Loredana Caso, Maria Transirico

Abstract. In this paper we obtain some results about a class of functions $\varrho : \Omega \to R_+$, where Ω is an open set of \mathbb{R}^n , which are related to the distance function from a fixed subset $S_{\varrho} \subset \partial \Omega$. We deduce some imbedding theorems in weighted Sobolev spaces, where the weight function is a power of a function ϱ .

Keywords: weight functions, weighted Sobolev spaces Classification: 46E35

Introduction

Let Ω be an open subset of \mathbb{R}^n .

In [T₄] M. Troisi has studied the class $\mathcal{A}(\Omega)$ of functions $\rho : \Omega \to R_+$ such that

(1)
$$\sup_{\substack{x,y\in\Omega\\|x-y|<\varrho(y)}} \left|\log\frac{\varrho(x)}{\varrho(y)}\right| < +\infty.$$

Typical examples of functions $\rho \in \mathcal{A}(\Omega)$ are the function

$$x \in \mathbb{R}^n \to 1 + a|x|, \qquad a \in]0, 1[,$$

and, if $\Omega \neq \mathbb{R}^n$ and S is a nonempty subset of $\partial\Omega$, the function

$$x \in \Omega \to a \operatorname{dist}(x, S), \qquad a \in]0, 1[.$$

For any $\rho \in \mathcal{A}(\Omega)$ we put

(2)
$$S_{\varrho} = \{ z \in \partial \Omega : \lim_{x \to z} \varrho(x) = 0 \}.$$

We remark (see, e.g., [T₄], [CCD₁]) that if $\rho \in \mathcal{A}(\Omega)$ and $S_{\rho} \neq \emptyset$, then ρ is related to the distance function from S_{ρ} .

For examples and properties of functions $\rho \in \mathcal{A}(\Omega)$ we refer to $[T_4]$ and also to $[CCD_1], [TT], [DT].$

For a treatment of weight functions as the distance function from a nonempty subset of the boundary of a bounded open set of \mathbb{R}^n or weight functions related to such distance function, and for related problems see, e.g., [K], [KJF].

In some papers (see, e.g., [F₁], [S₁], [MT₂], [T₁], [CCD₁]) some classes of weighted Sobolev spaces have been studied, where the weight function is a power of a function $\rho \in \mathcal{A}(\Omega)$.

In various papers (see, e.g., [MT₁], [IMT], [IT], [T₂], [S₂], [T₃], [F₂], [Sg], [ST], [GTT], [DT], [CCD₂]) many applications of such spaces to the study of boundary value problems for elliptic and quasielliptic differential equations have been studied, also in unbounded open sets.

In particular in $[CCD_1]$ the authors, for fixed $\rho \in \mathcal{A}(\Omega)$, have studied the operator

$$(3) u \to gu$$

where g is singular near S_{ϱ} , as an operator defined in a weighted Sobolev space, denoted by $W_q^{r,p}(\Omega)$ (see n. 1 for such definition), and which takes values in $L^p(\Omega)$, where the weight function is a power of ϱ . They have given conditions on ϱ (e.g. S_{ϱ} closed), g and Ω , so that the operator defined by (3) is bounded and other conditions in order that it is compact.

As an application (see [CCD₂]) the authors have studied the Dirichlet problem in an open set, not necessarily bounded, for variational second order elliptic equations with coefficients singular near S_{ϱ} . They have obtained an existence and uniqueness theorem for the solution in the closure of $C_o^{\infty}(\Omega)$ in $W_q^{1,2}(\Omega)$.

In this paper our purpose is to give a contribution to the study of functions of $\mathcal{A}(\Omega)$.

We state some suitable characterizations of S_{ϱ} , from which, in particular, we deduce that S_{ρ} is a closed subset of $\partial \Omega$ (see n. 1).

Because of these results, we can give (see n. 2) a contribute to the study of some functions which are singular near S_{ϱ} , as the function g in (3). Furthermore we obtain (see n. 3) a remarkable improvement of the imbedding results of [CCD₁].

