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On the non-commutative neutrix product ln x+ ◦ x
−s
+

Brian Fisher, Adem Kiliçman, Blagovest Damyanov, J.C. Ault

Abstract. The non-commutative neutrix product of the distributions lnx+ and x
−s

+
is

proved to exist for s = 1, 2, . . . and is evaluated for s = 1, 2. The existence of the
non-commutative neutrix product of the distributions x−r

+
and x−s

+
is then deduced for

r, s = 1, 2, . . . and evaluated for r = s = 1.
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In the following, we let N be the neutrix, see van der Corput [1], having domain
N ′ = {1, 2, . . . , n, . . . } and range the real numbers, with negligible functions finite
linear sums of the functions

nλ lnr−1 n, lnr n : λ > 0, r = 1, 2, . . .

and all functions which converge to zero in the normal sense as n tends to infinity.
We now let ̺(x) be any infinitely differentiable function having the following

properties:

(i) ̺(x) =0 for |x| ≥ 1,
(ii) ̺(x) ≥ 0,
(iii) ̺(x) = ̺(−x),

(iv)

∫ 1

−1
̺(x) dx = 1.

Putting δn(x) = n̺(nx) for n = 1, 2, . . . , it follows that {δn(x)} is a regular se-
quence of infinitely differentiable functions converging to the Dirac delta-function
δ(x).
Now let D be the space of infinitely differentiable functions with compact sup-

port and let D′ be the space of distributions defined onD. Then if f is an arbitrary
distribution in D′, we define

fn(x) = (f ∗ δn)(x) = 〈f(t), δn(x− t)〉

for n = 1, 2, . . . . It follows that {fn(x)} is a regular sequence of infinitely differ-
entiable functions converging to the distribution f(x).
A first extension of the product of a distribution and an infinitely differentiable

function is the following, see for example [2] or [3].
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Definition 1. Let f and g be distributions in D′ for which on the interval (a, b),

f is the k-th derivative of a locally summable function F in Lp(a, b) and g(k) is
a locally summable function in Lq(a, b) with 1/p + 1/q = 1. Then the product
fg = gf of f and g is defined on the interval (a, b) by

fg =

k
∑

i=0

(

k

i

)

(−1)i[Fg(i)](k−i).

The following definition for the neutrix product of two distributions was given
in [4] and generalizes Definition 1.

Definition 2. Let f and g be distributions in D′ and let gn(x) = (g ∗ δn)(x). We
say that the neutrix product f ◦g of f and g exists and is equal to the distribution
h on the interval (a, b) if

N–lim
n→∞

〈f(x)gn(x), φ(x)〉 = 〈h(x), φ(x)〉

for all functions φ in D with support contained in the interval (a, b).

Note that if
lim
n→∞

〈f(x)gn(x), φ(x)〉 = 〈h(x), φ(x)〉,

we simply say that the product f.g exists and equals h, see [3].
It is obvious that if the product f.g exists then the neutrix product f ◦ g exists

and the two are equal. Further, it was proved in [3] that if the product fg exists
by Definition 1, then the product f.g exists by Definition 2 and the two are equal.
Note also that although the product defined in Definition 1 is always commutative,
the neutrix product defined in Definition 2 is in general non-commutative.
The following theorem holds, see [7].

Theorem 1. Let f and g be distributions in D′ and suppose that the neutrix

products f ◦ g(i) (or f (i) ◦ g) exist on the interval (a, b) for i = 0, 1, 2, . . . , r.

Then the neutrix products f (k) ◦ g (or f ◦ g(k)) exist on the interval (a, b) for
k = 1, 2, . . . , r and

f (k) ◦ g =

k
∑

i=0

(

k

i

)

(−1)i[f ◦ g(i)](k−i)

or

f ◦ g(k) =

k
∑

i=0

(

k

i

)

(−1)i[f (i) ◦ g](k−i)

on the interval (a, b) for k = 1, 2, . . . , r.

