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1. Introduction

In a series of recent papers various classes of spaces were characterized as
spaces which admit resolutions (commutative or approximate), consisting of spe-
cial classes of polyhedra. By a polyhedron we mean the carrier of a simpli-
cial complex, endowed with the CW-topology. For pseudocompact spaces this
was achieved in [6], for Lindelöf and strongly paracompact spaces in [1], for n-
dimensional spaces in [8] and [18] and for finitistic spaces in [12]. In this paper
we obtain such characterizations for the class of realcompact spaces. In the liter-
ature one can already find two characterizations of realcompact spaces in terms
of inverse systems. The first one characterizes realcompact spaces as limits of
inverse systems of Lindelöf spaces ([15, Theorem 23]). The second one char-
acterizes realcompact spaces as limits of inverse systems of Polish spaces ([3,
Proposition 3.2.17]). Recall that a realcompact space can be defined as a space
homeomorphic to a closed subspace of a product of copies of the real line R. Since
R is topologically complete and topological completeness is preserved under direct
products and closed subsets, every realcompact space is topologically complete.
A separable space is called Polish if it is completely metrizable. A regular space is
called Lindelöf if its open coverings have countable refinements. Note that Polish
spaces are Lindelöf ([2, Theorem 3.8.1]) and Lindelöf spaces are realcompact ([2,
Theorem 3.11.12]). In both cases the inverse systems used to expand the space
did not consist of polyhedra.
Our aim is to expand realcompact spaces into polyhedral inverse systems. How-

ever, these systems will be approximate inverse systems. The notions of an ap-
proximate inverse system and its limit were recently introduced by S. Mardešić,
L. Rubin and T. Watanabe ([8], [11]). We state their basic definitions.
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Definition 1.1. An approximate (inverse) system is a collection
X = (Xa,Ua, paa′ , A) consisting of:

– a preordered set A = (A, <) which is directed and unbounded;
– for each a ∈ A, a (topological) space Xa and a normal covering (mesh) Ua

of Xa;
– for each comparable pair a < a′ in A, a (continuous) mapping paa′ : Xa′ →

Xa, paa = 1Xa
is the identity mapping on Xa.

These data must also satisfy the following three conditions:

(A1) (paa′pa′a′′ , paa′′) < Ua, whenever a < a′ < a′′;
(A2) (∀ a ∈ A) (∀U ∈ Cov (Xa)) (∃ a′ > a) (∀ a2 > a1 > a′)

(paa1pa1a2 , paa2) < U ;

(A3) (∀ a ∈ A) (∀U ∈ Cov (Xa)) (∃ a′ > a) (∀ a′′ > a′) Ua′′ < p−1
aa′′ U .

Here, for any two mappings f, g : X → Y and any covering V of Y , (f, g) < V
means that, for every x ∈ X , there exists a V ∈ V such that f(x), g(x) ∈ V . For
coverings U , U ′ of X , U ′ < U means that U ′ refines U .
A normal (also called numerable) covering of a space X is any open covering of

X which admits a subordinate partition of unity. The set of all normal coverings
of X is denoted by Cov (X).

Definition 1.2. An approximate map q from a space Y into an approximate
system X , q : Y → X , is any collection q = {qa | a ∈ A} = (qa) of mappings
qa : Y → Xa (called projections) such that:

(AS) For every a ∈ A and every U ∈ Cov (Xa) there exists an a′ > a such that
(qa, paa′′qa′′) < U , whenever a′′ > a′.

Definition 1.3. An approximate map p = (pa) : X → X is called a limit of X
provided it has the following universal property:

(UL) For any approximate map q : Y → X there exists a unique mapping
q : Y → X satisfying pag = qa, for every a ∈ A.

Since a limit space X is determined up to a unique homeomorphism, we often
speak of the limit X of X and we write X = limX .
Let POL denote the collection of all polyhedra.

Definition 1.4. An approximate resolution of a space X is an approximate map
p : X → X = (Xa,Ua, paa′ , A) satisfying the following two conditions:

(R1) (∀P ∈ POL) (∀V ∈ Cov (P )) (∀ f : X → P ) (∃ a ∈ A) (∀ a′ > a)
(∃ g : Xa′ → P ) (gpa′ , f) < V ;

(R2) (∀P ∈ POL) (∀V ∈ Cov (P )) (∃V ′ ∈ Cov (P )) (∀ a ∈ A)
(∀ g, g′ : Xa → P ) (gpa, g′pa) < V ′ ⇒ (∃ a′ > a) (∀ a′′ > a′)
(gpaa′′ , g′paa′′) < V .

