
Comment.Math.Univ.Carolin. 37,3 (1996)635–640 635

On concentrated probabilities

on non locally compact groups

Wojciech Bartoszek

Abstract. Let G be a Polish group with an invariant metric. We characterize those
probability measures µ on G so that there exist a sequence gn ∈ G and a compact set
A ⊆ G with µ∗n(gnA) ≡ 1 for all n.

Keywords: concentration function, random walk, Markov operator, invariant measure

Classification: 22D40, 43A05, 47A35, 60B15, 60J15

In what follows we shall use the terminology and notation from [1]. However, for
the convenience of the reader we briefly recall the most important ones. A metric
d on the group G is said to be invariant if d(g1g, g2g) = d(gg1, gg2) = d(g1, g2)
for all g, g1, g2 ∈ G. Given ε > 0 and A ⊆ G by L(A, ε) we denote the largest
natural l (if it does not exist, then we set L(A, ε) =∞) such that there exists a
finite set {y1, y2, . . . , yl} ⊆ A with d(yi, yj) ≥ ε if i 6= j. For r > 0 by K(A, r)
we denote the generalized open ball {g ∈ G : inf

a∈A
d(a, g) < r}.

As usual ∗ stands for the convolution operation, which is well defined on
M(G), the Banach lattice of all finite signed (Borel) measures on G. If µ is a
probability measure on G then S(µ) is its topological support. A measure µ is
said to be adapted if the closed subgroup generated by S(µ) coincides with G.
The smallest closed subgroup H ⊆ G such that gH = Hg and S(µ) ⊆ gH for
all g ∈ S(µ) is denoted by h(µ). If an adapted measure µ satisfies h(µ) = G

then we say that it is strictly aperiodic.
The paper is devoted to asymptotic behaviour of convolution powers µ∗n of a

fixed probability measure µ. In particular, we examine when the concentration
function does not tend to zero (i.e. sup

g∈G
µ∗n(gA) ≥ ε for some ε > 0, compact

A ⊆ G, and all n).
In the past this problem was studied mainly for locally compact topological

groups. The reader is referred to [1], [2] and [4] for more details in this regard. It
should be noted that [4] contains an affirmative answer to the so called Hofmann-
Mukhereja conjecture, which says that adapted and strictly aperiodic probability
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measures on locally compact, Hausdorff and σ-compact (noncompact) groups have
concentration functions tending to zero.
The aim of the present paper is to extend the main result of [1] to non locally

compact groups, that is to prove the following result:

Theorem. Let (G, d) be a Polish group with an invariant metric d and µ be a

probability Borel measure on G. Then the following conditions are equivalent:

(i) there exist a sequence gn ∈ G and compact A ⊆ G such that µ∗n(gnA) ≡
1 for all n (µ is concentrated),

(ii) there exist a sequence gn ∈ G, compact A ⊆ G and ε > 0 such that
µ∗n(gnA) ≥ ε for all n (µ is nonscatterred),

(iii) µ̌ ∗ ̺ ∗ µ = ̺ for some probability measure ̺,

(iv) lim
n→∞

L(S(µ∗n), ε) = ℓε < ∞ for all ε > 0,

(v) h(µ) is compact.

Moreover, if the above statements hold then

h(µ) = S(ω), where ω = lim
n→∞

µ̌∗n ∗ µ∗n = lim
n→∞

µ∗n ∗ µ̌∗n

is the normalized Haar measure on h(µ), and the convergence holds in the weak
measure topology.

Most of the arguments used in the proof of Theorem 1 from [1] is still valid.
However, we have to replace those parts of the old proof where we rely on the
Haar measure. In particular, the convolution operators Pµ cannot be introduced.
Because of this, the condition (iii) from [1] is scrapped. Our new proof is based
on the following two lemmas:

Lemma 1 (see [3]). Let µ be a probability measure on G and

αµ = sup
F⊆G

F compact

lim
n→∞

sup
g∈G

µ∗n(gF ).

Then αµ = 0 or αµ = 1.

