-
terexamples apply. We can prove the following result: let (Ω, T , µ, (St)t≥0) be
a measure preserving system; if there exists a subset A of N, with positive density,
and a function f in L2(µ) such that the sequence

(

1
N

∑

n∈A∩[0,N [ f ◦ Sn
)

does

not converge in the mean, then there exists a sequence (ǫn) tending to zero and

a function g in L∞ such that the sequence
(

1
N

∑

n∈[0,N [ g ◦ S[n+ǫn]
)

does not

converge in the mean.

2. On the pointwise theorem

Bourgain’s proof of Theorem 2 is based on his “entropy criteria” and on the
following lemma.

Lemma 1. Let (an) be a sequence of non zero real numbers converging to zero.
Given a positive integer r, there are integers J1 < J2 < ... < Jr satisfying the

following condition:

given any sequence α = (α1, α2, ..., αr) ∈ {0, 1}r, there is an integer n = n(α)
such that,

for each integer s between 1 and r,

∣

∣

∣
1−

1

Js

∑

j<Js

exp(2πiajn)
∣

∣

∣

{

< 1
10 if αs = 0

> 1
2 if αs = 1.

In fact the finite sequences (Js)1≤s≤r appearing in this lemma can be chosen in
any fixed infinite subset of N. Therefore J. Bourgain proved the following result.

Theorem 3. Let (an)n≥0 be a sequence of non zero real numbers converging to
zero and (Nk)k≥0 a non bounded sequence of positive integers.
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There exists a bounded measurable function f on the torus T such that the

sequence
( 1

Nk

Nk−1
∑

n=0

f(x+ an)
)

k≥0

is not almost everywhere convergent.

This theorem will be used in the proof of the following proposition, in which
we denote by x = x − [x] the fractional part of a real x.

Proposition 3. Let p ∈ [1,+∞[. Let (un) be a good sequence for the pointwise
ergodic theorem in Lp. For all h ∈]0, 1],

lim
δ→0+

lim sup
N→+∞

1

N
card

{

n ∈ [0, N [
∣

∣ un ∈]h − δ, h[
}

= 0.

Let (un) be a good sequence for the pointwise ergodic theorem. It is easy to
verify that this sequence has an asymptotic distribution modulo 1, that is to say
the sequence of probabilities

(

1
N

∑

n<N δun

)

converges on T. Denote by ν this
asymptotic distribution. Proposition 3 says that point masses of the probability ν

can only appear along constant subsequences of the sequence (un). More precisely,
for all h ∈ [0, 1[,

ν
(

{h}
)

= lim
N→+∞

1

N
card

{

n ∈ [0, N [
∣

∣ un = h
}

.

Proof of Proposition 3: The only dynamical system we shall consider here
is Ω = T with the uniform probability µ and the measure preserving flow St(x) =
x+ t modulo 1.
Let (an)n≥0 be a real sequence. If f is a function on T, we note

ANf(x) :=
1

N

∑

n<N

f(x+ an).

Banach’s principle (see for example [4]) states that if for all f ∈ Lp(µ) the
sequence (ANf)N>0 converges almost everywhere, then

(1) lim
λ→+∞

sup
‖f‖p≤1

µ
{

sup
N>0

|ANf | > λ
}

= 0.

Reciprocally, if the sequence (an) has an asymptotic distribution modulo 1
and if (1) is true, then, for all f ∈ Lp(µ), the sequence (ANf) converges almost
everywhere. (Indeed, if (an) has an asymptotic distribution modulo 1, then,
for all continuous function f , the sequence (ANf) converges everywhere, and
property (1) ensures that the set of functions f such that (ANf) converges almost
everywhere is closed in Lp(µ).)



On the sequence of integer parts of a good sequence for the ergodic theorem 741

This remark is also true for the convergence of subsequences of (AN ) and it
allows us to deduce from Theorem 3 the following lemma.

Lemma 2. Let (an)n≥0 be a sequence of non zero real numbers converging to
zero and (Nk)k≥0 be an unbounded sequence of positive integers.
There exists ǫ > 0 such that, for all λ > 0, there exists f ∈ Lp(µ) satisfying

‖f‖p ≤ 1 and µ
{

sup
Nk>0

|ANk
f | > λ

}

> ǫ.

Replacing the function f by its absolute value, we can also suppose that this

function is positive.

We can now prove Proposition 3.

Let (un) be a real sequence and h a fixed number in ]0, 1]. Let us suppose that

lim
δ→0+

lim sup
N→+∞

1

N
card

{

n ∈ [0, N [
∣

∣ un ∈]h − δ, h[
}

> 0.

We want to show that (un) is not a good sequence for the pointwise ergodic
theorem; replacing un by un − h + 1, we can suppose that h = 1. There exists
ρ > 0 such that, for all δ > O

(2) lim sup
N→+∞

1

N
card

{

n ∈ [0, N [
∣

∣ un > 1− δ
}

> ρ.

This implies that there is an increasing sequence of integers (nj)j≥0 such that

lim
j→∞

unj = 1 and lim sup
j→∞

j

nj
≥ ρ > 0.

