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Pointwise estimates of nonnegative subsolutions of
quasilinear elliptic equations at irregular boundary points

JAN MALY*

Abstract. Let u be a weak solution of a quasilinear elliptic equation of the growth p with
a measure right hand term p. We estimate u(z) at an interior point z of the domain 2,
or an irregular boundary point z € 92, in terms of a norm of u, a nonlinear potential
of p and the Wiener integral of R™ \ Q. This quantifies the result on necessity of the
Wiener criterion.
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1. Introduction

We study quasilinear elliptic equations of type
(1.1) —divA(z,u, Vu) + B(z,u, Vu) = p,

where A and B are Carathéodory functions (precise conditions depending on
a growth exponent p € (1,00) will be given later) and u € (Wol’p(Q))* is a non-
negative Radon measure. We refer to (1.1g) if u = 0.

The model equation for (1.1) is
(1.2) — div(|Vul[P72Vu) + NulP~2u = p,

with A € R. Sometimes we mention monotone type equations, by this we will
understand equations satisfying the structure conditions of [13] (unweighted case).
These equations satisfy additional assumptions which guarantee existence and
uniqueness results.

We will work with the integrals

(1.3) wy(z, E) = /0 "o (capp(E NB(x,r),r) ) 1/(p—1) %

rn—Pp
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and
T0 —
piy pw(B(z,r))\ 1/ p=1) dr
(1.4) Wp(:c)_/o (77%_1, ) ~

The function W]‘,f is a kind of nonlinear potential of the measure . These po-
tentials were introduced by Adams and Meyers [3], Hedberg [9] and Hedberg
and Wolff [10]. For more information on W), potentials, we refer to the recent
monograph by Adams and Hedberg [2].

We present pointwise estimates for subsolutions of (1.1) in terms of W4 and
wp(, R™\ Q).

In the interior case, and with u = 0, the presented estimate is a version of the
Trudinger’s Harnack inequality for subsolutions [27]. The interior estimate with
a nontrivial p has been proved for monotone type equations by Kilpeldinen and
Maly [16]. Notice that lower interior estimates for supersolutions of (1.1) in terms
of Wéf , generalizing Trudinger’s Harnack inequality for supersolutions, are also
valid, see Kilpeldinen and Maly [14] (for monotone type equations), Maly [20],
and Maly and Ziemer [23]. Related, but different results are due to Rakotoson
and Ziemer [25], Lieberman [17] and Adams [1].

Let ug € WHP(Q) and u be a solution of (1.1g). We say that u solves the

Dirichlet problem with the boundary data ug if v —ug € WO1 P(Q). A point
z € 9N is said to be regular for the equation (1.1¢) if
lim  wu(z) = ug(z)
T—2, €

whenever u € C({2) is a solution of the Dirichlet problem with boundary data
ug € WHP(Q) N C(Q). Wiener [28] showed that z is regular for the Laplace
equation if and only if the classical Wiener criterion is satisfied. This more or
less says that z is regular for the Laplace equation if and only if the Wiener
integral wo(z, R™\ Q) diverges. Littman, Stampacchia, Weinberger [19] proved
that the same condition applies to linear elliptic divergence form equations with
discontinuous bounded measurable coefficients. If p # 2, we say that the Wiener
condition is satisfied at z if w,(z, R™ \ Q) diverges, i.e. if R™ \  is not p-
thin at Q. Maz’ya [21] established the sufficiency of the Wiener criterion under
simpler structure assumptions. Gariepy and Ziemer [8] proved the sufficiency in
the general case of equation (1.1p).

The Wiener criteria established by Wiener [28] and Littman, Stampacchia,
Weinberger [19] were presented as both necessary and sufficient. On the other
hand, the sufficient condition by Maz’ya [21] waited a longer time for its necessity
counterpart. For a special class of equations, some necessary conditions differing
in an exponent from the sufficient conditions were proved by Skrypnik [26]. The
necessity of the Wiener condition for equations of the monotone type was shown by
Lindqvist and Martio [18] and Heinonen and Kilpeldinen [11] with the restriction
p>n—1. For all p € (1,00), it was proved by Kilpeldinen and Maly in [16].



