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A Tauberian theorem for distributions *

Jiř́ı Č́ıžek, Jiř́ı Jeĺınek

Abstract. The well-known general Tauberian theorem of N. Wiener is formulated and
proved for distributions in the place of functions and its Ganelius’ formulation is cor-
rected. Some changes of assumptions of this theorem are discussed, too.
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Introduction and notation

We consider spaces of functions and distributions defined on R only. However,
the assertions of the parts 1–5 of this paper are valid generally on RN .
In 1932 N. Wiener [13] proved this general Tauberian theorem:

Theorem A. Let 1◦ k ∈ L(R), its Fourier transform k̂(x) 6= 0 for all x ∈ R,

2◦ a function f is measurable and bounded in R and

3◦ lim
x→∞

k ∗ f (x) = 0.
Then lim

x→∞
h ∗ f (x) = 0 for every h ∈ L(R) .

The analogy of Theorem A for distributions is mentioned in 1971 by T. Ganelius
[2, p. 13]. Ganelius writes F = o(1) for a distribution F ∈ S′ if and only if

(1) lim
x→∞

F ∗ ϕ (x) = 0 for every ϕ ∈ S.

To avoid the confusion with the classical meaning of the symbol o(1), we shall
write F = o′(1) instead of F = o(1) in the case (1).

Theorem B. Let 1◦ K ∈ O′
C , K̂(x) 6= 0 for all x ∈ R,

2◦ F ∈ S′ and
3◦ K ∗ F = o′(1).
Then H ∗ F = o′(1) for every H ∈ O′

C .

Particularly, with H = δ we get F = o′(1) .

*A similar theme is investigated by Bo I. Johansson in Indag. Math. 6.3 (1995), 279–286.
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Reading the proof of this theorem ([2, p. 14]) a reader may observe one un-
convincing step in the end of the proof: the relation H ∗ F = o′(1) is deduced
without any explanation from the two right facts, namely (H ∗ F ) ∗ χ (x) = o(1),
x→ ∞, for any χ ∈ D̂ := {ϕ̂ ; ϕ ∈ D} and D̂ is dense in S .
In the present paper we show the non-validity of Theorem B by constructing

a counterexample in the part 6 and, moreover, we prove two other Tauberian
theorems for distributions in the parts 12 and 13.
The functions are usually denoted by the small letters, the distributions by

the capital ones. We use the notation of spaces of distributions by L. Schwartz
[12]: S′ = S′(R) is the space of all tempered distributions, O′

C stands for the

rapidly decreasing distributions, E ′ for the distributions with compact support,
D′

L1 or shortly D′
L is the space of all integrable distributions, B′ is the space of

all bounded distributions, finally Ḃ′
denotes the closure of E ′ in B′ as the dual

space of DL . For a distribution F , we often use the symbol F (x) instead of F .
This does not mean that F is a function of x. For example, 〈S(x), ϕ(x)〉 means
〈S, ϕ〉.
If f ∈ L (R), we define the Fourier transform f̂ of the function f by

(2) f̂(t) = 1√
2π

∫ ∞

−∞
f(x) eitx dx;

and we use the following well-known properties of this transform. If g(x) = f(−x),
then

(3) ĝ(t) = f̂(−t),

so f̂ is even if f is even; if g(x) = f(x) eaix, then

(4) ĝ(t) = f̂(t+ a);

if g(x) = f(x− a), then

(5) ĝ(t) = f̂(t) · eait;

if g(x) = xf(x), then

(6) ĝ = −i f̂ ′
;

if g(x) = 1a f̂(
x
a ), then

(7) ĝ(t) = f(at).

If ϕ ∈ S, so we have ϕ̂ ∈ S as well and

(8) ϕ(x) = 1√
2π

∫ ∞

−∞
ϕ̂(t) e−itx dt.
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If ϕ, ψ ∈ S, then the convolution ϕ ∗ ψ ∈ S, ϕ · ψ ∈ S and we have

(9)
ϕ̂ ∗ ψ =

√
2π ϕ̂ ψ̂,

ϕ̂ψ = 1√
2π
ϕ̂ ∗ ψ̂.

For K ∈ S′ the Fourier transform K̂ ∈ S′ is defined by

〈K̂, ϕ〉 = 〈K, ϕ̂〉, ϕ ∈ S.

If K ∈ L(R), then this definition of K̂ coincides with (2). If K ∈ D′
L, then K̂ is

a continuous function K̂(x) = 1√
2π

〈K(t), eitx〉t (see [12, VII, § 7, Example 4]); if
K ∈ O′

C , then K̂ ∈ E . Let 11 denote the unit function: 11(x) = 1, x ∈ R and δ
the Dirac distribution 〈δ, ϕ〉 = ϕ(0), ϕ ∈ D. Then we have

(10) δ̂ = 1√
2π
11, 1̂1 =

√
2π δ.