An approximate resolution of a space X can be characterized by conditions of
a different kind. Instead of (R1) and (R2), which are often difficult to verify, more
convenient are the following two equivalent conditions ([11, Theorem 2.8]).
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(B1)∗ (∀U ∈ Cov (X)) (∃ a ∈ A) (∃V ∈ Cov (Xa)) p−1a V < U .
(B2)∗ (∀ a ∈ A) (∀U ∈ Cov (Xa)) (∃ a′ > a) paa′(Xa′) ⊆ st (pa(X),U).

Now we can state our main results.

Theorem 1.5. For a paracompact space X the following statements are equiv-

alent.

(i) X is Lindelöf.

(ii) X admits an approximate resolution p : X → X = (Xa,Ua, paa′ , A), where
all Xa are Polish polyhedra, all bonding maps paa′ are PL-

mappings and all projections pa are surjections.

(iii) X admits an approximate resolution p : X → X = (Xa,Ua, paa′ , A), where
all Xa are Lindelöf polyhedra.

Theorem 1.6. For a topological spaceX the following statements are equivalent.

(i) X is realcompact.

(ii) X is the limit of an approximate inverse system X = (Xa,Ua, paa′ , A),
where all Xa are Polish polyhedra and all bonding maps paa′ are PL.

(iii) X is the limit of an approximate inverse system X = (Xa,Ua, paa′ , A),
where all Xa are realcompact polyhedra.

Since each paracompact space X is topologically complete, every polyhedral
approximate resolution p : X → X = (Xa,Ua, paa′ , A) of X is a limit of X ([11,
Theorem 3.1]). Therefore an approximate resolution in Theorem 1.5 is also a limit.

2. Polish, Lindelöf and realcompact polyhedra

For a complex K, let K0 denote the set of all vertices of K.

Proposition 2.1. Let P = |K| be a polyhedron. Then the following statements
are equivalent.

(i) K0 is countable.

(ii) P is separable.

(iii) P is Lindelöf.

Proof: (i) ⇒ (ii). If K0 is countable, then |K| is a countable union of simplices.
Since each simplex is a separable space we obtain (ii).

(ii) ⇒ (iii) is obvious, since each separable paracompact space is Lindelöf ([9,
Corollary 3, Appendix 1] and [2, Corollary 5.1.26]).

(iii) ⇒ (i). Suppose the contrary, i.e. that P = |K| is Lindelöf, but K0 is
uncountable. Then the open covering S = {st (v, K) : v ∈ K0} of P , formed by all
stars of the vertices of K, has a countable refinement U . This implies the existence
of a member U ∈ U , which contains an uncountable subset of K0. Since U refines
S and each member of S contains only one vertex of K, we obtain a contradiction.

�
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Proposition 2.2. A polyhedron P = |K| is Polish if and only if K is countable

and locally finite.

Proof: Let P = |K| be Polish. Proposition 2.1 implies that K is a countable
set. On the other hand, metrizability of P implies that K is locally finite ([9,
Example 1, Appendix 1]).
Suppose now that K is countable and locally finite. Then P = |K| is separable

and metrizable. The standard metric on |K| is defined by using the barycentric
coordinates ([9, Appendix 1, § 1.3]). Since K does not contain any “infinite sim-
plex”, this metric is complete ([5, Chapter 3, Lemma 11.5]), which shows that P

is Polish. �

Note that each Polish polyhedron is itself a Polish ANR, i.e. a completely
metrizable separable ANR. Therefore the family pPOL of all Polish polyhedra is
contained in the family pANR of all Polish ANR’s.