Proof: For the proof the reader is referred to (3.6) Theorem 3.1 in [3]. �

Lemma 2. If αµ = 1 then there exists a probability measure ̺ on G such

that µ̌ ∗ ̺ ∗ µ = ̺.

Proof: Given ε > 0 there exist compact F ⊆ G and a sequence gn ∈ G such
that µ∗n(gnF ) > 1− ε. This implies

µ̌∗n ∗ µ∗n(F−1F ) > (1 − ε)2.

Define Tµ(ν) = µ̌ ∗ ν ∗ µ to be a linear positive contraction on M(G). It follows
from Lemma 2 and the Prohorov’s criterion (see [5, Proposition 52.3]) that the
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sequence 1N

N−1
∑

n=0
T n

µ δe is relatively compact for the weak measure topology. Hence

̺ = lim
Nl→∞

1

Nl

Nl−1
∑

n=0

T n
µ δe for some sequence Nl ր ∞ .

Clearly, ̺ is a Tµ-invariant probability measure (in particular µ̌ ∗ ̺ ∗ µ = ̺ ).
�

Proof (of the theorem): For implications (i) ⇒ (ii) and (iii) ⇒ (iv) ⇒
(v) ⇒ (i) the reader is referred to [1, Theorem 1] and (ii) ⇒ (iii) easily follows
from Lemmas 1 and 2. To complete the proof we must show that these conditions
imply

ω = lim
n→∞

µ̌∗n ∗ µ∗n

exists and coincides with the normalized Haar measure on h(µ) = h(µ̌). For this
we define the Markov operator

Tf(g) =

∫∫

f(xgy) dµ̌(x) dµ(y)

on the Banach lattice C(h(µ)) of all continuous functions on h(µ). Note that T

is well defined as

x−1gy ∈ h(µ) for all x, y ∈ S(µ) and g ∈ h(µ).

Clearly, the adjoint operator T ∗ coincides with Tµ (restricted to M(h(µ))). For
every f ∈ C(h(µ)) the iterations T nf are norm (sup) relatively compact. This
will follow from the Arzela theorem. In fact, let δ > 0 be such that

|f(g1)− f(g2)| < ε whenever d (g1, g2) < δ.

By the invariance of d for arbitrary x, y ∈ S(µ∗n) we get

d (x−1g1y, x−1g2y) = d (g1, g2).

Hence

|T nf(g1)− T nf(g2)| ≤

∫∫

|f(x−1g1y)− f(x−1g2y)| dµ∗n(x) dµ∗n(y) < ε.

Now we show that T is irreducible. Given a nonzero and nonnegative f ∈
C(h(µ)) let us suppose that

T nf(gn) = 0 where gn ∈ h(µ).
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We choose ε > 0 and a convergent subsequence

g0 = lim
j→∞

gnj .

By continuity
f ≡ 0 on S(µ̌∗n)gnS(µ∗n),

what implies

f(g) < ε for all g ∈ K(S(µ̌∗nj )gnjS(µ
∗nj ), δ).

From the proof of Theorem 1 in [1] it follows that

h(µ) =

∞
⋃

n=1

S(µ̌∗n)S(µ∗n).

Hence, there are vj , wj ∈ S(µ∗j) such that

d (gnj , w
−1
j vj)−−−−→

j→∞
0.

If j is large enough we get

S(µ̌∗nj )w−1
j vjS(µ

∗nj ) ⊆ K(S(µ̌∗nj )gnjS(µ
∗nj ), δ).

It is proved in [1] (see Theorem 1) that if j tends to infinity and if µ is nonscattered
then the compact sets

S(µ̌∗nj )w−1
j and vjS(µ

∗nj )

are close in the Hausdorff metric to

S(µ̌∗(nj+j)) and S(µ∗(nj+j))

respectively. Hence

S(µ̌∗(nj+j) ∗ µ∗(nj+j)) ⊆ K(S(µ̌∗nj )gnj S(µ
∗nj ), 2δ)

for j large enough. Since the sequence S(µ̌∗n ∗ µ∗n) is nondecreasing we obtain

h(µ) ⊆ K(S(µ̌∗nj )gnj S(µ
∗nj ), 2δ)

for some j, and we get f(g) < ε for all g ∈ h(µ). This contradicts f being
nonzero as ε may be taken as small as we wish. We have proved that for every
nonnegative and nonzero f ∈ C(h(µ)) there exist ε and n such that

(a) T nf(x) ≥ ε > 0 for all x ∈ h(µ).
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For arbitrary f ∈ C(h(µ)) we denote

O(f) = max
x∈h(µ)

f(x)− min
y∈h(µ)

f(y) ≥ 0.