1. Some properties of functions of $\mathcal{A}(\Omega)$

For all $x \in \mathbb{R}^n$ and for all $r \in \mathbb{R}_+$ we set

$$B(x,r) = \{ y \in R^n : |y - x| < r \}.$$

If A is a Lebesgue measurable subset of \mathbb{R}^n , $1 \leq p \leq +\infty$, and $f \in L^p(A)$ we put

$$||f||_{L^p(A)} = |f|_{p,A}.$$

Let Ω be an open subset of \mathbb{R}^n , $n \geq 2$. We put

$$\Omega(x,r) = \Omega \cap B(x,r) \qquad \forall x \in \mathbb{R}^n, \quad \forall r \in \mathbb{R}_+.$$

We denote by $\mathcal{A}(\Omega)$ the class of functions $\varrho : \Omega \to R_+$ verifying (1).

Obviously ρ verifies (1) if and only if there exists $\gamma \in R_+$ such that

(1.1)
$$\gamma^{-1}\varrho(y) \le \varrho(x) \le \gamma \varrho(y) \quad \forall y \in \Omega \text{ and } \forall x \in \Omega \cap B(y, \varrho(y)).$$

We remark that for any $\rho \in \mathcal{A}(\Omega)$ there exist $a \in R_+$ and $b \in]0,1]$ such that

(1.2)
$$\varrho(x) \le a + b|x| \quad \forall x \in \Omega$$

(see, e.g., (19) and (20) of [TT]).

We denote by $\mathcal{A}_o(\Omega)$ the class of measurable functions $\rho \in \mathcal{A}(\Omega)$. From (1.1) and (1.2) follows that for all $\rho \in \mathcal{A}_o(\Omega)$ we have

(1.3)
$$\varrho \in L^{\infty}_{loc}(\overline{\Omega}), \qquad \varrho^{-1} \in L^{\infty}_{loc}(\Omega).$$

As we will see in (1.5) the second relation of (1.3) can be improved. For all $\rho \in \mathcal{A}(\Omega)$ we denote by S_{ρ} the set defined by (2). It is well-known (see, e.g., [T₄]) that, if $\rho \in \mathcal{A}(\Omega)$ and $S_{\rho} \neq \emptyset$, then

(1.4)
$$\varrho(x) \le \operatorname{dist}(x, S_{\varrho}) \quad \forall x \in \Omega.$$

We prove the following

Lemma 1.1. For all $\rho \in \mathcal{A}(\Omega)$ and for all $z \in \partial\Omega$, the following statements are equivalent:

(1) $z \in S_{\varrho}$, (2) $\varrho(x) \le |x - z| \quad \forall x \in \Omega$, (3) $\inf_{\Omega(z,r)} \varrho = 0 \quad \forall r \in R_+$.

PROOF: (1) \Rightarrow (2) is a consequence of (1.4). (2) \Rightarrow (1) and (2) \Rightarrow (3) are evident. To prove (3) \Rightarrow (2), we observe that if there exists $x_1 \in \Omega$ such that $\varrho(x_1) > |x_1 - z|$ and if we put $\tau = \varrho(x_1) - |x_1 - z|$, we have

$$|x - x_1| < \varrho(x_1) \qquad \forall x \in \Omega(z, \tau),$$

from which, by (1.1), follows

$$\gamma^{-1}\varrho(x_1) \le \varrho(x) \le \gamma \varrho(x_1) \qquad \forall x \in \Omega(z,\tau),$$

and so we have $\inf_{\Omega(z,\tau)} \rho > 0$.

Theorem 1.1. If $\rho \in \mathcal{A}(\Omega)$, then S_{ρ} is a closed subset in $\partial \Omega$.

PROOF: Let $z \in \partial \Omega \setminus S_{\varrho}$. As a consequence of (3) of Lemma 1.1 there exists $\tau \in R_+$ such that $\inf_{\Omega(z,\tau)} \varrho > 0$. From this we have

$$\inf_{\Omega(y,\tau-|y-z|)} \rho > 0 \qquad \qquad \forall \, y \in B(z,\tau) \cap \partial\Omega \,,$$

and then, again from (3) of Lemma 1.1, $B(z,\tau) \cap \partial\Omega \subset \partial\Omega \setminus S_{\varrho}$. Thus we obtain our statement.