Pointwise estimates of subsolutions

The estimate given in the present paper implies in some sense the necessity
of the Wiener criterion for equations of type (1.1g) and quantifies the pointwise
behavior of solutions at irregular points.

For a wider information about the topic we refer to the prepared monograph
[23] by Maly and Ziemer. For consequences and relations to A-superharmonic
functions in nonlinear potential theory we refer also to the papers by Kilpeldinen
and Maly [16], Heinonen, Kilpeldinen and Martio [12] and to the monograph [13]
by Heinonen, Kilpeldinen and Martio.

2. Preliminaries

In what follows, Q is an open subset of R™ and p is an exponent in (1,n].
We write C,C’ etc. for various constants (they may differ from line to line).
We denote by B(z,r) the open ball in R™ with center at z and radius r. If
B = B(z,r), then 2B means the ball B(z,2r). We denote by C2°(2) the set of all
infinitely differentiable functions with a compact support in 2. The norm in the
Lebesgue space LP(Q), resp. in the Sobolev space W1P() is denoted by |...|p,
resp. ||...|l1,p. We use |E| for the Lebesgue measure of the set E.

We define the p-capacity of a set E' C R™ by cap, E' = cap,(F, 1), where

capy,(E,r) = inf{/RL(|V<p|p +77PpP) dz: o € WHP(R™),

© > 1 on an open set containing F'}

This scale of capacities is natural in connection with the Wiener criterion; for
E C B it is equivalent to the “condenser capacity” of E w.r.t. 2B, cf. [13].

A set U C R" is said to be p-quasiopen if for each € > 0 there is an open set
G C R" such that cap, G < and U UG is open. Similarly, a function u is said
to be p-quasicontinuous on € if for each € > 0 there is an open set G C R" such
that cap, G < ¢ and u[Q2\ G is continuous.

We use the abbreviation p-q.e. (p-quasi everywhere) for the phrase “except
a set of p-capacity zero”. We say that a set £ C R" is p-thin at a point z € R"
if the Wiener integral wy(z, E) converges. The p-fine closure adds to every set E
the set of all points where F is not p-thin. This introduces the p-fine topology.

Notice that every u € Wﬁ)’f (©) has a p-quasicontinuous representative (see
Federer and Ziemer [5], Maz’ya and Khavin [22], Meyers [24], Frehse [6] and that
a function u on €2 is p-quasicontinuous if and only if it is p-finely continuous p-q.e.
(Fuglede [7], Brelot [4], Hedberg and Wolff [10]).

Due to Poincaré’s inequality and approximation arguments,

capy,(E,7) < C/ [VIP dx
B(zo,2r)

holds whenever E C B(zg,7), ¢ € Wol’p(B(xo, 2r)), v is p-quasicontinuous and
¥ > 1p-qe on F.
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Now, let us state our assumptions concerning the equation (1.1). We suppose
that the functions A: R"xRxR™ — R" and B: R"xRxR"™ — R are Borel
measurable and satisfy the following structure conditions:

A, ¢, )] < arl¢fP" + ag|¢Ph + as,
(2.1) IB(x, G, &) < bilelP~" + bal¢[P~ + b3 + bol P,
Az, G, 8) - &= 1l — eol¢P —e3, 1 >0,
where a;, b;, ¢; are nonnegative constants. We write b = bg/c;. The model
example A(z,C,€) = [¢[P~2€, B(x,¢,€) = M([P=2C leads to (1.2),

We say that u is a subsolution (frequently termed a “weak subsolution”) of
(1.1)inQifue VVli’f (Q), u is p-quasicontinuous (i.e. we admit p-quasicontinuous
representatives only) and

(2.2) /Q(A(:c,u, Vu) - Vo + B(z,u, Vu) (p) dx < /Qtpd,u

holds for all nonnegative “test functions” ¢ € C2°(2). Similarly we define solu-
tions using the equality sign.

3. Main estimate

We consider an exponent

vE-Lnp-1)/(n-p+1))
and write ~ »
— q= .
p—1 p—T
Notice that 7 > 1 and g > p. Let 2 be an open set and Ry > 0 a fixed radius. We
consider a fixed equation of type (1.1). We will denote by C' a general constant
(not necessarily the same at different occurrences) depending only on n, p,~, Ro,
on the upper bound of byu and on the structure constants.