In the following two theorems, which were proved in [6] and [9] respectively,

the distributions x−r+ and x−r
−
are defined by

x−r+ =
(−1)r−1

(r − 1)!
(ln x+)

(r), x−r
−
= −

1

(r − 1)!
(lnx−)

(r),
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for r = 1, 2, . . . and is distinct from the definition given by Gel’fand and Shilov [8].
Further, the distribution F (x+,−r) lnx+ is defined for an arbitrary φ in D by

〈F (x+,−r) ln x+, φ(x)〉 =

∫

∞

0
x−r lnx

[

φ(x) −

r−2
∑

k=0

xk

k!
φ(k)(0)+

−
xr−1

(r − 1)!
φ(r−1)(0)H(1− x)

]

dx,

for r = 1, 2, . . . , where the sum is empty when r = 1, and H denotes Heaviside’s
function. The distribution x−r+ lnx+ is then defined by

(1) x−r+ lnx+ = F (x+,−r) lnx+ +
(−1)r

(r − 1)!
ψ1(r − 1)δ

(r−1)(x),

for r = 1, 2, . . . , where

ψ1(r) =

{

0, r = 0,
∑r
i=1

ψ(i)
i , r ≥ 1,

ψ(r) =

{

0, r = 0,
∑r
i=1

1
i , r ≥ 1.

It follows that

(ln2 x+)
′ = 2x−1+ lnx+, (x−r+ lnx+)

′ = −rx−r−1+ lnx+ + x
−r−1
+ ,

see [10].

Theorem 2. The neutrix products x−r+ ◦ x−s
−
and x−s

−
◦ x−r+ exist and

x−r+ ◦ x−s
−
=
(−1)rc1
(r + s− 1)!

δ(r+s−1)(x),

x−s
−

◦ x−r+ =
(−1)r−1c1
(r + s− 1)!

δ(r+s−1)(x)

for r, s = 1, 2, . . . , where

c1(̺) =

∫ 1

0
ln t ̺(t) dt.

It was shown in [5] that with suitable choice of the function ̺, c1(̺) can take
any negative value.

Theorem 3. The neutrix products lnx+ ◦ x−s
−
and x−s

−
◦ lnx+ exist and

lnx+ ◦ x−s
−
=

1

(s− 1)!

(

c2 −
π2

12

)

δ(s−1)(x)+

−

s−1
∑

i=1

(−1)ic1
(s− i− 1)!i!i

δ(s−1)(x),

= x−s
−

◦ lnx+

= (−1)s−1 lnx− ◦ x−s+ = (−1)
s−1x−s+ ◦ lnx−
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for s = 1, 2 . . . , where

c2(̺) =

∫ 1

0
ln2 t ̺(t) dt.

We now prove the following theorem:

Theorem 4. The neutrix product lnx+ ◦ x−s+ exists for s = 1, 2, . . . . In partic-
ular,

lnx+ ◦ x−1+ = x
−1
+ lnx+,(2)

lnx+ ◦ x−2+ = x
−2
+ lnx+ + (c1 − 1)δ

′(x).(3)

Proof: We put
(x−s+ )n = x

−s
+ ∗ δn(x)

so that

(x−s+ )n =
(−1)s−1

(s− 1)!

∫ x

−1/n
ln(x− t)δ

(s)
n (t) dt

on the interval [0, 1/n] and

(x−s+ )n =
(−1)s−1

(s− 1)!

∫ 1/n

−1/n
ln(x− t)δ

(s)
n (t) dt =

∫ 1/n

−1/n
(x− t)−sδn(t) dt

on the interval [1/n,∞).
Then

(4)

(−1)s−1(s− 1)!

∫ 1

0
xk lnx(x−s+ )n dx

=

∫ 1

0
xk lnx

∫ 1/n

−1/n
ln(x− t)+δ

(s)
n (t) dt dx

=

∫ 0

−1/n
δ
(s)
n (t)

∫ 1

0
xk lnx ln(x − t) dx dt+

+

∫ 1/n

0
δ
(s)
n (t)

∫ 1

t
xk lnx ln(x− t) dx dt

= (−1)s
∫ 1/n

0
δ
(s)
n (t)

∫ t

0
xk lnx ln(x+ t) dx dt+

+ (−1)s
∫ 1/n

0
δ
(s)
n (t)

∫ 1

t
xk lnx ln(x+ t) dx dt+

+

∫ 1/n

0
δ
(s)
n (t)

∫ 1

t
xk lnx ln(x− t) dx dt.



On the non-commutative neutrix product ln x+ ◦ x−s

+
233

Now
∫ t

0
xk lnx ln(x+ t) dx =

∫ t

0
xk lnx[ln t+ ln(1 + x/t)] dx

=
tk+1 ln2 t

k + 1
−
tk+1 ln t

(k + 1)2
−

∞
∑

i=1

(−1)i

iti

∫ t

0
xk+i lnxdx

=
tk+1 ln2 t

k + 1
−
tk+1 ln t

(k + 1)2
−

∞
∑

i=1

[ (−1)itk+1 ln t

i(k + i+ 1)
−
(−1)itk+1

i(k + i+ 1)2

]

= αk1t
k+1 ln2 t+ βk1t

k+1 ln t+ γk1t
k+1,(5)

