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A note on regularly asymptotic points

Jiř́ı Jeĺınek

Abstract. A condition of Schmets and Valdivia for a boundary point of a domain in the
complex plane to be regularly asymptotic is ameliorated.
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Introduction

Using the notation by Schmets and Valdivia [2], we denote by Ω a non-void
domain contained in the complex plane C, by D a non-void subset of its boundary
∂Ω. Throughout this paper we suppose that D is finite.

Definition. We say that a holomorphic function f on Ω has an asymptotic
expansion at a boundary point u ∈ ∂Ω if for every n = 0, 1, 2, . . . the limit

(1) lim
z∈Ω
z→u

f [n](z, u) = an ∈ C

exists, where the functions f [n] are defined by induction

f [0](z, u) = f(z),

f [n+1](z, u) =
f [n](z, u)− an

z − u
.(2)

So, in fact, we have

lim
z∈Ω
z→u

f(z)−
∑n

j=0 aj(z − u)j

(z − u)n+1
= an+1 (∀n = 0, 1, 2, . . . ).

We put f [n](u) = an . We say that the series
∞∑

n=0
an(z−u)n is the asymptotic

expansion of f at u and write

f(z) ≈
∞∑

n=0

an(z − u)n at u.
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424 J. Jeĺınek

The set of all holomorphic functions on Ω having an asymptotic expansion at
every point u ∈ D is denoted by A(Ω ;D).
We say that D is regularly asymptotic for Ω if, for every family of complex

numbers
{

au,n ; u ∈ D, n = 0, 1, 2, . . .
}
, there is a function f ∈ A(Ω ;D) such

that

f(z) ≈
∞∑

n=0

au,n(z − u)n at u

for every u ∈ D.
The aim of this paper is to generalize the following sufficient condition for D

to be regularly asymptotic for Ω (Theorem 1). We give also a condition implying
that a boundary point is not regularly asymptotic (Theorem 2).

Theorem ([2, Theorem 3.7]). A finite set D ⊂ ∂Ω is regularly asymptotic for Ω
if every point u ∈ D has the following property:
there are connected subsets Ak ⊂ C r Ω (k = 1, 2, . . . ) and u 6= vk ∈ Ak such
that

lim
k→∞

vk = u , lim
k→∞

diamAk

|vk − u|
=∞.

As a consequence, a point u ∈ ∂Ω is regularly asymptotic for Ω if it belongs
to a component of C r Ω containing more than one point.
Schmets and Valdivia [2] proved this theorem using the following

Proposition ([2, Proposition 3.6]). A finite subsetD of Ω is regularly asymptotic
for Ω iff the following condition is satisfied: there is r > 0 such that for every
compact subset K ⊂ Ω and u ∈ D, there is an integer p ∈ N such that, for every
h > 0, there is a function f ∈ A(Ω ;D) verifying

|f(z)| ≤ 1 for all z ∈ K ∪



⋃

u′∈D

{
z′ ∈ Ω ; |z′ − u′| ≤ r

}



and

∣∣∣f [p](u)
∣∣∣ > h.

For proving the theorem, the authors applied the proposition with p = 1 and
f(z) equal to a multiple of a determination of

√
(z − vk)(z − wk), vk, wk ∈ Ak.

Using a higher p, we can generalize the cited result.
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Generalization

Theorem 1. A finite set D ⊂ ∂Ω is regularly asymptotic for Ω if every point
u ∈ D has the following property:
there are connected subsets Ak of C r Ω (k = 1, 2, . . . ), u 6= vk ∈ Ak and q > 0
such that

lim
k→∞

vk = u,(3)

and

diamAk > |vk − u|q.(4)

Proof: Without loss of generality we can suppose that

(5) |vk − u| < 1
2

and

(6) q ≥ 2.

If we replace Ak with a convenient connected closed subset of Ak, we can have,
besides (4) and other hypotheses, in addition

(7) diamAk < 2|vk − u|q.

This implies that diamAk < |vk − u|, hence Ak does not contain the point u. As
D is finite and limdiamAk = 0, we have D ∩ Ak = ∅ for k large enough. If we
choose an integer

(8) p ≥ q + 1 ≥ 3,

we have by (4), (5) and (8)

diamAk > |vk − u|q−p− 1
4 · |vk − u|p+

1

4 > 2|vk − u|p+
1

4 .