3.1 Lemma. Letu € WP(Q) be a subsolution of — div A+B = y in Q. Suppose
that either v is upper bounded or by = 0. Let ¢ € [0,00), ® be a nonnegative
bounded Borel measurable function on R which vanishes on (—o0,{) and \ be

the L'-norm of ®. Let w € Wol’p(Q), 0 <w<1. Then
/ @ (u) |Vu|P P dz
Q

<C O (u)(1 + uP)wP dz
Qn{u>L}

+CA (/ (|Vu|p_1 +uP~t 4 1) WP W + |Vw|) dz + p({w > 0}))
Qn{u>~t}
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PROOF: We write

t
U(t) :/0 D(s) ds,
L=an{u>¢}.

Using the test function

with

we obtain

¢ = U(u) WP
Vi = ®(u) Vu e P
+ bW (u) Vu e wP
+p¥(u) e WPV
/ A(z,u, Vu) - Vud(u) e wP da
L
+ b/ A(z,u, Vu) - Vu U (u) e P de
L
+p/ A(z,u, Vu) - ¥(u) e P Vw dz
L
+ / B(z,u, Vu) ¥(u) e® wP dx
L

S/\I/(u) e WP dp.
L

Taking the structure into account, we get

(3.2)

(3.3)

(3.4)

/ A(z,u, Vu) - Vud(u) e’ wP dx
L

> / (c1|Vul? — couP — c3) ®(u) WP dx
L

- b/ A(z,u, Vu) - Vu ¥ (u) e? WP da
L
< —bcl/ |Vu|P U (u) e pPyP da
L

+ b/ (Cg’up + 03)\I'(u) P WP dy
L

—/ A(x,u, Vu) - ¥(u) ? WP~V de
L

< / (al |V P71 4 aguP ™t + ag) U (u) e WPV d
L
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and
- /LB(x, w, Vu) U(u) e wP do
(3.5) < /L(bl |Vu|P~L 4 bouP ™t + bg) U (u) e WP d

+ bo/ |Vu|P U (u) e WP dr.
L
From (3.1)—(3.5) we obtain
cl/ ®(u) |[Vu|P e WP dx
L
+ bcl/ U (u) |Vu|P e WP da
L
< / D (u) (czup + 03) P WP da
L
(3.6) —I—/ U(u) (p (a1 |Vu|P7! + aguP ™ + a3) |Vu|
L
+ (b1 [Vul P=L 4 (eobu+ b)uP~t 4 c3b + b3) w) e P~y
+ bo/ U (u) [Vu|P ™ WP da
L
< / U (u)w? dp.
L
Since bg = by, bu < C, w <1 and ¥ < ), it follows
/ @ (u) |Vu|P wP dz
< C/ (1 4+ uP) WP dz
+CA (/ (|Vu|p_1 +uPl 4 1) WP Hw + |Vwl|) dz + p({w > 0}))
Qn{u>l}

as required. 0

3.2 Lemma. Letu € WP(Q) be a subsolution of — div A+B = y in Q. Suppose
that either u is upper bounded or by = 0. Let B = B(xq,r), where 0 < r < Ry, be
an open ball in R™. Let n,p, 1 € lep(B). Suppose that 0 < <1,0<p <1,
0<y <1, e WhP(BNQ), (1—¢)(1 1) =0 and Vn < 5/r. Suppose that
£>0.
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(a) If 6 > 0, then
/ Vuwg|P dz < C(é‘pr"(l + )
L

— 0\
P / 142 d
i Bﬂ{u>£}ﬂ{go<1}( 0 ) !

+ 817 pu(B(wo, 7))

FAP A a7 VP 4 [TU) do).
B

where

o= (1 25 o

(b) There is a constant k > 0, depending only on n, p,~, Rg, on the upper bound
of bgu and on the structure constants, such that

(r_"/ (1 — £y dx) (r—=1)/v
BNQN{u>¢}

<o+ op?
+ 77" u(B(xo, 7))

@t a7 [ (P [Tl Vo) da),
B

provided that

(3.7 [BN{u>}n{p <1} <(2r)"x
and
(3.8) / (w— )7 do < 2" / (u—0)7pIn? dz.
Bn{u>Lin{p<1} BnQn{u>L}
PROOF: (a) We write
w = 1n,
o= wop,
 (u=07t
=
M =1+ lullco,