Remark 2.3. Let P = |K| be a separable polyhedron and let U ∈ Cov (P )
be an open covering of P . Let L be a subdivision of K such that the closed

stars st (v, L) of the vertices v of L refine U , i.e. S = {st (v, L) : v ∈ L0} < U ([9,
Theorem 4, Appendix 1]). Since L is a subdivision ofK and card K0 ≤ ω, it follows
that card L ≤ ω and therefore |L|m (the carrier of L with the standard metric
topology) is a separable ANR ([5, Chapter 3, Theorem 11.3 and Lemma 11.4]). Let
i : P → |L|m = Q be the identity mapping. It is well known that i has a homotopy
inverse j : Q → P such that (ji, idP ) < S < U ([9, Theorem 10, Appendix 1]).
This shows that the family sPOL of all separable polyhedra is approximately
dominated by the family sANR of all separable ANR’s ([11, p. 599]). On the
other hand, since each open covering of a Lindelöf space has a countable star-
finite refinement ([14, Chapter 5, 4B]), it can be proved that the family sANR
is approximately dominated by the family pPOL. Therefore the families sPOL,
sANR, pPOL and pANR are approximately equivalent.
Proposition 2.4. A polyhedron P = |K| is realcompact if and only if τ =
card (K0) is a non-measurable cardinal number.

Proof: Let P = |K| be realcompact. Since K0 is a closed subspace of P , it follows
that K0 is also realcompact ([2, Theorem 3.11.4]). Therefore, K0 is discrete
realcompact space. However, a discrete space is realcompact if and only if its
cardinal is non-measurable ([4, Theorem 12.2]).
Conversely, let τ be non-measurable. A paracompact space X is realcompact

if and only if each closed discrete subspace of X is realcompact ([13]). Since
each polyhedron is paracompact, it is sufficient to prove that each closed discrete
subspace of P is realcompact. First note that card K = τ . Let D ⊆ P be any
closed discrete subspace of P . For each simplex σ of K, D ∩ σ is a closed discrete
subspace of σ and card (D ∩ σ) is finite. Therefore, card (D ∩ Int σ) is also finite.
Note that D is the disjoint union D =

⋃
σ∈K
(D ∩ Int σ). Therefore, card D

is a non-measurable sum of finite cardinals, which is again a non-measurable
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cardinal ([4, Theorem 12.5]). Since card D is non-measurable, it follows that D

is realcompact. �

Remark 2.5. Since ω is a non-measurable cardinal ([4, Chapter 12]), one can
view Proposition 2.4 as a generalization of Proposition 2.1.

3. Approximate resolutions mod sPOL

In this section we introduce the notion of an approximate resolution modulo
a subclass P of POL, by restriction conditions (R1) and (R2) by replacing the
condition P ∈ POL by P ∈ P . We obtain results analogous to those of [11, § 2
and § 3] for P = POL.

Definition 3.1. Let P ⊆ POL be a subclass of POL. An approximate resolution
mod P of a space X is an approximate map p : X → X = (Xa,Ua, paa′ , A)
satisfying the following two conditions:

(R1) (∀P ∈ P) (∀V ∈ Cov (P )) (∀ f : X → P ) (∃ a ∈ A) (∀ a′ > a)
(∃ g : Xa′ → P ) (gpa′ , f) < V ;

(R2) (∀P ∈ P) (∀V ∈ Cov (P )) (∃V ′ ∈ Cov (P )) (∀ a ∈ A)
(∀ g, g′ : Xa → P ) (gpa, g′pa) < V ′ ⇒ (∃ a′ > a) (∀ a′′ > a′)
(gpaa′′ , g′paa′′) < V .

If C is a class of spaces and all Xa, a ∈ A, belong to C, we speak of an
approximate C-resolution mod P .
If P = POL, Definition 3.1 coincides with the definition of an approximate

resolution in [11]. An approximate resolution is an approximate resolution mod P ,
for all classes P ⊆ POL, and therefore we can consider approximate resolutions
mod P as a weakening of the notion of approximate resolution. Let sCov (X) ⊆
Cov (X) denote the family of all normal coverings of a space X , which have
a countable normal refinement. If U ∈ sCov (X), then there exists a refinement
V ∈ sCov (X) of U such that |N(V)| ∈ sPOL, where N(V) denotes the nerve of V
and |N(V)| denotes its geometric realization.
Approximate resolutions mod sPOL can be also characterized by conditions of

a different nature.

(sB1)∗ (∀U ∈ sCov (X)) (∃ a ∈ A) (∃V ∈ Cov (Xa)) p−1a V < U .
(B2)∗ (∀ a ∈ A) (∀U ∈ Cov (Xa)) (∃ a′ > a) paa′(Xa′) ⊆ st (pa(X),U).