(

This sequence (nj) can be constructed as follows: by (2) there is an integer
sequence (Np) such that N0 = 0, Np+1 > Np and, for p > 0,

1

Np
card

{

n ∈ [0, Np[
∣

∣ un > 1−
1

p

}

> ρ;

we put
{nj} :=

⋃

p>0

{

n ∈ [Np−1, Np[
∣

∣ un > 1−
1

p

}

.
)

Let (jk)k≥0 be an increasing sequence of integers such that, for all k,
jk
njk

>
ρ

2
.

Let f be a positive function on T. We have:

sup
N

( 1

N

∑

n<N

f(x+ un)
)

≥ sup
j

( 1

nj

∑

n<nj

f(x+ un)
)

≥ sup
j

( j

nj

1

j

∑

i<j

f(x+ uni)
)

≥
ρ

2
sup
k

( 1

jk

∑

i<jk

f(x+ uni)
)

.
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Using notations uni = ai and jk = Nk, we can apply Lemma 2. There exists
ǫ > 0 such that, for all λ > 0, there is f ∈ Lp satisfying

‖f‖p ≤ 1 and µ
{

x
∣

∣ sup
N

( 1

N

∑

n<N

f(x+ un)
)

> λ
}

> ǫ.

By Banach’s principle, this implies that the sequence (un) is not good for the
pointwise ergodic theorem. Proof of Proposition 3 is complete. �

Proof of Theorem 1: Let (un) be a real sequence, good for the pointwise
ergodic theorem. Denote by dn := [un] the integer part of un. In order to
prove that (dn) is a good sequence, it is enough to prove that, if (Ω, T , µ) is
a probability space and T a measure preserving transformation on this space,
then, for all f ∈ Lp(µ), the sequence

(

1
N

∑

n<N f ◦ T dn
)

converges µ-almost
everywhere.
Let us fix (Ω, T , µ, T, f), where f is a bounded measurable function on Ω.
We consider the special flow defined above the system (Ω, T , µ, T ), under the

constant ceiling function 1. Denoting by m the uniform probability on [0, 1[, this
flow (St)t≥0 is defined on the space (Ω× [0, 1[, µ× m) by

St(ω, x) = (T [t+x]ω, (t+ x)).

We denote by f̃ the trivial extension of f on Ω× [0, 1[. It is defined by f̃(ω, x) :=
f(ω).
By hypothesis, for µ × m-almost all (ω, x), the sequence

( 1

N

∑

n<N

f̃
(

Sun(ω, x)
)

)

converges. Now

1

N

∑

n<N

f̃
(

Sun(ω, x)
)

=
1

N

∑

n<N

f(T [un+x]ω).

Fix δ > 0. For µ-almost all ω, there exists x ∈ [0, δ[ such that the sequence
( 1

N

∑

n<N

f
(

T [un+x]ω
)

)

converges. For such an x, we have [un+x] = dn except perhaps when un ∈]1−δ, 1[.
We pose Eδ =

{

n ∈ N
∣

∣ un > 1− δ
}

.
If x ∈ [0, δ[, we have

∣

∣

∣

1

N

∑

n<N

f(T dnω)−
1

M

∑

n<M

f(T dnω)
∣

∣

∣
≤

≤
∣

∣

∣

1

N

∑

n<N

f(T [un+x]ω)−
1

M

∑

n<M

f(T [un+x]ω)
∣

∣

∣
+

+ 2‖f‖∞

( 1

N
card

(

[0, N [∩Eδ

)

+
1

M
card

(

[0, M [∩Eδ

)

)

.
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So

lim sup
N,M→∞

∣

∣

∣

1

N

∑

n<N

f(T dnω)−
1

M

∑

n<M

f(T dnω)
∣

∣

∣
≤

≤ 4‖f‖∞ lim sup
N→∞

1

N
card

(

[0, N [∩Eδ

)

.

Proposition 3 says that this last quantity tends to zero with δ. This proves that,
for µ-almost all ω,

(

1
N

∑

n<N f(T dnω)
)

is a Cauchy sequence.
This result has been obtained for bounded functions f . We shall now prove

that the set of functions f in Lp(µ) such that the sequence
(

1
N

∑

n<N f(T dnω)
)

converges almost everywhere is closed in Lp(µ). This is the direct consequence

of a maximal inequality based on the following remark (where f̃ is the trivial
extension of f to Ω× [0, 1[).

For each (ω, x) ∈ Ω× [0, 1[, we have f(T dnω) = f̃(Sun(ω, x)) or f̃(Sun−1(ω, x)).
This implies that

∣

∣

1

N

∑

n<N

f ◦ T dn
∣

∣≤
1

N

∑

n<N

|f̃ | ◦ Sun +
1

N

∑

n<N

|f̃ ◦ S−1| ◦ Sun .

And maximal inequality for this last expression is a consequence of our hypothesis
and Banach’s principle. This completes the proof of Theorem 1. �

N.B.: After the writing of this paper, M. Wierdl informed the author that, in
a common work with M. Boshernitzan and R. Jones, he had obtained recently
a result similar to the main one of this note ([2]).
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