∫ 1

t
xk lnx ln(x+ t) dx =

∫ 1

t
xk lnx[ln x+ ln(1 + t/x)] dx

=
2

(k + 1)3
−
tk+1 ln2 t

k + 1
+
2tk+1 ln t

(k + 1)2
−
2tk+1

(k + 1)3
+

−

∞
∑

i=1

(−t)i

i

∫ 1

t
xk−i lnxdx

=
2

(k + 1)3
−
tk+1 ln2 t

k + 1
+
2tk+1 ln t

(k + 1)2
−
2tk+1

(k + 1)3
+

+

∞
∑

i=1

i6=k+1

[ (−1)itk+1 ln t

i(k − i+ 1)
−
(−1)itk+1

i(k − i+ 1)2
+

(−t)i

i(k − i+ 1)2

]

+

+
(−t)k+1

2(k + 1)
ln2 t

= 2(k + 1)−3 + αk2t
k+1 ln2 t+ βk2t

k+1 ln t+ γk2t
k+1+

+

∞
∑

i=1

i6=k+1

(−t)i

i(k − i+ 1)2
,(6)

∫ 1

t
xk lnx ln(x− t) dx =

∫ 1

t
xk lnx[ln x+ ln(1− t/x)] dx

=
2

(k + 1)3
−
tk+1 ln2 t

k + 1
+
2tk+1 ln t

(k + 1)2
−
2tk+1

(k + 1)3
+

+

∞
∑

i=1

i6=k+1

[ tk+1 ln t

i(k − i+ 1)
−

tk+1

i(k − i+ 1)2
+

ti

i(k − i+ 1)2

]

= 2(k + 1)−3 + αk3t
k+1 ln2 t+ βk3t

k+1 ln t+ γk3t
k+1+

+

∞
∑

i=1

i6=k+1

ti

i(k − i+ 1)2
,(7)
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for k = 0, 1, 2, . . . .
Putting nt = u, we have

∫ 1/n

0
tk lni tδ

(s)
n (t) dt = n

s−k
∫ 1

0
uk(lnu− lnn)i̺(s)(u) du.

It follows that

N–lim
n→∞

∫ 1/n

0
tk lni t δ

(s)
n (t) dt = 0,

for i = 0, 1, 2; k = 0, 1, 2 . . . , s− 1 and s = 1, 2, . . . and

lim
n→∞

∫ 1/n

0
tkδ
(s)
n (t) dt = 0,

for k = s+ 1, s+ 2, . . . and s = 1, 2, . . . .
Further,

N–lim
n→∞

∫ 1/n

0
ts lni t δ

(s)
n (t) dt =

∫ 1

0
us lni u ̺(s)(u) du

and it follows easily by induction that

N–lim
n→∞

∫ 1/n

0
tsδ
(s)
n (t) dt = (−1

ss!

∫ 1

0
̺(u) du = 12 (−1)

ss!,(8)

N–lim
n→∞

∫ 1/n

0
ts ln t δ

(s)
n (t) dt = (−1)

ss!c1 +
1
2 (−1)

ss!ψ(s),(9)

N–lim
n→∞

∫ 1/n

0
ts ln2 t δ

(s)
n (t) dt = (−1)

ss!c2 + 2(−1)
ss!ψ(s)c1+

+ (−1)ss!

s−1
∑

i=1

ψ(i)

i+ 1
,(10)

the sum being empty when s = 1.
It follows that

(11) N–lim
n→∞

∫ 1

0
xk lnx(x−s+ )n dx = −(s− k − 1)−2

for k = 0, 1, 2, . . . s− 2 and s = 1, 2 . . . and with

αs = αs−1,1 + αs−1,2 + (−1)
sαs−1,3, βs = βs−1,1 + βs−1,2 + (−1)

sβs−1,3,

γs = γs−1,1 + γs−1,2 + (−1)
sγs−1,3,
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it follows from equations (4) to (10) that

(12)

N–lim
n→∞

∫ 1

0
xs−1 lnx(x−s+ )n dx = − (−1)ssαs

[

c2 + 2ψ(s)c1 +

s−1
∑

i=1

ψ(i)

i+ 1

]

+

− (−1)ssβs[c1 +
1
2 ψ(s)]−

1
2 (−1)

ssγs

= Λs,

for s = 1, 2, . . . .
Now let φ be an arbitrary function in D. Then with 2n−1 < η < 1,

〈lnx+(x
−s
+ )n, φ(x)〉 =

∫

∞

0
lnx(x−s+ )nφ(x) dx

=

∫ η

0
lnx(x−s+ )n

[

φ(x) −

s−1
∑

k=0

xk

k!
φ(k)(0)

]

dx+

+

∫

∞

η
lnx(x−s+ )n

[

φ(x) −

s−2
∑

k=0

xk

k!
φ(k)(0)−

xs−1

(s− 1)!
φ(s−1)(0)H(1− x)

]

dx+

+

s−1
∑

k=0

φ(k)(0)

k!