Theorem 3.2. An approximate map p : X → X = (Xa,Ua, paa′ , A) is an ap-
proximate resolution mod sPOL of the space X if and only if it satisfies (sB1)∗

and (B2)∗.

Proof: ((R1) for sPOL)⇒ (sB1)∗ and ((sB1)∗ and (B2)∗)⇒ ((R1) for sPOL)
are proved in the similar way as Lemma 2.11 and Lemma 2.13 in [11]. Since
(B2)∗ ⇔ ((R2) for POL) we need only to establish ((R2) for sPOL) ⇒ (B2)∗.
From the proof of Lemma 2.12 in [11], it follows that ((R2) for {I = [0, 1]}) ⇒
(B2)∗. Since I ∈ sPOL, it follows that also ((R2) for sPOL)⇒ (B2)∗. Note also
that ((R2) for sPOL)⇔ ((R2) for POL). �
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Theorem 3.3. Let a Tychonoff space X be complete with respect to the uni-

formity generated by all countable normal coverings of X . If p : X → X =
(Xa,Ua, paa′ , A) is an approximate resolution mod sPOL such that all spaces Xa

are Tychonoff spaces, then p is a limit of X .

Proof: The proof is a modification of the proof of Theorem 3.1 in [11], which
uses Theorem 3.2. �

Corollary 3.4. If p : X → X = (Xa,Ua, paa′ , A) is an approximate resolution
mod sPOL such that all spaces Xa are Tychonoff spaces and X is a realcompact

space, then p is a limit of X .

Proof: A Tychonoff space is realcompact if and only if it is complete with respect
to the uniformity generated by all countable normal coverings ([16, Theorem 1]).
Now, the assertion follows from Theorem 3.3. �

As we just saw, realcompact spaces and approximate resolutions mod sPOL
are analogues of topologically complete spaces and approximate resolutions.

4. Approximate semi-projection mod P

Recently, T. Watanabe introduced the notion of an approximate semi-projection
of a topological space ([18]). Here, we introduce the notion of an approximate
semi-projection modulo a subclass P of POL.

Definition 4.1. Let X be a topological space, P a subclass of POL and let F
be a class of mappings f : X → P , where P ∈ P . We call F an approximate
semi-projection mod P of X provided for any mapping f ′ : X → P ′, P ′ ∈ P ,
and any open covering U ∈ Cov (P ′), there exist a member f : X → P of F and
a mapping p : P → P ′ such that (pf, f ′) < U .

An approximate semi-projection F mod POL ofX is just an approximate semi-
projection in the sense of Watanabe.

Definition 4.2. Let P be a subclass of POL. We say that P is closed if it is
approximately equivalent to a class C of topological spaces, which is closed with
respect to finite products, i.e. C1, . . . , Cn ∈ C implies C1 × · · · × Cn ∈ C.

POL is approximately equivalent to ANR, so POL is closed. sPOL is also
closed, since it is approximately equivalent to sANR.

Proposition 4.3. Let F be an approximate semi-projection mod P of X and

let P be closed. Then for any n ∈ N, any mappings fi : X → Pi, Pi ∈ P ,
i = 1, . . . , n, and any open coverings Ui ∈ Cov (Pi), i = 1, . . . , n, there exists
a member f : X → P of F and mappings pi : P → Pi, i = 1, . . . , n, such
that (pif, fi) < Ui for every i. Furthermore, it is possible to achieve that pi are

PL-mappings.

Proof: For every i = 1, . . . , n, choose an open covering Vi ∈ Cov (Pi) such
that st2Vi < Ui. Here, for any open covering V of a topological space X , stV
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denotes the open covering of X consisting of open stars st (V,V), V ∈ V and
st2V = st (stV). Let P be approximately equivalent to C, which is closed with
respect to finite products. Then, for every i = 1, . . . , n, there exist a Qi ∈ C
and mappings αi : Pi → Qi, βi : Qi → Pi such that (βiαi, idPi