L=BnOn{u>{},
E=Ln{p<1},
F=Ln{p=1}
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Note that
ws = ((1+ )9 — 1w,
Vuws = 2(1 +0) TPV w+ (1+ )9 — 1) Vw.
q
Since
(1+ )9 — 1)? < Cmin(vP7,0") < Cmin((1 +v)7, vp_l),
p—1 ~ s1-p,p—1 ~ s1-ppsp—1
(3.9) v <6 Pu <§TPMPTE
w=mnonk,
w=o0conF,
it follows
/ |[Vws|? dz
L
(3.10) <C (/ (1 + )|V dz + MP—151—P/ VolP d:c)
E F

+67P / (14v)77 |VulP WP d.
L
We use Lemma 3.1 with

—_/Nt
w [0+ s
0, t<e.

Then the L'-norm of & is bounded by (7 — 1)~ 5. We get

/(1+v)_T|Vu|pwpdx

L

(3.11) SC/(l—l—v)_T(l—i—up)wpd:E
L

+ C&(/ (1Vu| P~ uP™t 1) WP Hw + |Vw|) do + u(B)).
L
We estimate
A+uP)1+0)7 <A +uP)1+0)" <O+ + 6P0P) (1 +v) !
< C(1+ P + PP
Using (3.9) it follows

/ (14v)77(1 +v?)wP de
L

(3.12) < COr'*(1+0P) + 5*”/ PP da
L
< C(r"(l + ) +5MP—1/ o? dw+6”/ (1+0)w? dw)-
F E
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Choose € > 0. Young’s inequality yields

(14 P+ [V~ HePHw + [Vw)
(3.13) - \1p
<COZ(1+0) T+ + [VuP)er + 0(5) (1+0)Y (WP + |[VwlP).
Recall that w = 1 on E. We infer from (3.13) that

/ (|Vu|p_1 +uPl 4 1) WP~ Hw + |Vw]|) dz
E

(3.14) <cS / (1+0)" (1 + P + |VulP)wP dz
L

3
+ c(%) o /E(1 +0) (1P + |VnP) da.

Now, we will estimate the integration on F'. We use Lemma 3.1 again with &
being the characteristic function of the interval [¢, M] and with o instead of w.
Then the L'-norm of ® is bounded by M and we get

/ |Vu|P oP dx
L

< C’M(/ ( (V| P~ P74+ 1) 0P (o + | Vo) dz + u(B))
L
(3.15) —|—C'/(1+up)apd:c
L
< C’Mp/ (6P + |VoP) dx
B

+ OM(/L (Vu|P~LoP~ (o + | Vo) dz + u(B)).

Choose €1 > 0. A use of Young’s inequality yields
|Vu| P~ 6P~ (o + |Vol)

(3.16) . o1\ 1p
<21 PP 1 P Py,
S |VulPo —I—C(M) (of + |Va|P)

From (3.15) and (3.16) we get
/(|w|l’—1 L 1) P Yo + [Vol) da
L

gCMP—l/(aP+ |va|p)+/ V| P LoP Y (o + Vo) de
B L
(3.17) gC(1+g}"’)MP—1/(aP+ |Vo|P) d:v—i—CE—l/ |Vu|PoP da
B M JL,
SC(1+£1+£i_p)Mp_1 / (6P + |Vo|P)dx
B

+C€1/ |Vu|P~LoP~Y (o + |Vol|) dz + Ceyu(B).
L
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Using e; small enough, by a cancellation we obtain

/ (|Vu|p_1 +uP7 +1) P70 + Vo) da
L

< C(Mp—l/ (0P + Vol P)do + u(B)).
B
As o0 =w on F| it follows

/F( |Vu|p_1 +uP 4 1) wp_l(w + |Vw]) dzx
(3.18)

-1 o o T .
<c(urt [ @+ 9ol do -+ u(B)

From (3.11), (3.12), (3.13), (3.14) and (3.18) we deduce that
/ (140)77 |VulP P dz
L
< C/(l +0) T (1+uP)wP dx
L
+ C&(/ (Vu| P~ + P+ 1) P~ Hw + Vo) do + u(B))
L
< Cs/ (140)77 |VulP P dx
L
+C(1+6)/(1+U)_T(1+up)wpdx
L
+ Copelr / (L+ o) (1 + |VnlP) dz
E
+ Cou(B) + 6MP~1 / (6P 4+ |VolP) dx
L
< Cs/ (1+0)"7 |Vu|PwPdx
L

+C0(14e4e7P) (r"(l +P) 4+ du(B) + 6MP~L / (o 4 |Vo|P) dx
L

+5P[E(1 )G + VP dr).