The convolution and the product of distributions

1. Properties of the convolution mentioned in 1–4 can be found in [1] or [11]. For
any F ∈ D′

L, we define the integral of the distribution F to be equal to 〈F, 11〉 .
We extend the definition of 〈F, ϕ〉 for F ∈ D′ and ϕ ∈ E such that ϕF ∈ D′

L
writing 〈F, ϕ〉 = 〈ϕF, 11〉.
Definition. Two distributions F,G ∈ D′(RN

)
are called convolvable if for any

test function ϕ ∈ D
(
RN

)
we have

(11) (F (x)×G(y))ϕ(x + y) ∈
(
D′

L
)
x,y
.

The convolution F ∗ G ∈ D′(RN ) of two convolvable distributions F and G is
defined by

(12) 〈F ∗G,ϕ〉 = 〈(F (x) ×G(y)) , ϕ(x + y)〉, ϕ ∈ D(RN ).

The convolution F ∗ϕ of a distribution with a test function can be defined equiv-
alently to be the function

(13) F ∗ ϕ (x) = 〈F (t), ϕ(x − t)〉t.

2. Definition. Two distributions F,G ∈ S′(RN ) are called S′-convolvable if
the relation (11) holds even for any ϕ ∈ S(RN ). Then the convolution F ∗ G is
called S′-convolution, F ∗G ∈ S′(RN ) and (12) holds for all ϕ ∈ S(RN ).

3. If G ∈ D′(RN
)
, denote Ğ(x) = G(−x).
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Equivalent definition. Two distributions F,G ∈ S′(RN ) are S′-convolvable if
and only if F · (Ğ ∗ ϕ) ∈ D′

L for any ϕ ∈ S
(
RN

)
. Then

〈F ∗G,ϕ〉 = 〈F, Ğ ∗ ϕ〉.

Notation. The convolution of distributions as an operation on D′(RN
)
is com-

mutative but not associative. If F,G,H ∈ D′(RN
)
are such that

(14) F ∗ (G ∗H) = G ∗ (H ∗ F ) = H ∗ (F ∗G),
we denote F ∗ (G∗H) simply by F ∗G∗H . Let us note that the symbol F ∗G∗H
is not used in this sense commonly.

4. Let us recall

O′
C =

{
F ∈ S′ ; F ∗ ϕ ∈ S for all ϕ ∈ S

}
,

D′
L =

{
F ∈ S′ ; F ∗ ϕ ∈ L for all ϕ ∈ S

}
and

B′ =
{
F ∈ S′ ; F ∗ ϕ is a bounded function for all ϕ ∈ S

}
.

It is well known that a distribution F ∈ O′
C is S′-convolvable with any G ∈ S′.

Distributions F ∈ B′, G ∈ D′
L are S′-convolvable and F ∗G ∈ B′. If F,G ∈ D′

L,
then F ∗G ∈ D′

L. The formula (13) is valid in addition for F ∈ S′, ϕ ∈ S or for
F ∈ B′, ϕ ∈ DL or for F ∈ D′

L, ϕ ∈ B.
Proposition. 1◦ Let distributions F , G be S′-convolvable and H ∈ O′

C . Then

the relation (14) is satisfied.

2◦ Let G,H ∈ D′
L and F ∈ B′. Then the relation (14) is satisfied.

Proof: The part 1◦ of the Proposition will be proved in several steps. It is well
known that functions f, g, h ∈ S are S′-convolvable and the convolution f ∗ g ∗ h
is associative. So, using the equivalent Definition 3, we have for any ϕ ∈ S

〈(F ∗ g) ∗ h, ϕ〉 = 〈F ∗ g, h̆ ∗ ϕ〉 =
〈F, ğ ∗ h̆ ∗ ϕ〉 = 〈F, (g ∗ h)̆ ∗ ϕ〉 = 〈F ∗ (g ∗ h), ϕ〉.