∫ 1

0
xk lnx(x−s+ )n dx+

s−2
∑

k=0

φ(k)(0)

k!

∫

∞

1
xk lnx(x−s+ )n dx.

Since (x−s+ )n converges uniformly to the function x
−s on the interval [η,∞), it

follows that

lim
n→∞

∫

∞

η
lnx(x−s+ )n

[

φ(x) −

s−2
∑

k=0

xk

k!
φ(k)(0)−

xs−1

(s− 1)!
φs−1(0)H(1− x)

]

dx

=

∫

∞

η
x−s lnx

[

φ(x) −

s−2
∑

k=0

xk

k!
φ(k)(0)−

xs−1

(s− 1)!
φs−1(0)H(1− x)

]

dx

=

∫

∞

0
x−s lnx

[

φ(x) −

s−2
∑

k=0

xk

k!
φ(k)(0)−

xs−1

(s− 1)!
φs−1(0)H(1− x)

]

dx+

+O(η ln η),

lim
n→∞

s−2
∑

k=0

φ(k)(0)

k!

∫

∞

1
xk lnx(x−s+ )n dx =

s−2
∑

k=0

φ(k)(0)

k!

∫

∞

1
xk−s lnxdx

=

s−2
∑

k=0

φ(k)(0)

k!(s− k − 1)2
,

and on using equations (11) and (12), we have

N–lim
n→∞

s−1
∑

k=0

φ(k)(0)

k!

∫ 1

0
xk lnx(x−s+ )n dx =

s−2
∑

k=0

φ(k)(0)

k!(s− k − 1)2
+
Λsφ

(s−1)(0)

(s− 1)!
.
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Further,

∫ η

0
lnx(x−s+ )n

[

φ(x) −

s−1
∑

k=0

xk

k!
φ(k)(0)

]

dx =

∫ 2/n

0
xs lnx(x−s+ )nφ

(s)(ξx) dx+

+

∫ η

2/n
xs lnx(x−s+ )nφ

(s)(ξx) dx,

where 0 < ξ < 1. Now on the interval [0, 2/n], it is easily seen that

(x−s+ )n =
(−1)s−1

(s− 1)!

∫ 1/n

−1/n
ln(x− t)+δ

(s)
n (t) dt = O(n

s lnn)

and so

lim
n→∞

∫ 2/n

0
xs lnx(x−s+ )n dx = 0.

Putting K = sup{|φ(s)(x)|}, we have
∣

∣

∣

∣

∣

∫ η

2/n
xs lnx(x−s+ )nφ(ξx) dx

∣

∣

∣

∣

∣

≤ −K

∫ 1/n

−1/n
δn(t)

∫ η

2/n
xs(x− t)−s lnxdx dt,

where

∫ η

2/n
xs(x− t)−s lnxdx =

∞
∑

k=0

∫ η

2/n

(

−s

k

)

(−t)k

xk
lnxdx

= ηln η− η−2n−1 ln(2/n) + 2n−1+ 12 st[ln
2 η−ln2(2ν)]+

+

∞
∑

k=2

(−t)k
(

−s

k

)

[

x1−k lnx

1− k
−

x1−k

(1− k)2

]η

2/n

.

It follows that

lim
n→∞

∫ η

2/n
xs lnx(x−s+ )nφ(ξx) dx = O(η ln η).

Since we also have

∫ η

0
x−s

[

φ(x) −

s−1
∑

k=0

xk

k!
φ(k)(0)

]

dx = O(η ln η),

we see that

N–lim
n→∞

〈lnx+(x
−s
+ )n, φ(x)〉 = 〈F (x+,−s) lnx+, φ(x)〉 +

Λsφ
(s−1)(0)

(s− 1)!
.
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This proves the existence of the neutrix product lnx+ ◦ x−s+ and in fact

lnx+ ◦ x−s+ = F (x+,−s) lnx+ −
(−1)sΛs
(s− 1)!

