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On the non-commutative neutrix product Inzy o :L’_T_S

BRIAN FISHER, ADEM KILIGMAN, BLAGOVEST DAMYANOV, J.C. AULT

Abstract. The non-commutative neutrix product of the distributions Inz4 and xjrs is
proved to exist for s = 1,2,... and is evaluated for s = 1,2. The existence of the
non-commutative neutrix product of the distributions m;r and m;s is then deduced for
r,s =1,2,... and evaluated for r = s = 1.
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In the following, we let N be the neutrix, see van der Corput [1], having domain
N’ ={1,2,...,n,...} and range the real numbers, with negligible functions finite
linear sums of the functions

nMn""tn, In"n: A>0, r=1,2,...

and all functions which converge to zero in the normal sense as n tends to infinity.
We now let o(z) be any infinitely differentiable function having the following
properties:
(i) o) 0 for |z| > 1,
o(z) =
o(x ) ( z),

(i)
(iii)
v)

(i o(x)dr = 1.
Putting 0y, (z) = no(nz) for n = 1,2,..., it follows that {0, (x)} is a regular se-
quence of infinitely differentiable functions converging to the Dirac delta-function

8(x).

Now let D be the space of infinitely differentiable functions with compact sup-
port and let D’ be the space of distributions defined on D. Then if f is an arbitrary
distribution in D’, we define

fa(x) = (f % 6n)(x) = (f (1), on (2 — 1))

for n =1,2,.... It follows that {f,(z)} is a regular sequence of infinitely differ-
entiable functions converging to the distribution f(zx).

A first extension of the product of a distribution and an infinitely differentiable
function is the following, see for example [2] or [3].
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Definition 1. Let f and g be distributions in D’ for which on the interval (a,b),
f is the k-th derivative of a locally summable function F in LP(a,b) and g(k) is
a locally summable function in LY(a,b) with 1/p+ 1/q = 1. Then the product
fg=gf of f and g is defined on the interval (a,b) by
k
=S (P (C1yitpg k-
fo= 3 () vy,
=0
The following definition for the neutrix product of two distributions was given
in [4] and generalizes Definition 1.

Definition 2. Let f and g be distributions in D' and let g, (z) = (g dp)(z). We
say that the neutrix product fog of f and g exists and is equal to the distribution
h on the interval (a,b) if

N-im(f(2)gn(2), ¢(2)) = (h(z), ¢(x))

for all functions ¢ in D with support contained in the interval (a,b).

Note that if
lim (f(z)gn(z), ¢(x)) = (h(z), d(z)),

n—oo
we simply say that the product f.g exists and equals h, see [3].

It is obvious that if the product f.g exists then the neutrix product f o g exists
and the two are equal. Further, it was proved in [3] that if the product fg exists
by Definition 1, then the product f.g exists by Definition 2 and the two are equal.
Note also that although the product defined in Definition 1 is always commutative,
the neutrix product defined in Definition 2 is in general non-commutative.

The following theorem holds, see [7].

Theorem 1. Let f and g be distributions in D' and suppose that the neutrix
products f o g@ (or ) o g) exist on the interval (a,b) for i = 0,1,2,... 7.
Then the neutrix products f*) o g (or f o g*)) exist on the interval (a,b) for
k=1,2,...,r and

k
fBog=3%" (lf) (—1)[f 0 gD E=D
=0
o ko /1 o .
rog® =3 (4) 1y g

I
o

(2

on the interval (a,b) for k=1,2,... r.

In the following two theorems, which were proved in [6] and [9] respectively,
the distributions :c_T_T and z_" are defined by

_r_ (=pr! 1 ") - ! ")
~’C+—m(n$+) T = 1'(11517—) )
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forr =1,2,... and is distinct from the definition given by Gel’fand and Shilov [8].
Further, the distribution F(z4,—r)Inxzy is defined for an arbitrary ¢ in D by

0o r—2 Ik
(Pl =)o) = [ "o ne[o@) - 3 o0+
o
(r—1)!

for r=1,2,..., where the sum is empty when r = 1, and H denotes Heaviside’s
function. The distribution z7" Inz is then defined by

(=D"