Clearly, O(T nf) is nonincreasing. By (a)

O(T nf) < O(f) for some n ≥ 1

whenever f is nonconstant. If g is any limit function of the sequence T nf (it
exists by compactness of trajectories), then O(Tg) = O(g), what follows from
monotonicity of O(T nf). Therefore all limit functions g are constant. Since T

is markovian (T1 = 1 ) this implies that T nf → Λ(f) uniformly, where Λ(f) is
a constant function. From the general theory of Markov operators the functional
Λ(f) has the form

∫

f dm, where m is the unique T ∗-invariant probability such
that S(m) = h(µ) (see [6] for all details). In particular,

µ̌∗n ∗ µ∗n = T ∗nδe

converges weakly to m. Clearly

m = ̺ = lim
Nl→∞

1

Nl

Nl−1
∑

n=0

µ̌∗n ∗ µ∗n.

To prove that m is the Haar measure ω on h(µ) it is sufficient to show that

∫

fh(g) dm(g) =

∫

f(g) dm(g)

for all f ∈ C(h(µ)) and h ∈ h(µ), where fh(g) = f(gh).
For this note that

lim
n→∞

µ̌∗n ∗ ω ∗ µ∗n = m and δx−1 ∗ ω ∗ δy

do not depend on x, y ∈ S(µ∗n) (thus they coincide with µ̌∗n ∗ ω ∗ µ∗n ). Given
ε > 0 there exists n such that

∣

∣

∣

∣

∫

f(g) dm(g)−

∫

f(x−1gy) dω(g)

∣

∣

∣

∣

< ε

and
∣

∣

∣

∣

∫

fh(g) dm(g)−

∫

fh(x
−1gy) dω(g)

∣

∣

∣

∣

< ε
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for all x, y ∈ S(µ∗n). Since h(µ) is a normal subgroup of G(µ) we get yh = h̃y

for some h̃ ∈ h(µ). Hence

∫

fh(x
−1gy) dω(g) =

∫

f(x−1gyh) dω(g) =

∫

f(x−1gh̃y) dω(g) =

∫

f(x−1gy) dω(g),

and we get
∣

∣

∣

∣

∫

f(g) dm(g)−

∫

fh(g) dm(g)

∣

∣

∣

∣

< 2ε.

Since ε is arbitrary the invariance of m follows. We conclude m = ω.
Note that h(µ) = h(µ̌). In particular, µ̌ is concentrated as well. Therefore
lim

n→∞
µ∗n ∗ µ̌∗n = ω and the proof is complete. �

References

[1] Bartoszek W., On concentrated probabilities, Ann. Polon. Math. 61.1 (1995), 25–38.
[2] Bartoszek W., The structure of random walks on semidirect products, Bull. L’Acad. Pol.
Sci. ser. Sci. Math. Astr. & Phys. 43.4 (1995), 277–282.

[3] Csiszár I., On infinite products of random elements and infinite convolutions of probability
distributions on locally compact groups, Z. Wahrsch. Verw. Gebiete 5 (1966), 279–299.

[4] Jaworski W., Rosenblatt J., Willis G., Concentration functions in locally compact groups,
preprint, 17 pages, 1995.

[5] Parthasarathy K.R., Introduction to Probability and Measure, New Delhi, 1980.
[6] Sine R., Geometric theory of a single Markov operator, Pacif. J. Math. 27.1 (1968), 155–
166.

Department of Mathematics, University of South Africa, P.O. Box 392, Pretoria

0001, South Africa

E-mail : bartowk@risc5.unisa.ac.za

(Received September 1, 1995, revised January 25, 1996)