As Ak is connected, it follows that we can choose a point wk ∈ Ak satisfying

(9) |wk − vk| = |vk − u|p+
1

4 .

Thus, by (3) and (8) we have lim
k→∞

wk = u, moreover

(10) lim
k→∞

wk − u

vk − u
= lim

k→∞

(vk − u) + (wk − vk)

vk − u
= 1.
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Denote by gk a determination of the analytic function
√
(• − vk)(• − wk) defined

on C r Ak. Consequently, gk is defined on Ω and belongs to A(Ω ;D) for k

large enough. Evidently, for k = 1, 2, . . . , the functions |gk| are bounded on the
bounded set

K ∪




⋃

u′∈D

{
z′ ∈ Ω ; |z′ − u′| ≤ r

}




by a constant C independent on k. We will apply the cited proposition with the
functions fk :=

gk

C and with 2p instead of p. The function gk, being holomorphic
at the point u, has its asymptotic expansion equal to the Taylor expansion at u;

so f
[2p]
k
(u) = 1

(2p)!
f
(2p)
k
(u) and the result will follow from the Proposition if we

prove

(11) lim
k→∞

|g
(2p)
k
(u)| =∞.

To this end, fix an index k and denote

(12) fα(z) := (z − vk)
α(z − wk)

α.

It can be verified by a direct calculation that

(13) fα
′′(z) = α(α − 1)fα−2(z)(vk − wk)

2 + 2α(2α − 1)fα−1(z).

The meaning of this equality between multi-valued functions is as follows: if fα

in the formula (13) signifies a determination of (12), then (13) holds for

fα−1(z) =
fα(z)

(z − vk)(z − wk)
, and fα−2(z) =

fα(z)

(z − vk)2(z − wk)2
.

For α = 1
2 , the coefficient 2α(2α − 1) equals zero, but if we calculate higher

derivatives of even order of the function f 1
2

using recurrence relation (13), we do

not meet in (13) other zero coefficients. Thus

(14) f 1
2

′′(z) = −14f− 3
2

(z)(vk − wk)
2

and from (13) follows by induction

(15) f
(2p)
1

2

(z) =

p∑

j=1

αjf 1
2
−p−j(z)(vk − wk)

2j

with αj ∈ R depending only on j and p, α1 6= 0. By (12) it follows

f
(2p)
1

2

(u) =

p∑

j=1

αj(u − vk)
1

2
−p−j(u − wk)

1

2
−p−j(vk − wk)

2j = Ck

p∑

j=1

Bk,j ,
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where
Ck = α1(u − vk)

−1−2p · (vk − wk)
2

and

Bk,j =
αj

α1
·
(u − wk)

1

2
−p−j

(u − vk)
1

2
−p−j

·
(vk − wk)

2j−2

(u − vk)
2j−2

.

Now we pass to the limit. By (9) and (3) we have

lim
k→∞

|Ck| = lim
k→∞

α1|vk − u|−1−2p+2p+
1

2 =∞

and by (10), (9), (3) and (8), we have

lim
k→∞

Bk,1 = 1, lim
k→∞

Bk,j = 0 for j ≥ 2.

This proves the relation (11) and consequently the theorem. �

Now we will consider a domain Ω of the form

(16) Ω = Ω̃ r

(
{u} ∪

∞⋃

k=1

Ak

)

where Ω̃ is a domain including the point u and Ak are disjoints closed subsets of

Ω̃r {u} with lim
k→∞

dist(Ak , u) = 0.

Theorem 2. Suppose that there are points vk ∈ Ak with lim vk = u and numbers
Rk > diamAk for which the set

G =

∞⋃

k=1

{z ; |z − vk| < Rk} ∪ {u}

is not neighbourhood of the point u and

(17)
∞∑

k=1

diamAk

R
q
k

< ∞ for every q ≥ 0.

Then the point u is not regularly asymptotic for the domain Ω .

Proof: At first, we need some preparation and auxiliary claims. As the set G is
not neighbourhood of zero, there are points zm ∈ Ω (m ∈ N) with

(18) zm 6= u, lim zm = u and |vk − zm| ≥ Rk
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for all m, k ∈ N. Consequently,

(19) |vk − u| ≥ Rk

and thanks to lim vk = u we obtain by reindexation

(20) Rk ց 0.