V() H(1 — )| da,

(1) v "Inwy = F(rg, —r)lney + md)l(r — 160 (a),
forr=1,2,..., where

07 T = 0, 0, r = 07

L ISR S,

It follows that

(In?2,) = 2£C_T_1 Inzy, (27 Inazy) = —TZC_T_T_l Inzy + ZC_T_T_l,

see [10].

s

Theorem 2. The neutrix products :c_T_T ox_Sandz” %o I_T_T exist and

—r s (=" (5(T+S_1)(x)

Ty 0o :(T+s—1)! ’
-8 . —T _ (_1)7’—101 (r+s—1)
e = T @)

forr,s =1,2,..., where

1
cl(g)z/o Int o(t) dt.

It was shown in [5] that with suitable choice of the function g, ¢1(p) can take
any negative value.

Theorem 3. The neutrix products Inzy o x_° and 2_° olnz exist and

1 2
- _ - T\ o(s—1)

s—1
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for s =1,2..., where

We now prove the following theorem:

Theorem 4. The neutrix product Inxz4 o ,T_T_S exists for s = 1,2, ... . In partic-
ular,

(2) Inzy o 3:_,’__1 = 3:_,’__1 Inxg,

(3) Inz4 o xI_Z = xI_Z Inzy + (c1 — 1)8 ().

Proor: We put
(%0 = 2% * 0n ()

so that

N G ) MY SRV
(@ %)n = oD /_1/n1 (x — 1)y (t) dt

on the interval [0,1/n] and

N (_1)8—1 1/n e (s) B 1/n T
@ = oy [ | e =03 e = / ICRACH

on the interval [1/n, o).
Then

1
(—1)3_1(5—1)!/ xklnx(a:;s)nd:r
0
1 1/n
:/ xklnx/ 1n(x—t)+5,(f)(t) dt dx
0 —1/n
0 1
:/ 5;5)(15)/ ¥ Inzn(z — t) do di+
—1/n 0
1/n 1
(4) —I—/ 5%8)(0/ ¥ Inzin(z —t) da dt
0 t
Vs gy [k
:(—l)s/ o (t)/ " Inzn(x + t) de dt+
0 0

1/n 1
—l—(—l)s/ 5%8)(1%)/ 2 Inzn(z + t) do di+
0 t

1/n 1
+ / 6&8)(1%) / ¥ Inzn(z — t) da dt.
0 t
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o t
/ ¥ Inzn(z +t) dz:/ ¥ Inz[lnt + In(1 + z/t)] dw
0 0

- tk+1 1n2 t tk+1 Int o (_1)2 t ki

— — — €T Inxdzx
k+1 (k+1)2 & ittt J

o0

_ th+11n2¢ _ th+11nt
k+1 (k+1)2

5 = ap tF T In? ¢+ By tFt Int 4yt

(_1)itk+1 Int (_1)itk‘+1
{ i(k+i+1) i(k—i—i—i—l)?}

1 1
/ ¥ Inzin(z +t)de = / ¥ Inz[lnz + In(1 + t/x)] dx
t t

2 th+lm?¢ N oth+tlng  2thtl N
C(k+1)3 k+1 (k+1)2  (k+1)3
~ .
)l .
—Z(—)/ 2 nx de
-1
_ 2 Py N 2t ing 2kl N
C (k+1)3 k+1 (k+1)2  (k+1)3
+Z[ - L) 2.(.)2+
—z—i—l) Cik—i+1) i(k—i+1)
17&k+1
(_t)k—i—l 9
——In“t
HETEEE
=2(k+1)73 + appt" T 2t + 6k2tk+1 Int + Yot 4
6
(©6) + Z —1 —I— 1
'L;ék+1
1 1
/ ¥ Inzin(z —t)de = / 2*Inz[lnz + In(1 — t/x)] dx
t t
2 th+11n?¢ N 2tF+H g 2ht! N
_(k+1)3 k+1 (k+1)2  (k+1)3
+ Z [ e T 2}
(k—i+1) i(k—i+1) i(k—i+1)
17&k+1
=2(k+1)73 + apgt* T % t + Bigt" T Int 4 gt T+
7 -
Q) * Z_; i(k—i+1)%
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for k=0,1,2,....
Putting nt = u, we have

1/n ) 1 .
/ t* In’ tégs)(t) dt = n*~F / uF(Inu — Inn) o) (u) du.
0 0

It follows that
N-lim t* 1?6y () dt = 0,

n—oo 0

fori=0,1,2; k=0,1,2...,s—1land s=1,2,... and

fork=s+1,s+2,... ands=1,2,....