Thus we have proved (F ∗ g) ∗ h = F ∗ (g ∗ h). Using this fact, we can prove in
the same way (F ∗G) ∗ h = F ∗ (G ∗ h) and finally (F ∗G) ∗H = F ∗ (G ∗H).
Proof of the part 2◦: Due to the part 1◦ we have

(15) (F ∗G) ∗H = F ∗ (G ∗H)
for F ∈ B′, G ∈ D′

L and H ∈ S. By [12, VI, § 8, Theorem XXVI 2◦] the
convolution considered as a map from D′

L × D′
L into D′

L or as a map from
D′

L ×B′ into B′ is continuous. Since S is dense in D′
L, (15) can be extended for

H ∈ D′
L and the proposition is proved. �
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5. A sequence of test functions ϕn ∈ D is called a regular delta-sequence if it
satisfies ϕn ≥ 0,

∫
ϕn = 1, suppϕn → {0}. The (multiplicative) product of two

distributions F , G is defined to be the distribution lim
n→∞

F · (G ∗ϕn) if this limit

exists in D′ for any regular delta-sequence (then it does not depend on the choice
of the regular delta-sequence). The multiplicative product is commutative, but
not associative.

Proposition (The exchange formula, Hirata, Ogata [6]). Let F,G ∈ S′ . If the
distributions F,G are S′-convolvable, then the multiplicative product F̂ Ĝ exists
and F̂ ∗G =

√
2π F̂ Ĝ.

6. Counterexample to Theorem B.

We shall construct a distribution F ∈ S′ and functions k, h ∈ S such that
k̂(t) 6= 0 for all t ∈ R, k ∗ F (x) = o(1), x → ∞, however the relation h ∗ F (x) =
o(1), x → ∞, does not hold. It means F = o′(1) is not valid, which contradicts
Theorem B.
Take a function γ ∈ S such that

(16) γ is even, γ ≥ 0, γ̂ ∈ D([−1, 1]), γ̂ ≥ 0,
∫
γ̂ =

√
2πγ(0) = 1.

For instance, denoting û(t) = exp(4t2 − 1)−1 for |t| < 1
2 , û(t) = 0 for |t| ≥ 1

2 , we
can take γ̂ = cû ∗ û for a suitable c > 0.
Put β̂(t) = χ

[−32 ,
3
2 ]
(t) ∗ 2 γ̂(2t), i.e. β̂ is a regularization of the characteristic

function of the interval [−32 , 32 ]. Then

(17) β̂ ∈ D([−2, 2]), 0 ≤ β̂ ≤ 1, β̂(t) = 1 for t ∈ [−1, 1]

and the function β̂ provides us a locally finite decomposition of the unit

11(t) = 1 =

∞∑

m=−∞
β̂(t− 3m), t ∈ R.

Let the functions k, h be defined by

(18) k̂(t) :=

∞∑

m=−∞
2−2|m| β̂(t− 3m),

and

(19) ĥ(t) :=
∞∑

m=−∞
2−|m| β̂(t− 3m).
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Evidently k̂, ĥ ∈ S, so k, h ∈ S. Further, let us define F to be such a distribution
that its Fourier transform is the smooth function

(20) F̂ (t) := −i d
dt

∞∑

n=0

γ̂(t− 3n) e2nπit, t ∈ R.

We know by (16) that the supports of the functions t 7→ γ̂(t−3n) e2nπit are pair-

wise disjoint for n = 0, 1, 2 . . . , so F̂ is the derivative of a bounded function, thus

F̂ ∈ S′ and F ∈ S′ are well-defined. Using the exchange formula (Proposition 5)
we obtain by (20)

(k ∗ F )̂ =
√
2π k̂ F̂ = −

√
2π i k̂ · d

dt

∞∑

n=0

γ̂(t− 3n) e2nπit, t ∈ R.

Since the sum (18) is locally finite and by (16), (17) we have

β̂(t− 3n) = 1, β̂(t− 3m) = 0 for t ∈ supp (t 7→ γ(t− 3n) ) , m 6= n,
it follows

(21) k̂ ∗ F = −
√
2π i

∞∑

n=0

2−2n
d

dt

(
γ̂(t− 3n) e2nπit

)
, t ∈ R.

The series (21) is a sum of functions from D and is convergent in L (R), as∫ ∣∣∣2−2n ddt
(
γ̂(t− 3n) e2nπit

)∣∣∣ dt ≤ 2−2n‖γ̂′‖L + 2−n‖γ̂‖L.

It follows that k ∗F is the uniform limit of a sequence of functions from S and so
lim

|x|→∞
k ∗ F (x) = 0, i.e. k ∗ F = o′(1) and the assumptions of Theorem B are

satisfied. On the other hand,

(22) ĥ ∗ F (t) = −
√
2π i

∞∑

n=0

2−n d

dt

(
γ̂(t− 3n) e2nπit

)
.