Let us put dk = diamAk + e
−

k
Rk , denote by Dk the disk {z ; |z − vk| ≤ dk} and

by ∂Dk its boundary circle {z ; |z − vk| = dk} counter-clockwise oriented. Then

Ak ⊂ intDk

and by (17)

(21)

∞∑

k=1

dk

R
q
k

< ∞

for all q ≥ 0. We can suppose

(22)

∞∑

k=1

dk

Rk
<
1

4
;

otherwise we replace Ω̃ with Ω̃r
⋃l

k=1Ak for a convenient l. Then by (19) and
(22) the distance of Dk from the point u is

(23) |vk − u| − dk ≥ Rk − dk ≥ Rk − 14Rk =
3
4Rk .

Claim 1. For any R > 0 there is a circle

κ̺ := { z ; |z − u| = ̺} ⊂ Ω̃r

∞⋃

k=1

Dk

with 0 < ̺ < R.

Let us observe that only relations (19), (20), (22) are needed for the proof of
this claim.

Proof: Choose a k′ for which

(24) Rk′ < R.

By (23) (deduced from (19) and (22)) and (20), for k ≤ k′, we have

|vk − u| − dk ≥ 3
4Rk′ .



A note on regularly asymptotic points 429

Consequently, the disks Dk (k = 1, 2, . . . , k
′) do not meet the disk{

z ; |z − u| ≤ 1
2Rk′

}
. On the other hand, for k > k′ the disk Dk is contained in

the annulus

(25) {z ; |vk − u| − dk ≤ |z − u| ≤ |vk − u|+ dk}

of the width 2dk. By (20) and (22), the sum of the widths is

∞∑

k=k′+1

2dk ≤ Rk′

∑ 2dk

Rk
<
1

2
Rk′ ,

hence the sets (25) cannot cover the set
{
z ; 0 < |z − u| ≤ 1

2Rk′

}
and the claim

is proved. �

Let f be a holomorphic function on Ω having an asymptotic expansion at the
point u with coefficients an (n = 0, 1, . . . ). We will prove that u is not regularly
asymptotic showing that the coefficients cannot be (cf. (21))

(26) an = nn + 4n+1 ·
∞∑

k=1

dk

Rn+1
k

.

Due to Claim 1, choose circles κ̺j (j = 1, 2, . . . ) contained in Ω and disjoints
with disks Dk (for each k, j ∈ N),

(27) ̺j ց 0, ̺j > ̺j+1.

As the limit lim
z−→u, z∈Ω

f(z) = a0 exists, we can suppose that ̺1 is so small that

for some b we have

|f(z)| ≤ b whenever z ∈ Ω , |z − u| ≤ ̺1(28)

and that

{z ; |z − u| ≤ ̺1 } ⊂ Ω̃.

Let Nj be the set of the indexes k ∈ N for which

Dk ⊂
{
z ; ̺j+1 < |z − u| < ̺j

}
.

Then Nj is finite; denote by γj the boundary cycle of the set
⋃

k∈Nj
Dk directed

so that the interior of
⋃

k∈Nj
Dk lies to the left of γj . γj is the sum of arcs of

the circles ∂Dk, is situated in Ω and satisfies

{
z ; indγj z = 1

}
= int

⋃

k∈Nj

Dk.
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Hence the cycle κ1− γ1 − · · · − γJ − κJ+1 (J ∈ N) is homologous with zero in Ω ,
so we can use the Cauchy formula below. Namely, by (18) and (22) the point zm

does not belong to any disk Dk. For m large enough we have |zm − u| < ̺1, then
for J large enough we have ̺J+1 < |zm − u| and thus

f(zm) =
1

2πi
·




∫

κ1

f(ζ)dζ

ζ − zm
−

J∑

j=1

∫

γj

f(ζ)dζ

ζ − zm
−

∫

κJ+1

f(ζ)dζ

ζ − zm



 .

Thanks to (27) and (28), we have lim
J→∞

∫
κJ+1

f(ζ)dζ
ζ−zm

= 0, so

(29) f(zm) =
1

2πi
·




∫

κ1

f(ζ)dζ

ζ − zm
−

∞∑

j=1

∫

γj

f(ζ)dζ

ζ − zm



 .