Further,
1/n . 1 .
N-lim t°In"t 57(15) (t)dt = / u® In' u o) (u) du
and it follows easily by induction that
1/n (s) 1
(8) Netim [ 626 (#) dt = (—1°! / o(u) du = L(~1)%,
1/n
(9) N-lim 510t 65 () dt = (—1)%sley + L(—1)%slp(s),

n—oo 0

1/n
N-lim 52t 687 (1) dt = (=1)%slea + 2(—1)sl(s)er +

n—oo 0

s—1 .
(10) + (—=1)%s! Z iw—|(—2)1’
=1

the sum being empty when s = 1.
It follows that
1
(11) N-lim [ 2F Inz(z *)pdr = —(s—k — 1)72

n—o0o 0

for k=0,1,2,...s —2and s =1,2... and with

as=as_1,1+as—12+ (—1)%as-13, Bs=LFs—11+ Fs—12+ (=1)°Bs_13,
Vs = Ys—1,1 T Vs—1,2 + (—=1)*7s-1,3,



On the non-commutative neutrix product Inz4 o xjrs 235

it follows from equations (4) to (10) that
1 s—1

N-lim xS_lln:v(x_T_s)n dr = — (=1)°sas|co + 2¢(s)c1 + Z —|(—)1}+
n—oo 0
(12)
— (—1)*sBs[er + 3 u(s)] - %(—1> $7s
= Asa
fors=1,2,....

Now let ¢ be an arbitrary function in D. Then with 2n~! < < 1,

(4 ()00 = [ (e *)aote) do

:/Onln:v x+ [ Zk'¢(k }dw—i—

0o 5_2 k s—1
-5 z k €z s—1
+ [ e [ow -3 0 - et - ) do
s=1 (k) 1 5=2 (k) 00
+ Z ¢T'(O)/O " Inz(z *)n dr + Z ¢ k:!(O)/l " Inz(z ®)p de.
k=0 k=0
Since (27 *)n converges uniformly to the function 7% on the interval [n, 00), it
follows that
. & —5 = xk (k) s—1 s—1
t bl - e om— o
0o s—2 xk )
_ —s _ v (k _ s—1 _
= [ mafow > o) e OH - ) as
o 5—2 2k ) 251 1
- [Ta inota) = 32 5o (0) - T O - oo
+ O(nlnn),
s—2 s—2
. o®(0) > —s oM0) 1% ks
nlLr%O];T/l aFIna(zy )"dx:,;)T/l 255 Inz dr

_ o™M(0
Zk's— k—1)2

and on using equations (11) and (12), we have

(k s—2 (k) (3—1)
1>LI_1>OO Z ¢ / T lnx(x_i—_S)n dr — Z = (V) " Ao (())
k

= (s —k—1)2 (s —1)!
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Further,
n s=1 g 2/n
/ Inz(z]*)n [d)(x) - Z %¢(k)(0)} dx = / z°1n x(x;s)n(b(s)(gx) dx+
0 k=0 " 0

+ /77 z%1n :zr(x_i__s)ngb(s) (éx) dz,
2/n

where 0 < £ < 1. Now on the interval [0,2/n], it is easily seen that

_1\s—1 rl/n
() = (=1) / In(z — t)+5,({q) (t)dt = O(n’lnn)

(s —1)! —1/n
and so 2/n
3 S —S _
nh—{]go A ¥ Inz(z®)ndx = 0.