This can be proved by (19) and (20) in the same way as (21). It is clear that the
series (22) is convergent in E . Since its partial sums are uniformly bounded, the
series also converges in S′ and we obtain by (4), (5) and (6)

h ∗ F (x) = x
√
2π

∞∑

n=0

2−nγ(x− 2nπ) e−3in(x−2nπ)

= x
√
2π

∞∑

n=0

2−nγ(x− 2nπ) e−3inx, x ∈ R.(23)

If x = 2mπ, m ∈ N, then e−3inx = 1 and γ(x − 2nπ) ≥ 0 for n = 0, 1, 2, . . . . It
follows

h ∗ F (2mπ) ≥ 2mπ
√
2π 2−mγ(0) = π

(see (16)), so the relations h ∗ F (x) = o(1), x → ∞, and F = o′(1) cannot take
place. �
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7. The next propositions show the connection of the concept o′(1) with classical
concepts of the theory of distributions.

Proposition. The following statements are equivalent for any F ∈ D′ :

1◦ F ∈ Ḃ′
,

2◦ F ∗ ϕ ∈ Ḃ for all ϕ ∈ D,
3◦ lim

|x|→∞
F ∗ ϕ (x) = 0 for all ϕ ∈ D.

Proof: The equivalence of 2◦ and 3◦ is clear because F ∗ϕ ∈ E and (F ∗ϕ)(n) =
F ∗ϕ(n). Further, by the observation in Schwartz [12] at the end of VI, § 8, F ∈ Ḃ′

if and only if lim
|h|→∞

〈T (t), ϕ(t+ h)〉t = 0 for all ϕ ∈ D. The last statement is

equivalent to 3◦, thus the proposition is proved. �

8. Proposition. The following statements are equivalent for any F ∈ S′ :
1◦ F ∗ ϕ ∈ Ḃ for all ϕ ∈ D,
2◦ F ∗ ϕ ∈ Ḃ for all ϕ ∈ S.

Proof: Let 1◦ be satisfied. Then F ∈ Ḃ′ ⊂ B′ = (DL)
′, by Proposition 7. Thus

F ∈
(
Un

)0
for some n ∈ N, where Un is a neighbourhood of zero in DL of the

form
Un =

{
ψ ∈ DL ;

∫
|ψ| < 1

n ,
∫
|ψ′| < 1

n , . . . ,
∫
|ψ(n) | < 1

n

}
.

It means that for all ψ ∈ Un we have

(24) |〈F, ψ〉| ≤ 1.

Let ε > 0 . Since D is dense in S, every ϕ ∈ S can be written in the form

(25) ϕ = ϕ0 + ψ, where ϕ0 ∈ D, ψ ∈ εUn.

It follows
F ∗ ϕ = F ∗ ϕ0 + F ∗ ψ

with F ∗ ϕ0 ∈ Ḃ by 1◦ and |F ∗ ψ (x)| ≤ ε for all x ∈ R by (24). Since ε
was arbitrarily chosen, we have lim

|x|→∞
F ∗ ϕ (x) = 0 . By the same argument,

lim
|x|→∞

(
d
dx

)α
F ∗ ϕ (x) = lim

|x|→∞
F ∗ ϕ(α) (x) = 0, i.e. 2◦ holds. The opposite

implication is obvious. �

9. Proposition. Let F ∈ S′(R) be a distribution whose support is bounded
from the right. Then F = o′(1) . Analogically, for any F ∈ S′(R) whose support
is bounded from the left, we have lim

x→−∞
F ∗ ϕ (x) = 0 for all ϕ ∈ S .

Proof (of the first part only): Choose a function ω ∈ E , such that suppω
is bounded from the right and ω(t) = 1 for t ∈ suppF . Then for all ϕ ∈ S we
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have

F ∗ ϕ (x) = 〈F (t), ϕ(x − t)〉 = 〈F (t)ω(t), ϕ(x− t)〉 =
〈F (t), ω(t)ϕ(x − t)〉 −→ 0 if x→ ∞,

since for x→ ∞ the functions t 7→ ω(t)ϕ(x − t) converge to 0 in S. �

10. Corollary. 1◦ Let F ∈ S′(R) and suppF is bounded from the left. Then
F = o′(1) if and only if F ∈ Ḃ′

.

2◦ Let F ∈ S′(R), let ω ∈ E be such that suppω is bounded from the left and
ω(t) = 1 for all t large enough. Then F = o′(1) if and only if ωF ∈ Ḃ′

.

11. Equivalent definition. Let F ∈ S′. Then F = o′(1) if and only if
lim

x→∞
F ∗ ϕ (x) = 0 for all ϕ ∈ D.