Remark 1.1. If $\rho \in \mathcal{A}(\Omega)$, for any compact set $\Omega_o \subset \overline{\Omega} \setminus S_{\rho}$, from (1.1) and (3) of Lemma 1.1 we deduce easily that $\inf_{\Omega_o} \rho > 0$. It follows that if $\rho \in \mathcal{A}_o(\Omega)$ then (1.5) $\rho^{-1} \in L^{\infty}_{loc}(\overline{\Omega} \setminus S_{\rho})$.

 \square

If $r \in N$, $1 \leq p \leq +\infty$, $q \in R$ and $\varrho \in \mathcal{A}_o(\Omega)$, we denote by $W_q^{r,p}(\Omega)$ the space of distributions u on Ω such that $\varrho^{q+|\alpha|-r} \partial^{\alpha} u \in L^p(\Omega)$ for $|\alpha| \leq r$ with the norm

(1.6)
$$\|u\|_{W^{r,p}_q(\Omega)} = \sum_{|\alpha| \le r} |\varrho^{q+|\alpha|-r} \,\partial^{\alpha} u|_{p,\Omega} \,.$$

We put

$$W_q^{0,p}(\Omega) = L_q^p(\Omega)$$

2. The spaces $K_q^p(\Omega)$

Let us fix $\varrho \in \mathcal{A}_o(\Omega)$.

We consider the spaces $K_q^p(\Omega)$, $\tilde{K}_q^p(\Omega)$, $\tilde{K}_q^p(\Omega)$, $1 \le p < +\infty, q \in R$, defined in [CCD₁] in correspondence with the family of open sets $\Omega(x, \varrho(x))$, $x \in \Omega$.

Let us recall that:

 $K^p_q(\Omega)$ is the space of functions $g \in L^p_{loc}(\overline{\Omega} \setminus S_{\varrho})$ such that

(2.1)
$$\|g\|_{K^p_q(\Omega)} = \sup_{x \in \Omega} \left(\varrho^{q-n/p}(x) |g|_{p,\Omega(x,\varrho(x))} \right) < +\infty \,,$$

with the norm defined by (2.1),

 $\tilde{K}^p_q(\Omega)$ is the closure of $L^{\infty}_q(\Omega)$ in $K^p_q(\Omega)$,

 $\overset{o}{K_{q}^{p}}(\Omega)$ is the closure of $C_{o}^{\infty}(\Omega)$ in $K_{q}^{p}(\Omega)$.

For some properties of the spaces $K_q^p(\Omega)$, $\tilde{K}_q^p(\Omega)$ and $\overset{o}{K_q^p}(\Omega)$ we refer to [CCD₁], [CCD₂].

In order to recall a result of $[CCD_1]$ which we will use later, we introduce the following notations (see, e.g., n. 1 of $[CCD_1]$).

We denote by α a function of $C^{(0,1)}(\overline{\Omega}) \cap C^{\infty}(\Omega)$ such that $\alpha(x) \sim \operatorname{dist}(x, \partial\Omega)$ and we put

 $\Omega_k = \left\{ x \in \Omega : \ |x| < k, \ \alpha(x) > 1/k \right\}, \qquad \forall \, k \in N \, .$

We denote, furthermore, by $(\psi_k)_{k \in N}$ a sequence of functions in $C_o^{\infty}(\Omega)$ such that

$$0 \leq \psi_k \leq 1 \,, \qquad \psi_k|_{\Omega_k} = 1 \,, \qquad \mathrm{supp}\, \psi_k \subset \Omega_{2k} \,.$$

The following result holds (see Lemma 2 of $[CCD_1]$): a function $g \in \overset{\circ}{K_q^p}(\Omega)$ if and only if $g \in K_q^p(\Omega)$ and

(2.2)
$$\lim_{k \to \infty} \| (1 - \psi_k) g \|_{K^p_q(\Omega)} = 0.$$

Because of this result, of Theorem 1.1 and of Remark 1.1, we can prove the following condition so that a function in $K_q^p(\Omega)$ is in $\overset{o}{K_q^p}(\Omega)$.

Lemma 2.1. If $g \in K_q^p(\Omega)$, $1 \le p < +\infty$, $q \in R$, and if moreover

(2.3)
$$\lim_{|x|\to+\infty} \varrho^q(x) g(x) = 0,$$

(2.4)
$$\lim_{x \to x_o} \varrho^q(x) g(x) = 0 \qquad \forall x_o \in S_{\varrho}$$

then $g \in \overset{o}{K_q^p}(\Omega)$.