Putting K = sup{|¢()(z)|}, we have

1/n n
<-K 5n(t)/ 2®(x —t) " Inzdx dt,
—-1/n 2/n

! ° x)dx
/Z/nx Inz(z*)nop(Ez)d

where

" ; = () (0
oty mrdr= Y | ( )
/2/n$ (z—t) °Inzdx ];)2/71 P e

= nlnn—n—2n"tIn(2/n) + Zn_l—l—% st[in? n—In?(20)H

> —s\ |21 Flnz 1=k !
+ 3 (=t)F l - ] :
ng (k) 1-k (1— k)2 2/n

Inxdzx

It follows that

lim ! ¥ Inz(z*)no(§x) dr = O(nlnn).

n—00 Jo/n

Since we also have

we see that

(s—1)
Nl (i (57} (0} = (Plo, =) I, () + o)
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s

This proves the existence of the neutrix product Inz4 o2, ° and in fact

((;1_)811;!3 561 ()

A8+¢1(8_1) ss(s—
W(—l) s~ (x),

Inzyox® = F(ry,—s)nzy —
=z lnzy —

on using equation (1). It can be shown that

—_1)8 _1\s+1
0s=0, f= L1, 5= EO (s - 1) +sx(s - 1)

S

Ay = —ertb(s = 1)+ 3 [x(s = 1) — (s — 1)

for s=1,2,..., where
0, s=0,
S) =
x(#) { P13 s>1

so that in particular,
A =0, Ao=—

and equations (2) and (3) follow. This completes the proof of the theorem. O

Corollary 1. The neutrix products v * olnx and x " o x* exist for r,s =
1,2,.... In particular,

(13) x_,’__l olnzy = 3:_,’__1 Inx4 + (c2 + 2¢1)0(z),
(14) x_7_2 olnzy = x_7_2 Inzy — (c2 + 3)8 (),
(15) :E_T_l o x_T_l = x_T_2 + (2¢1 — %)(5,(:6)

PROOF: The existence of the product 2" oz * follows immediately from Theo-
rems 1 and 4 for r,s =1,2,....

The product of the locally summable function Inz by itself exists by Defini-
tion 1 and is equal to the locally summable function In? 4. Differentiating the
equation

Inzy nzy =lnzyolnay = In? T4,

we get

a:_T_l olnzy +1lnzy o 3:_,’__1 = Zx_T_l Inzg.

The existence of the neutrix product ,T_T_l olnz4+ and equation (13) follows from
equation (2). The existence of 2 ° o Inzy now follows from this result, the
existence of z7" o 2 * and Theorem 1.

237
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Differentiating equation (2), we get

1 2 2

x o x_T_l —lnzyor *=2,"— ZC_T_Q Inxy
and equation (15) follows on using equation (3).
Differentiating equation (13), we get

-1 -1 —2 _ 2 —2
iy oxy —z "olnwy =z —r "lnzy

and equation (14) follows on using equation (15). O
Corollary 2. The neutrix productsnz_oxz"%, x"° olnz_ and =" o x_*° exist
forr,s =1,2,.... In particular,

Inx_ o le = x:l Inz_,

3::1 olnz_ = 3::1 Inz_,

Inz_ oz ?2=z"?Inz_ — (¢ — 1)8(z),
e 2olnz_ =22z — (¢c; — 1) (x),

e lorTl =272 — (1 — 1) (a).

PROOF: Replacing z by —z in Inzy, 27° and 60)(z) gives us Inz_, -° and
(—=1)%6() () respectively. The results now follow immediately from Theorem 4

and Corollary 1. (|
Corollary 3. The neutrix products In|z|ox™%, 75 oln|x| and 7" o 275 exist
and
Injz|oz™® =2z °In|z| =2 %oln|x|,
x—T’ o :L,_S — x—T’_S
forr,s=1,2,....

PROOF: Since the products Inz4 oz *, 7 *olnzy and x7" oz ® are of the form
Inzyox® =2 Inwy + M6 (2),
rPolnzy =2 Inzy + Méé(s_l)(:zr),
vT0aT = a7 4 Myd D (),
for some constants Mg, M é and Mg, it follows that we then have
Inz_oz”%=z"Ina_ — (-1)°*M® D (a),
e %olnz_ =2 Inz_ — (—1)*M,s¢ D (2),
—r s

e oxT® = 2T 0 — (=1 M6 (),

Noting that the neutrix product is clearly distributive with respect to addition
and that

eIz =2 Iney + (-1)%2" Inz_, 27 %=z +(-1)%",

for s =1,2,..., the results follow from these equations and Theorems 2 and 3.
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