δ(s−1)(x)

= x−s+ lnx+ −
Λs + ψ1(s− 1)

(s− 1)!
(−1)sδ(s−1)(x),

on using equation (1). It can be shown that

αs = 0, βs =
(−1)s

s
ψ(s− 1), γs =

(−1)s+1

s2
[ψ(s− 1) + sχ(s− 1)],

Λs = −c1ψ(s− 1) +
1

2

[

χ(s− 1)− ψ2(s− 1)
]

for s = 1, 2, . . . , where

χ(s) =

{

0, s = 0,
∑s
i=1 1/i

2, s ≥ 1

so that in particular,
Λ1 = 0, Λ2 = −c1

and equations (2) and (3) follow. This completes the proof of the theorem. �

Corollary 1. The neutrix products x−s+ ◦ ln x+ and x
−r
+ ◦ x−s+ exist for r, s =

1, 2, . . . . In particular,

x−1+ ◦ lnx+ = x
−1
+ lnx+ + (c2 + 2c1)δ(x),(13)

x−2+ ◦ lnx+ = x
−2
+ lnx+ − (c2 +

1
2 )δ

′(x),(14)

x−1+ ◦ x−1+ = x
−2
+ + (2c1 −

1
2 )δ

′(x).(15)

Proof: The existence of the product x−r+ ◦ x−s+ follows immediately from Theo-
rems 1 and 4 for r, s = 1, 2, . . . .
The product of the locally summable function lnx+ by itself exists by Defini-

tion 1 and is equal to the locally summable function ln2 x+. Differentiating the
equation

lnx+ lnx+ = lnx+ ◦ lnx+ = ln
2 x+,

we get
x−1+ ◦ lnx+ + lnx+ ◦ x−1+ = 2x

−1
+ lnx+.

The existence of the neutrix product x−1+ ◦ lnx+ and equation (13) follows from

equation (2). The existence of x−s+ ◦ lnx+ now follows from this result, the

existence of x−r+ ◦ x−s+ and Theorem 1.
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Differentiating equation (2), we get

x−1+ ◦ x−1+ − lnx+ ◦ x−2+ = x
−2
+ − x−2+ lnx+

and equation (15) follows on using equation (3).
Differentiating equation (13), we get

x−1+ ◦ x−1+ − x−2+ ◦ lnx+ = x
−2
+ − x−2+ lnx+

and equation (14) follows on using equation (15). �

Corollary 2. The neutrix products lnx− ◦ x−s
−
, x−s

−
◦ lnx− and x

−r
−

◦ x−s
−
exist

for r, s = 1, 2, . . . . In particular,

lnx− ◦ x−1
−
= x−1

−
lnx−,

x−1
−

◦ lnx− = x
−1
−
lnx−,

lnx− ◦ x−2
−
= x−2

−
lnx− − (c1 − 1)δ

′(x),

x−2
−

◦ lnx− = x
−2
−
lnx− − (c1 − 1)δ

′(x),

x−1
−

◦ x−1
−
= x−2

−
− (c1 − 1)δ

′(x).

Proof: Replacing x by −x in lnx+, x
−s
+ and δ(s)(x) gives us lnx−, x

−s
−
and

(−1)sδ(s)(x) respectively. The results now follow immediately from Theorem 4
and Corollary 1. �

Corollary 3. The neutrix products ln |x| ◦ x−s, x−s ◦ ln |x| and x−r ◦ x−s exist
and

ln |x| ◦ x−s = x−s ln |x| = x−s ◦ ln |x|,

x−r ◦ x−s = x−r−s,

for r, s = 1, 2, . . . .

Proof: Since the products lnx+ ◦x−s+ , x
−s
+ ◦ lnx+ and x

−r
+ ◦x−s+ are of the form

lnx+ ◦ x−s+ = x
−s
+ lnx+ +Msδ

(s−1)(x),

x−s+ ◦ lnx+ = x
−s
+ lnx+ +M

′

sδ
(s−1)(x),

x−r+ ◦ x−s+ = x
−r−s
+ +Mrsδ

(r+s−1)(x),

for some constants Ms,M
′

s and Mrs, it follows that we then have

lnx− ◦ x−s
−
= x−s

−
ln x− − (−1)sMsδ

(s−1)(x),

x−s
−

◦ lnx− = x
−s
−
ln x− − (−1)sM ′

sδ
(s−1)(x),

x−r
−

◦ x−s
−
= x−r−s

−
− (−1)r+sMrsδ

(r+s−1)(x).

Noting that the neutrix product is clearly distributive with respect to addition
and that

x−s ln |x| = x−s+ lnx+ + (−1)
sx−s

−
lnx−, x−s = x−s+ + (−1)

sx−s
−
,

for s = 1, 2, . . . , the results follow from these equations and Theorems 2 and 3.
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