PROOF: Let us fix $\epsilon > 0$.

From (2.3) it follows that there exists $r_{\epsilon} > 0$ such that

(2.5)
$$|\varrho^q(y)g(y)| < \epsilon \qquad \forall y \in \Omega, \quad |y| > r_\epsilon.$$

If we put

$$A_{\epsilon} = \left\{ x \in \Omega : \operatorname{dist}(x, B_{r_{\epsilon}} \cap \Omega) < \varrho(x) \right\},\$$

from Theorem 1.3 of $[T_4]$ it follows that A_{ϵ} is bounded.

Let $r_{\epsilon}^* > r_{\epsilon}$ such that $A_{\epsilon} \subset B_{r_{\epsilon}^*} \cap \Omega$.

We remark that if $x \in \Omega$, $|x| \ge r_{\epsilon}^*$ and $y \in \Omega(x, \varrho(x))$, then $|y| > r_{\epsilon}$. Thus, because of (2.5), for any $k \in N$ we have

(2.6)
$$\begin{aligned} \sup_{\substack{x \in \Omega \\ |x| \ge r_{\epsilon}^{*}}} \varrho^{qp-n}(x) \int_{\Omega(x,\varrho(x))} |1 - \psi_{k}|^{p} |g|^{p} dy \\
\le c_{1} \sup_{\substack{x \in \Omega \\ |x| \ge r_{\epsilon}^{*}}} \varrho^{-n}(x) \int_{\Omega(x,\varrho(x))} |1 - \psi_{k}|^{p} |\varrho^{q}g|^{p} dy \le c_{2} \epsilon^{p},
\end{aligned}$$

where the constants $c_1, c_2 \in R_+$ are independent of x and k.

Clearly, if $x \in \Omega$, $|x| < r_{\epsilon}^*$ and $y \in \Omega(x, \varrho(x))$, then $|y| < r_{\epsilon}^* + \sup_{\Omega \cap B_{r_{\epsilon}^*}} \varrho = \tilde{r}_{\epsilon}$.

From (2.4) and from Theorem 1.1 it follows that $S_{\varrho} \cap \overline{B}_{\tilde{r}_{\epsilon}}$ can be covering by a finite number of open balls, with center on S_{ϱ} , $I_{\epsilon,i}$, $i = 1, \ldots, m$, such that, letting $K_{\epsilon} = \bigcup_{i=1}^{m} I_{\epsilon,i}$, we have

(2.7)
$$|\varrho^q(y)g(y)| < \epsilon \qquad \forall y \in \Omega \cap K_\epsilon.$$

From (2.7), for any $k \in N$ we have

(2.8)
$$\sup_{\substack{x \in \Omega \\ |x| < r_{\epsilon}^{*}}} \varrho^{qp-n}(x) \int_{\Omega(x,\varrho(x)) \cap K_{\epsilon}} |1 - \psi_{k}|^{p} |g|^{p} dy \\
\leq c_{3} \sup_{\substack{x \in \Omega \\ |x| < r_{\epsilon}^{*}}} \varrho^{-n}(x) \int_{\Omega(x,\varrho(x)) \cap K_{\epsilon}} |1 - \psi_{k}|^{p} |\varrho^{q}g|^{p} dy \leq c_{4} \epsilon^{p},$$

where the constants $c_3, c_4 \in R_+$ are independent of x and k.

Moreover, from (1.5), we get

(2.9)
$$\sup_{\substack{x \in \Omega \\ |x| < r_{\epsilon}^{*}}} \varrho^{qp-n}(x) \int_{\Omega(x,\varrho(x))\setminus K_{\epsilon}} |1-\psi_{k}|^{p} |g|^{p} dy$$
$$\leq c_{5} \sup_{\substack{x \in \Omega \\ |x| < r_{\epsilon}^{*}}} \int_{\Omega(x,\varrho(x))\setminus K_{\epsilon}} \varrho^{qp-n}(y) |1-\psi_{k}|^{p} |g|^{p} dy$$
$$\leq c_{6} \int_{(\Omega \cap B_{\tilde{r}_{\epsilon}})\setminus K_{\epsilon}} |1-\psi_{k}|^{p} |g|^{p} dy,$$

where the constants $c_5, c_6 \in R_+$ are independent of x and k.