) < Vi. Put
Q = Q1 × · · · × Qn ∈ C. Then there exist a P ′ ∈ P and mappings α : Q → P ′

and β : P ′ → Q such that (βα, idQ) < W , where W is an open covering of

Q such that stW refines the covering β−1
1 V1 × · · · × β−1

n Vn ∈ Cov (Q). Let
g = α(α1f1 × · · · × αnfn) : X → P ′. Since F is an approximate semi-projection
mod P , there exist a member f : X → P of F and a mapping p : P → P ′, such
that (pf, g) < β−1W . Put pi = βiqiβp : P → Pi, where qi : Q → Qi denotes the
i-th projection.
Claim. (pif, fi) < Ui.
First note that (βpf, βα(α1f1×· · ·×αnfn)) < W . Since (βα, idQ) < W , it follows

that (βpf, α1f1 × · · · × αnfn) < stW < β−1
1 V1 × · · · × β−1

n Vn. Consequently, for

every i = 1, . . . , n, (qiβpf, αifi) < β−1
i Vi. Now, using the fact that (βiαi, idPi

) <

Vi, we obtain the desired conclusion (βiqiβpf, fi) < stVi < st2Vi < Ui.
If we want pi : P = |K| → Pi = |Li| to be PL, it is sufficient to replace the

already constructed mapping pi by a mapping p′i obtained in the following way.

Let L be a subdivision of Li such that the closed stars st (v, L) of the vertices v of

L refine Vi. Let K′ be a subdivision of K such that the closed stars st (w, K′) of the

vertices w of K′ refine p−1i Si, where Si is the covering formed by the open stars

of the vertices of L. Then, there exists a simplicial approximation φi : K′ → L

of pi ([17, Chapter 3, Theorem 4.6]). Put p′i = |φi| : |K
′| → |L|. p′i is PL and

(p′i, pi) < Vi. Since (pif, fi) < stVi, it follows that (p
′
if, fi) < st2Vi < Ui. p′i is

PL and satisfies all the required conditions. �

If a family F = {pa : X → Xa |Xa ∈ P , a ∈ A} is an approximate resolution
mod P of X then F is an approximate semi-projection mod P of X . Much more
interesting is the converse question.

Proposition 4.4. Let X be a topological space, Q ⊆ P ⊆ POL and let F ⊆ {f :
X → Q |Q ∈ Q} be an approximate semi-projection mod P of X . If P is closed
and each f ∈ F is a surjection, then there exists an approximate Q-resolution
mod P p : X → X = (Xa,Ua, paa′ , A) of the space X , such that each projection

pa : X → Xa belongs to F and all bonding maps paa′ are PL.

Proof: Since P is closed, we can apply the inductive construction described
in [7] using Proposition 4.3. This construction yields the desired approximate
resolution mod P . �

5. Approximate resolutions of Lindelöf spaces

Proposition 5.1. Let X be a Lindelöf space and let F be the family of all
surjections f : X → P , where P is a Polish polyhedron. Then F is an approximate
semi-projection of X .
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Proof: Let P ′ = |K| ∈ POL be a polyhedron, f ′ : X → P ′ be a mapping and let
U ∈ Cov (P ′) be an open covering of P ′. Choose a subdivision L of K such that the

closed stars st (v, L of the vertices v of L refine U , i.e. S = {st (v, L) : v ∈ L0} < U .
Since (f ′)−1S is an open covering of X and X is a Lindelöf space, there exists
a countable and star-finite open covering V of X such that V < (f ′)−1S ([14,
Chapter 5, 4B]). Every Lindelöf space is paracompact ([2, Theorem 5.1.2]) , and
therefore there exists a canonical mapping φ : X → |N(V)| of V . In general,
φ is not a surjection. However, there exists a subcomplex N of N(V) and an
N(V)-modification f : X → |N| of φ (φ(x) ∈ σ ∈ N(V) implies f(x) ∈ σ), which
is irreducible and therefore surjective ([10, Corollary 1]). Clearly, f : X → |N|
belongs to F .
We now define a mapping p′ : N(V)0 = V → K0 by assigning to a vertex

V ∈ N(V)0 we assign a vertex v = p′(V ) ∈ K0 such that V ⊆ (f ′)−1(st (v, K)). It
is readily seen that p′ : N(V)0 → K0 is a simplicial mapping and therefore induces
a mapping |p′| : |N(V)| → |K|. Put p = |p′| | |N| : |N| → |K|. It is easy to verify
that (f ′, pf) < U . �

Proposition 5.1 and Proposition 4.4 imply the following corollary.