Choosing ¢ small enough it follows

/L(l + )77 | Vu|P WP dz
(3.19) < C(T”(l + 0P + 5”/ (L+0)7 (" + [Vn|P) dx
E

+5MP—1/L(0P+ |V0|p)+6u(B)).
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From (3.10) and (3.19) we get

(3.20)
+Cstp (Mp—l / (0? + |VolP) + u(B)).
L
Since
/ (1 +0)7(nP + |Vn|P)dx < Cr_p/ (1+0v)7 de
E E
and

o +|ValP < Cr7PeP 4+ [VplP + VY|P,
it follows that

/|Vw5|pd:1cSCr_p/(1+v)7d:v+06_pr"(1+€)p
L E

+Cot P (! /L(r‘psop + Vel + Vo) da + u(B)).

This proves the part (a).

(b) We consider x > 0; its choice will be specified latter. We continue to use the

notation introduced in the course of the proof of (a) with the choice

1 1/~
= _— — Ywi
§: (m"" /L(u 0w dx) .
Notice that

(3.21) K= r_"/ vTwd dz.
L
By (3.7) and (3.21),

261" = 2/ viw? dx
L

< 2_"/ w d:c—|—/ vTwidx
L Ln{vy>2-n-1}
<27"(|E| —|—/ o?dx) —|—/ vTwldx
F Ln{vy>2-n-1}

< m“"—i—/ v“/wqu—i—/ o?dzx
LNn{vv>2-n-1} B

ket < / v w? dz—l—/ o?dx
Bn{vy>2-n-1}} B

c(/L da:—l—/aqd:c).

and thus

/ |Vws|P dx < Cé—Pr"(1+€P)+C/ 1 +v)7 (P + |VnP)dz
E
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We apply the Sobolev inequality to the functions ws and o and obtain

KP/1 < (r_"/ wf dx—i—r_”/ o? dx)p/q
BN B

(3.22)
< Crp_"(/ |Vws| P dx +/ |Vol? d:v).
BNQ B

From (a) we obtain
PP PPl < C(/ |Vws| P dx +/ |Vol? dw)
L B
(3.23) < Cr_p/ (14+v)"de+ C57Pr™(1 + £)P
E
v 0P (5 4+ byt / (0P + [VolP) dx + u(B)).
L
By (3.7) and (3.8),
/ (14 v) dz < C(|E| +/ WY dz)
E E
(3.24) < C(E| + / W o dr)
L
< Ckrr™.
We infer from (3.23) and (3.24) that
KP/1 < C1k + C5™PrP(1 4 £)P

R e (GRS T / (rPo? + |VolP) do
L
+u(B))

holds for some constant C7. If we specify x to be so small that KP/9 — Cik > 0,
we obtain

1< CoPrP(14 )P
R (Yl (O )]
L

It follows that either
1< CPrP(140)P

or

1< ostpppn (((5 + M)Pt / (r~PoP +|Vo|P)dx + M(B)).
L
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Anyway we deduce

(# /L(u — 0)7yIn? dx

=Pt < o1+ 0Pt

+CrPm ((5 + M)Pt /B(r_pap + |VolP)dz + u(B)).

)(p—l)/v

Taking into account the estimates
r7PoP + |VolP < C(r PP + [VolP + [V [P)

and
0 <CM,

we conclude the proof. O

3.3 Theorem. Let u be a subsolution of —div A + B = p in 2. Suppose that
either u is upper bounded or bg = 0. Then

. “n 1/~
p-fine-limsup u(z) < C (TO u” dw)
T—z B(zo,r0)NQN{u>0}

To 1/(p—1
) 4 [ (LEmI)VIE
2ro rcapy,(B(zo,7) \ 2, )\ 1/(p=1) dr
1 ) [ ()

for all zg € Q and rg < Ry.