From (2.6), (2.8) and (2.9) it follows that

(2.10)
$$\sup_{x \in \Omega} \varrho^{qp-n}(x) \int_{\Omega(x,\varrho(x))} |1-\psi_k|^p |g|^p dy \\ \leq c_7 \left(\epsilon^p + \int_{(\Omega \cap B_{\tilde{r}_\epsilon}) \setminus K_\epsilon} |1-\psi_k|^p |g|^p dy\right),$$

where the constant $c_7 \in R_+$ is independent of x and k.

From (2.10) we obtain (2.2) and thus our statement.

3. Imbedding results

For any $x \in \mathbb{R}^n$ and for any $\theta \in]0, \frac{\pi}{2}[$ we denote by $C_{\theta}(x)$ an open indefinite cone with vertex in x and opening θ .

For a fixed $C_{\theta}(x)$, we put

$$C_{\theta}(x,r) = C_{\theta}(x) \cap B(x,r) \qquad \forall r \in R_+.$$

We denote by $\Gamma(\Omega, \theta, r)$ the family of open cones C of opening θ , height r and such that $\overline{C} \subset \Omega$.

We suppose that the following condition holds:

 (h_0) there exist $b \in]0,1]$ and $\theta \in]0,\frac{\pi}{2}[$ such that

(3.1)
$$\forall x \in \Omega \quad \exists C_{\theta}(x) : \overline{C_{\theta}(x, b\varrho(x))} \subset \Omega.$$

Remark 3.1. We remark that if, for example, $\rho \in \mathcal{A}(\Omega) \cap L^{\infty}(\Omega)$ and Ω verifies the condition

 (h_1) there exists an open subset Ω^* of \mathbb{R}^n with the cone property such that

$$\Omega \subset \Omega^* , \qquad \qquad \partial \Omega \setminus S_{\rho} \subset \partial \Omega^* ,$$

then the condition (h_0) holds.

In fact, we consider $\theta \in [0, \frac{\pi}{2}]$ and $r \in R_+$ such that for all $x \in \Omega$ there exists $C_{\theta}(x)$ such that $\overline{C_{\theta}(x,r)} \subset \Omega^*$.

Let us fix $b \in [0,1]$ such that $b \in \sup_{\Omega} \rho < r$. Then (see n. 2 of $[CCD_1]$) we have that for any $x \in \Omega$ it results $C_{\theta}(x, b\rho(x)) \subset \Omega$. \square

Let us fix $\gamma \in R_+$ such that (1.1) is verified.

For all $x \in \Omega$ and for all $\lambda \in [0,1]$ we denote by $G_{\lambda b}(x)$ the subset of \mathbb{R}^n union of the family of open cones $C \in \Gamma(\Omega, \theta, \lambda \gamma^{-1} b \rho(x))$ such that $x \in C$.

We fix $\Omega_b(x)$, $x \in \Omega$, with the condition that there exists $\lambda \in [0, 1]$ such that

(3.2)
$$G_{\lambda,b}(x) \subset \Omega_b(x) \subset \Omega(x, b\varrho(x)) \qquad \forall x \in \Omega.$$

We put, in the case b = 1,

$$G_{\lambda}(x) = G_{\lambda,1}(x), \qquad \Omega(x) = \Omega_1(x) \qquad \forall x \in \Omega.$$

Remark 3.2. In n. 5 of $[CCD_1]$, fixed $\rho \in \mathcal{A}_o(\Omega)$, the authors assumed that the following hypotheses are satisfied:

- $\begin{array}{ll} ({\rm i}_1) \ S_{\varrho} \ {\rm is \ closed}, \ \varrho^{-1} \in L^{\infty}_{loc}(\overline{\Omega} \setminus S_{\varrho}), \\ ({\rm i}_2) \ \exists \, \theta \in]0, \frac{\pi}{2}[\ {\rm such \ that} \end{array}$

$$\forall x \in \Omega \qquad \exists C_{\theta}(x) : \qquad \overline{C_{\theta}(x, \varrho(x))} \subset \Omega \,,$$