Corollary 5.2. Every Lindelöf space X admits an approximate resolution p :
X → X = (Xa,Ua, paa′ , A), where all Xa are Polish polyhedra and all bond-

ing maps paa′ are PL-mappings. Moreover, every projection pa : X → Xa is

a surjection.

Now, we can prove Theorem 1.5.

Corollary 5.2 proves (i) ⇒ (ii).

(ii) ⇒ (iii) is obvious.

(iii) ⇒ (i). Let U be any open covering of X and let p : X → X =
(Xa,Ua, paa′ , A) be an approximate resolution consisting of Lindelöf polyhedra.
Since X is paracompact, U is normal. By (B1)∗ there exist an a ∈ A and a count-
able open covering V of Xa such that p−1a V < U , which shows that X is Lindelöf.

�

Remark 5.3. The equivalence (i) ⇒ (iii) in Theorem 1.5 has been proved in
a different way in [1, Theorem 3].

6. Approximate pPOL-resolution mod sPOL of a Tychonoff space

Definition 6.1. Let X ⊆ Y be topological spaces. We say that X is C-embedded
in Y , if for every continuous real valued function f ∈ C(X, R) there exists a

f̃ ∈ C(Y, R) such that f̃ |X = f .

For a Tychonoff space X we introduce the following notation:

A = C(X, R);

2Aω = {B ⊆ A : card B ≤ ω} ⊆ 2A;
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πB : R
A → RB , B ∈ 2Aω and πBC : R

C → RB, B, C ∈ 2Aω , B ⊆ C, are the
corresponding projections;
pB = πB |X : X → pB(X) ⊆ RB , B ∈ 2Aω .

Clearly, R
A is the limit of the inverse system S = (RB , πBC , 2Aω ). Since the

Souslin number (also called cellularity) of RA is ≤ ω ([2, Corollary 2.3.18]), and

πB : R
A → RB are open surjections, S has the following property: For every real

function f : RA → R, there exist a B ∈ 2Aω and a mapping g : RB → R such that
f = gπB. This is a consequence of the following fact ([3, Proposition 3.1.7]). If
(Xa, paa′ , A) is an ω-complete inverse system of spaces, if the limit space X has
the Souslin property, and all projections pa : X → Xa are open surjections, then
every mapping f : X → R admits an a ∈ A and a mapping g : Xa → R such that
f = gpa.

Proposition 6.2. Let X be a Tychonoff space, Y a separable metric space and

let f : X → Y be a mapping. Then there exist a B ∈ 2Aω and a mapping
g : pB(X)→ Y such that f = gpB.

Proof: Since Y is a separable metric space, we may consider that Y is a subspace

of Rω. Therefore, we can represent f : X → Y ⊆ Rω as a direct product (
∏

n<ω
fn),

where fn = πnf : X → R. X is C-embedded in R
A ([2, Theorem 2.3.20]) and

therefore, for every n < ω, there exists an extension f̃n : R
A → R of fn. Applying

the above stated property to f̃n : RA → R, we conclude that, for every n < ω,
there exist a Bn ∈ 2Aω and a mapping g′n : R

Bn → R such that f̃n = g′nπBn
.

Let B =
⋃

n<ω
Bn ∈ 2Aω and gn = g′nπBnB : RB → R. Note that gnπB =

g′nπBnBπB = g′nπBn
= f̃n, for every n < ω. Let g′ = (

∏
n<ω

gn) : RB → Rω and

put g = g′ | pB(X) : pB(X)→ Rω .

Claim 1. f = gpB.

Let x ∈ X . Then

(gpB)(x) = g′(πB(x)) = (
∏

n<ω

gn)(πB(x)) =

= (gn(πB(x))) = (f̃n(x)) = (fn(x)) = f(x).

Claim 2. g(pB(X)) ⊆ Y .