PrOOF: We denote M = 1 + |luljoc and set x € (0,1) to be the constant from
Lemma 3.2. We set r; = 27Jry and pick cutoff functions n;j such that 0 <n; <1,
nj = 0 outside B(xq,rj), n; = 1 on B(xg,rj+1) and |Vn;| < 5/r;. Further, we
find functions g; € WHP(R™) such that 0 < g; < 1, the interior of {g; = 1}
contains B(xg,7;) \ Q and

(3.26) /R (r;"g% + [Vg;|P) dw < C capy,(B(xo,7) \ 2, 75).
We denote

¢; = min(1, (2 —3g;)"),

¢j =min(1, 3g; +3g;-1), J=>1,

Bj = B(.’L‘o,?‘j),

Lj :Bjﬂﬂﬂ{uz@'}

E] = LJ N {(pj < ].},

Fj ZLjﬂ{(pj = 1}.
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Then by (3.26),

[ 6 196i8) <€ cany B\ ),
(3.27) !
/B (VY| B de < C capy(B; \ Q, 7).

J

We define recursively g = 0,

1 1/~ .
biy1 =145+ (m/ (u = &;)7¢n] dw) . J=012..
J 7L
‘We write
8 =Lit1 — 1.

We claim that, for j > 1,

1 puBj\1/(p=1)
0 < 50-1+C <rj(1 +4) + (Tn_p)

(3.28) 7
" (capp(Bj—l \ @, Tj))l/(p—l))

n—p
r.
J

This is trivial when §; < %5]-_1, so assume that ;1 < 24;. In this case, since
Yj_1mj—1 =1 on E;, we have

|Ej| < 5]-_11/L (u—"Lj_1)"Yj_1mj—1dz
j—1

(3.29)
= m’?_l < 2”/@7"?
and
/E- (u—£;)7 dx
(3.30) = /L (w—Lj-1) "0y de =4 kel y =275 kel

j—1
= 2"+7/ (u —Ej)“/wgn? dx.
L;

Thus (3.7) and (3.8) are verified and Lemma 3.2 yields

Bi\1/(p—1
5jgc<rj(1+éj)+(‘;_§,) [y
"
cap,(Bj—1\ @, rj)\1/(p-1)
(2 )
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which proves (3.28). Summing up (3.28) for j =1,...,k we get

1 1
§€k+1 = —(50 +o 4 0) <O+ 5 (50 + 4+ 0k1)

60+C<Zr] 1+ 4j41) +Z(

Jj=1 Jlrj

i(capp i1 \Q T))l/(p—l))

J

1
< OTO£k+1+C<(T0_n/E u“’dz) /
o
ko pria _
pB(xg, )\ 1/ (p=1) dr
+;/ ( rn—p ) r

+MZ/ cap, (B xo,2r)\ﬂ,r))1/(p—1>@>'

IN

)1/(10 1)

rn—p r

If ro < Rp:= ﬁ, we obtain

1
lim ¢; < C< (5" / ™ dr) I
J B(zo,r0)NQ2N{u>0}

"o ruB(xg,r)\1/(p—1) dr
(3.31) + /0 (77%_]0 ) o
2ro rcapp,(B(zo, 1) \ 1)\ 1/(p-1) dr
+M/0 ( rn—p ) )

If R < rg < Ry, then (3.31) holds as well, because then
ro/R1 < Ro/R1 < C.
It remains to prove that

(3.32) p-fine-lim sup u(z) < li;n 4.

r—z

We may assume that the right hand part of (3.25) is finite, otherwise the assertion
of the theorem is trivial. We choose € > 0 and denote ¢ = lim; £;. Set

-l (s B
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on Q and w; = 0 elsewhere. Then w; € V[/OI’p(Bj)7 wj+@n; >1on Bj1NAN
{u > €+ 2¢} and thus

capp(Bj_,_l NQN{u>~L+2},7;) < O/B (|ij|p + |V(g0j77j)|p) dx
j

Denote
E;=BinQn{u>(l+e}n{p; <1},

Using Lemma 3.2.a we obtain
cap,(Bj11 NN {u >+ 2}, 1))

<C [ (VuyP+ V(e do < (P30 + (04 o)

J
_ —f—e\7
+r.”/ (1+u) dz
J , -
J
b))

A+l [ 677+ 9oyl + [T017) da).