- (i₃) $\Omega(x)$ has the cone property with a cone $C \in \Gamma(\Omega, \theta_o, \lambda_o \varrho(x))$, where θ_o and λ_o are constants independent of x,
- (i_4) r, q, p, s are numbers such that

$$(3.3) \quad r \in N, \quad q \in R, \quad 1 \le p \le s < +\infty, \quad s \ge \frac{n}{r}, \quad s > \frac{n}{r} \quad \text{if} \quad \frac{n}{r} = p > 1.$$

Condition (i_3) is not really contained in n. 5 of $[CCD_1]$, but in the note (1) of page 115 of $[CCD_2]$ it is explained that hypothesis (i₃) must be added in order to prove the results of n. 5 of $[CCD_1]$.

In n. 5 of $[CCD_1]$, under the hypotheses (i_1) , (i_2) , (i_3) and (i_4) the authors have proved (see Theorem 1) that for all $g \in L^s_{loc}(\overline{\Omega} \setminus S_{\varrho})$ such that

 $\sup_{x\in\Omega} \left(\varrho^{-q+r-\frac{n}{s}}(x)|g|_{s,\Omega(x)} \right) < +\infty$ and for all $u \in W^{r,p}_q(\Omega)$, it results $gu \in$ $L^p(\Omega)$ and

(3.4)
$$|gu|_{p,\Omega} \le c \sup_{x \in \Omega} \left(\varrho^{-q+r-\frac{n}{s}}(x) |g|_{s,\Omega(x)} \right) ||u||_{W^{r,p}_q(\Omega)},$$

where the constant $c \in R_+$ is independent of g and u.

Moreover, they have proved some consequences of the above Theorem 1.

We remark (see Theorem 1.1 and Remark 1.1) that the hypothesis (i_1) can be dropped.

Moreover we remark that the hypothesis (i₃) is not necessary in order to obtain Theorem 1 of [CCD₁]. In fact, this theorem holds with $\Omega(x) = G_{\lambda}(x)$, because $G_{\lambda}(x)$ verifies the (i₃). Then from this we deduce that the above theorem holds also without (i₃), because for any $q \in R$ and $p \in [1, +\infty)$ we have

$$\sup_{x\in\Omega}\varrho^{q-\frac{n}{p}}(x)|g|_{p,G_{\lambda}(x)}\leq \sup_{x\in\Omega}\varrho^{q-\frac{n}{p}}(x)|g|_{p,\Omega(x)}.$$

From Remark 3.2 it follows that, the hypotheses (h_0) and (3.3) are enough to prove Theorem 1 of $[CCD_1]$ in the case $\Omega_b(x)$ and thus also in the case $\Omega(x, \varrho(x))$. So we have

Theorem 3.1. If the conditions (h_0) and (3.3) hold, then for all $g \in K^s_{-q+r}(\Omega)$ and for all $u \in W^{r,p}_q(\Omega)$ we have $gu \in L^p(\Omega)$ and

(3.5)
$$|gu|_{p,\Omega} \le c ||g||_{K^s_{-q+r}(\Omega)} ||u||_{W^{r,p}_q(\Omega)},$$

where the constant $c \in R_+$ is independent of g and u.

Using arguments similar to those in n.5 of $[CCD_1]$, from Theorem 3.1 we deduce that:

(a) if the hypotheses of Theorem 3.1 hold and therefore $g \in \tilde{K}^s_{-q+r}(\Omega)$, then for any $\epsilon \in R_+$ there exists $c(\epsilon) \in R_+$ such that

$$(3.6) |gu|_{p,\Omega} \le \epsilon ||u||_{W^{r,p}_q(\Omega)} + c(\epsilon) ||u||_{L^p_{q-r}(\Omega)} \forall u \in W^{r,p}_q(\Omega);$$

(b) if, moreover, $g \in \mathring{K}^{s}_{-q+r}(\Omega)$, then for any $\epsilon \in R_{+}$ there exist $c(\epsilon) \in R_{+}$ and a bounded open set Ω_{ϵ} , with the cone property and with $\overline{\Omega}_{\epsilon} \subset \Omega$, such that

$$(3.7) |gu|_{p,\Omega} \le \epsilon ||u||_{W^{r,p}_{q}(\Omega)} + c(\epsilon)|u|_{p,\Omega_{\epsilon}} \forall u \in W^{r,p}_{q}(\Omega)$$

and we have that the operator

(3.8)
$$u \in W_q^{r,p}(\Omega) \to gu \in L^p(\Omega)$$

is compact.