Claim 2. If m is as large as |zm − u| < ̺1, then for n = 0, 1, 2, . . . , we have

(30) f [n](zm, u) =
1

2πi
·




∫

κ1

f(ζ)dζ

(ζ − zm)(ζ − u)n
−

∞∑

j=1

∫

γj

f(ζ)dζ

(ζ − zm)(ζ − u)n





and

(31) an = lim
m→∞

f [n](zm, u) =
1

2πi
·




∫

κ1

f(ζ)dζ

(ζ − u)n+1
−

∞∑

j=1

∫

γj

f(ζ)dζ

(ζ − u)n+1



 .

Proof: We shall proceed by induction. First we deduce the formula (31) from
(30) using Lebesgue majorization theorem. As any point ζ of a cycle γj belongs
to ∂Dk for some k, we have by (28), (18), definition of ∂Dk, (19) and (23)

∣∣∣∣
f(ζ)

(ζ − zm)(ζ − u)n

∣∣∣∣ =
∣∣∣∣

f(ζ)

(ζ − vk − (zm − vk))(ζ − u)n

∣∣∣∣

≤
b

(Rk − dk)(|vk − u| − dk)
n
≤

b

(Rk − dk)
n+1

≤

(
4

3

)n+1 b

Rn+1
k

.

Hence the function g defined by g(ζ) =
(
4
3

)n+1 b

R n+1
k

for ζ ∈ ∂Dk r
⋃k−1

k′=1 ∂Dk′

is a majorant. Thanks to (21), it is integrable even on the set

(32)

∞⋃

k=1

∂Dk ⊃
∞⋃

j=1

γj
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with respect to the length measure. Hence the implication (30)⇒ (31) is proved.

Induction: If we put n = 0, the formula (30) turns into the Cauchy formula (29).
Using the recurrent definition (cf. (2))

f [n+1](zm, u) =
f [n](zm, u)− an

zm − u
,

we deduce easily the formula (30) for n+ 1 from (30) and (31) and the claim is
proved. �

Now we complete the proof of the theorem. Integrating in (31) along
⋃

∞

k=1 ∂Dk

instead of
⋃

∞

j=1 γj , we obtain by (32), (28) and (23)

|an| ≤
1

2π
·

[
2π̺1

b

̺n+1
1

+

∞∑

k=1

2πdk
b

(|vk − u| − dk)
n+1

]

≤
b

̺n
1

+

(
4

3

)n+1

b ·
∞∑

k=1

dk

Rn+1
k

,

which cannot be true for all n together with (26).

Corollary. Suppose the domain Ω to be of the form (16) with

(33)
∑
(dist(Ak, u))p < ∞

for some p > 0. If, for every q ≥ 0,

(34) diamAk ≤ (dist(Ak, u))q

except a finite number (depending on q) of indexes k, then the point u is not
regularly asymptotic.

Proof: Choose points vk ∈ Ak so that dist(Ak, u) = |vk − u|. Hence, except a
finite number of indexes k,

(35) diamAk ≤ |vk − u|q.

Thanks to (33), we can suppose without loss of generality that

(36)

∞∑

k=1

|vk − u|p <
1

4
.

So, putting for a moment dk = |vk − u|p+1 and Rk = |vk − u|, we have

∞∑

k=1

dk

Rk
<
1

4
,
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which is the relation (22). Also the relation (20) can be satisfied by reindexa-
tion and we can apply Claim 1 affirming that there are circles κ̺ with arbitrarily

small ̺, disjoint with disks
{
z ; |z − vk| ≤ |vk − u|p+1

}
. Now we change the no-

tation putting Rk = |vk − u|p+1. By this way we see that, for any R > 0, there is
a circle κ̺, 0 < ̺ < R disjoint with {z ; |z − vk| ≤ Rk}. It verifies the hypothesis
of Theorem 2 that G is not neighbourhood of the point u. Now, choose a q ≥ 0.
By (35) we have

diamAk ≤ |vk − u|q(p+1)+p

except a finite number of indexes k. It follows by the last definition of Rk and by
(36) that

∞∑

k=1

diamAk

R
q
k

< ∞

and Theorem 2 gives the result. �

Remark. Suppose that for the domain Ω of the form (16) the hypothesis (33) of
the preceding corollary is satisfied. If in addition the sets Ak are connected, the
preceding corollary with Theorem 1 show that the relation (34) characterizes that
the point u is not regularly asymptotic. Indeed, if for some q the relation (34) is
not satisfied for an infinite number of indexes k, we obtain the hypothesis (4) of
Theorem 1 for a suitable subsequence of {Ak}.

Acknowledgement. The author expresses his gratitude to L. Zaj́ıček for some
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