J

It follows

Z(Capp(Bj+1 NQN{u> 0+ 2}, rj))l/(p—l)

n—p
j "

< C<g—p/(p—1)rg/(p—1> (14 @)D
(3.33) +Z(rj_” /E{ (1+ %H)wdw)1/(p_1>
-1 Z( )1/p )
+ (14 D1+ ufloo) Z(M)l/@—l))

J "

Note that

(3.34) i (8;/0)/P=1) i (6;/0) = 1.
J=0 J=0
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Using (3.27) and (3.34) we estimate
— /- 1/(p—1
Z(r'_n/ (1+u 14 E)de) /(p—1)
7 e :
1/(p—1)
<C -_"/ e N(u—t;_1)"d

< CZ(T]'_n /Lj 1 e M(u—Lj—1)"Yj_195-1 dw)
r _

<O (ke8] VY < oo,
J

If the right hand part of (3.32) is finite, then the remaining sums on the right
hand part of (3.33) also converge (we assumed this), so that the set

QN {u> L€+ 2}
is p-thin at zg for any € > 0. We proved (3.32), which concludes the proof. [

1/(p—1)

4. Necessity of the Wiener condition

4.1 Example. Let Q be a bounded open set and let ug € W1P(Q). Consider
the Dirichlet problem

— div(|Vu[P~2Vu) =
(4.1) { A (vl V) =0,

u—ug € Wol’p(Q).

Then we obtain a unique solution u of (4.1) by minimizing

/ |VolP dx
Q
in the closed convex set
{v e WHP(Q): v —ug € Wy P(Q)}.

/ |Vul|P dz S/ |VuglP dz,
Q Q

using Poincaré’s inequality we get

/|u|de§C(/ |u0|pd:6+/ |u—u0|pdx>
Q Q Q
gC(/ |u0|pd:v+/ |Vu—Vu0|pd:v)
Q Q

< C(/ lug|P dx —i—/ |Vul? 4 |Vugl? d:c)
Q Q

gc(/ |u0|de+/ Vuol? dz).
Q Q

Since
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Let M = |luglloc < 00. If we test the minimizing property by

u,  uf <M,
vix) =< M, u>M,
M, u< M,

then we get that w < M a.e. Similar estimates hold for all equations of the
monotone type.

4.2 Theorem. In addition to (2.1), suppose that for any ug € CL(R™) there is
u € WIP(Q) such that

—divA+B =0,
4.2
(42) u—uOEWOl’p(Q),
and
(4.3) /Q|u|1’ dr < C/Q(|u0|1’ 4 [VuglP) dz, [[ulloe < Clluglloo

with a constant C' independent of ug. Let z € 02 and suppose that
wp(z, R™\ Q) < 0.
Then z is irregular for the equation
—divA+B=0.

PRrROOF: Choose ¢ > 0, p € (0,1) to be specified later. The singleton {z} has zero
p-capacity. Hence, we find a C'-function ug on R™ supported in B(z, 1) such that
up(z) = 1 and [gn (luo/? + [Vug|P) dz < . Let u be a continuous solution of
(4.2), (4.3). By Theorem 3.3,

p-fine-lim sup u(z) < Cl(p_n/ w da) '/
Tz B(z,p)
P B Q)\1/(p-1
+02/0 (capp( (z,7)\ )) /(p—1) dr

r—pP T

Holder’s inequality yields

—n / -n
(p /B(x,p) v dw)l ’Y <Com? (/B(SW)

Since R"™ \ Q is p-thin at z, we can find p € (0,1) such that

C /Op(capp(B(z,r) \Q))l/(p—l) dr _ 1

1
|ulP dx) v < Cap MPEL/P,

rn—p 3

r 3
Then we can specify the choice of ¢ so that

C1Csp /PP <

W =

We obtain that
p-fine-limsup u(x) < 1 = up(z),

r—z

hence z is not regular. 0
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Note added in proof. In a new preprint Gianazza, Marchi and Villani prove
Wiener criteria for a related class of equations which is neither a subclass, nor
a superclass of the class of equations investigated here.
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