Let z ∈ pB(X). Since pB is a surjection, there exists an x ∈ X such that
pB(x) = z. Therefore, g(z) = g(pB(x)) = f(x) ∈ Y . �

For every B ∈ 2Aω , pB(X) ⊆ RB is a separable metric space, hence a Lin-

delöf space. By Theorem 1.5, there exists an approximate resolution p = (pB
a ) :

pB(X) → XB = (X
B
a ,UB

a , pB
aa′ , AB) of pB(X), consisting of Polish polyhedra

and having surjective projections pB
a : pB(X) → XB

a . Put F = {pB
a pB : X →

XB
a |B ∈ 2Aω , a ∈ AB}.
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Proposition 6.3. The family F = {pB
a pB : X → XB

a |B ∈ 2Aω , a ∈ AB} is an
approximate semi-projection mod sPOL of the Tychonoff space X .

Proof: Let P be a separable polyhedron, let f : X → P be a mapping and let
U ∈ Cov (P ) be any open covering of P . Choose an open covering V of P such
that stV < U . Since sPOL is approximately equivalent to sANR, there exist a
Q ∈ sANR and mappings α : P → Q, β : Q → P such that (βα, idP ) < V . By

Proposition 6.2 there exist B ∈ 2Aω and a mapping g : pB(X)→ Q such that αf =

gpB. Since p = (pB
a ) : pB(X) → XB = (X

B
a ,UB

a , pB
aa′ , AB) is an approximate

resolution of pB(X), there exist an a ∈ AB and a mapping p : XB
a → P such

that (βg, ppB
a ) < V . Then (βgpB , ppB

a pB) < V , which implies (βαf, ppB
a pB) < V .

Since (βα, idP ) < V , we obtain (f, ppB
a pB) < stV < U , which proves that F is

an approximate semi-projection mod sPOL of X . �

Proposition 6.4. Let X be a Tychonoff space. Then X admits an approximate

resolution mod sPOL consisting of Polish polyhedra and PL bonding maps.

Proof: Put F = {pB
a pB : X → XB

a |B ∈ 2Aω , a ∈ AB}. By Proposition 6.3 F
is an approximate semi-projection of X mod sPOL of X . sPOL is closed, each
pB
a pB is a surjection and each XB

a is a Polish polyhedron. Now, the assertion
follows from Proposition 4.4. �

Corollary 3.4 and Proposition 6.4 imply the next corollary.

Corollary 6.5. Every realcompact spaceX is the limit of an approximate inverse

system consisting of Polish polyhedra with PL bonding maps.

Now, we can prove Theorem 1.6.

Corollary 6.5 proves (i) ⇒ (ii). (ii) ⇒ (iii) is obvious. Since realcompactness
is preserved under products and closed subsets ([2, Theorem 3.11.4 and 3.11.5]),
(iii) ⇒ (i) is also obvious. �

Remark 6.6. It is not known if there exist measurable cardinals. The assump-
tion that every cardinal is non-measurable implies that every polyhedron is real-
compact (Proposition 2.4) and therefore, since every topologically complete space
is the limit of an approximate polyhedral system, by Theorem 1.6 (iii) that real-
compact and topologically complete spaces coincide.
Note that in general it is not possible to obtain an approximate resolution of

a realcompact space consisting of Polish or even separable polyhedra. Namely, in
that case every normal covering of a realcompact space would have a countable
refinement, which is obviously not true. E.g., a discrete space of cardinality 2ω

is realcompact, because 2ω is non-measurable. However, it has an open (also
normal) covering which does not admit a countable refinement.

Question. Is every realcompact space the limit of an usual (commutative) inverse
system consisting of Polish polyhedra?
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[10] Mardešić S., Uglešić N., On irreducible mappings into polyhedra, Topology Appl. 61 (1995),

187–203.
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[13] Mrowka S., An elementary proof of Katětov’s theorem concerning Q-spaces, Michigan

Math. J. 11 (1964), 61–63.
[14] Nagata J., Modern General Topology, North-Holland Publ. Co., Amsterdam, 1968.
[15] Pasynkov B.A., On the spectral decomposition of topological spaces (Russian), Mat. Sb.

66 (1965), 35–79.
[16] Shirota T., A class of topological spaces, Osaka Math. J. 4 (1952), 23–40.
[17] Spanier E.H., Algebraic Topology, McGraw-Hill, New York, 1966.
[18] Watanabe T., Approximate resolutions and covering dimension, Topology Appl. 38 (1991),

147–154.

Department of Mathematics, University of Split, Croatia

(Received January 10, 1995)