References

- [CCD₁] Canale A., Caso L., Di Gironimo P., Weighted norm inequalities on irregular domains, Rend. Accad. Naz. Sci. XL Mem. Mat. (11) 16 (1992), 193–209.
- [CCD₂] Canale A., Caso L., Di Gironimo P., Variational second order elliptic equations with singular coefficients, Rend. Accad. Naz. Sci. XL Mem. Mat. (1) 17 (1993), 113–128.
- [DT] Di Gironimo P., Transirico M., Second order elliptic equations in weighted Sobolev spaces on unbounded domains, Rend. Accad. Naz. Sci. XL Mem. Mat. (10) 15 (1991), 163–176.
- [F1] Fortunato D., Spazi di Sobolev con peso ed applicazioni ai problemi ellittici, Rend. Accad. Sc. Fis. Mat. di Napoli (4) 41 (1974), 245–289.
- [F₂] Fortunato D., Una limitazione a priori in spazi di Sobolev con peso per i problemi ellittici nel semispazio, Ric. di Mat. 25 (1976), 137–161.
- [GTT] Glushak A.V., Transirico M., Troisi M., Teoremi di immersione ed equazioni ellittiche in aperti non limitati, Rend. Mat. - s. VII, (4) 9 (1989), 113–130.
- [IMT] Infantino R., Matarasso S., Troisi M., Proprietá spettrali per una classe di operatori ellittici, Ann. Mat. Pura Appl. (4) 121 (1979), 109–129.
- [IT] Infantino R., Troisi M., Operatori ellittici degeneri in domini di \mathbb{R}^n , Boll. Un. Mat. Ital. (5) **17-B** (1980), 186–203.
- [K] Kufner A., Weighted Sobolev Spaces, Teubner Texte zur Math., Band **31**, 1980.
- [KJF] Kufner A., John O., Fučík S., Function Spaces, Nordhoff International Publishing, Leyden, 1977.
- [MT₁] Matarasso S., Troisi M., Operatori differenziali ellittici in spazi di Sobolev con peso, Ric. di Mat. 27 (1978), 83–108.
- [MT₂] Matarasso S., Troisi M., *Teoremi di compattezza in domini non limitati*, Boll. Un. Mat. Ital. (5) **18-B** (1981), 517–537.
- [S1] Schianchi R., Spazi di Sobolev dissimmetrici e con peso, Rend. Accad. Sc. Fis. Mat. di Napoli (4) 42 (1975), 349–388.
- [S2] Schianchi R., Problemi quasi ellittici nel semispazio, Rend. Circ. Mat. di Palermo (2)
 29 (1980), 103–138.
- [Sg] Sgambati L., Limitazioni a priori per le equazioni lineari ellittiche del second'ordine in due variabili in domini non limitati, Ric. di Mat. 32 (1983), 25–39.
- [ST] Sgambati L., Troisi M., Limitazioni a priori per una classe di problemi ellittici in domini non limitati, Note di Mat. 1 (1981), 225–259.
- [TT] Transirico M., Troisi M., Limitazioni a priori per una classe di operatori differenziali lineari ellittici del secondo ordine in aperti non limitati, Boll. Un. Mat. Ital. (7) 5-B (1991), 757–771.
- [T₁] Troisi M., Teoremi di inclusione negli spazi di Sobolev con peso, Ric. di Mat. 18 (1969), 49–74.
- [T₂] Troisi M., Problemi ellittici con dati singolari, Ann. Mat. Pura Appl. (4) 83 (1969), 363–408.
- [T₃] Troisi M., Problemi al contorno con condizioni omogenee per le equazioni quasi-ellittiche, Ann. Mat. Pura Appl. (4) 90 (1971), 331–412.
- [T₄] Troisi M., Su una classe di funzioni peso, Rend. Accad. Naz. Sci. XL Mem. Mat. (11) 10 (1986), 141–152.

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE E MATEMATICA APPLICATA, FACOLTÁ DI SCIENZE, UNIVERSITÁ DI SALERNO, 84081 BARONISSI (SA), ITALY

(Received July 13, 1995)