12. A Tauberian theorem for distributions can be formulated in the following
way.

Theorem. Let 1◦ K ∈ D′
L, K̂(t) 6= 0 for all t ∈ R,

2◦ F ∈ B′ and
3◦ K ∗ F = o′(1).
Then H ∗ F = o′(1) for any H ∈ D′

L.

Particularly, with H = δ we get F = o′(1).

Remark. This formulation is one-sided, for x → ∞. The theorem is valid also
for x → −∞, i.e. if F = o′(1) means lim

x→−∞
F ∗ ϕ (x) = 0 for all ϕ ∈ S. In the

two-sided formulation we can avoid the concept o′(1) writing simply K ∗F ∈ Ḃ′
,

H∗F ∈ Ḃ′
(see Propositions 7 and 8). This theorem is a more exact generalization

for distributions of the classical Theorem A than the (non valid) Theorem B which
has the harder assumption 1◦ and the weaker assumption 2◦ in comparison with
this theorem.
The following proof is based on the proof of Theorem A in [4]. We divide

this proof in several steps assuming in each of them that the assumptions of
Theorem 12 are satisfied.

Step 1. There is a function k ∈ DL such that k̂(t) 6= 0 for all t ∈ R , k ∗ F is a
bounded function and k ∗ F (x) = o(1), x → ∞. So we can replace K with k in
Theorem 12.
Indeed, it is sufficient to take k = ϕ ∗K, for some ϕ ∈ S with ϕ̂(t) 6= 0 for all

t ∈ R, e.g. ϕ(x) = e−x2 . Associativity of the convolution ϕ ∗ K ∗ F follows by
Proposition 4.1◦.

Step 2. If h ∈ L and supp ĥ is compact, then there is a (well-defined) function
g ∈ L, satisfying g ∗ k = h.
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Indeed, thanks to (9) this assertion says that ĥ/k̂ is the Fourier transform of
some function g ∈ L. This is proved by Hardy [4, 12.5, Theorem 229].

Step 3. If h ∈ L and supp ĥ is compact, then h ∗ F (x) = o(1), x→ ∞.
Proof: By the preceding step, pick a function g ∈ L, satisfying h = g ∗ k. So
h∗F = g∗k∗F ; associativity follows by Proposition 4.2. Since by Step 1 k∗F is a
bounded function and k ∗F (x) = o(1), x→ ∞, we have h∗F (x) = g ∗k ∗F (x) =
o(1), as well.

Proof of Theorem 12: We have to prove that ϕ ∗H ∗ F (x) = o(1), x → ∞
for any ϕ ∈ D. Pick a function γ ∈ S satisfying (16) and designate α1 := γ/

R
γ.

Then α1 ∈ S, α1 ≥ 0,
∫
α1 = 1, α̂1 ∈ D. Put further αn(x) = nα1(nx), n ∈ N

and write

(26) ϕ ∗H ∗ F = αn ∗ ϕ ∗H ∗ F + (δ − αn) ∗ ϕ ∗H ∗ F.

Since by the assumptions H ∈ D′
L, we have αn ∗ H ∈ L (see the notes in the

paragraph 4). As the distribution α̂n ∗H =
√
2π α̂n Ĥ has a compact support,

we obtain by Step 3
αn ∗H ∗ F (x) = o(1), x→ ∞,

and of course

(27) αn ∗ ϕ ∗H ∗ F (x) = o(1), x→ ∞.

By the assumptions H ∗ F ∈ B′, so ϕ ∗H ∗ F ∈ B (paragraph 4). It follows that
the function ϕ ∗H ∗F is bounded and uniformly continuous and so the functions
(δ − αn) ∗ ϕ ∗ H ∗ F converge uniformly to zero if n → ∞. Thus by (26) the
function ϕ ∗H ∗F is the uniform limit of the functions αn ∗ϕ ∗H ∗F and by (27)
ϕ ∗H ∗ F (x) = o(1), x→ ∞, as well.

13. Corollary. Let 1◦ K ∈ O′
C , K̂(t) 6= 0 for all t ∈ R,

2◦ F ∈ S ′ be such that K ∗ F ∈ B′ and
3◦ K ∗ F = o′(1).
Then H ∗ F = o′(1) for any H ∈ D′

L for which the S′-convolution H ∗ F exists
and is from B′.

Proof: Thanks to Theorem 12 we only need to prove

(28) K ∗H ∗ F = o′(1),

associativity is guaranteed by Proposition 4.1◦. Under the assumptions of the
Corollary, the relation (28) follows from Theorem 12 used for the distributions δ
and K ∗ F in the place of K and F respectively. �
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Remark. Theorem 12 can be applied for F ∈ B′ only while this Corollary is
also applicable to F ∈ S′ rB′ under certain restrictions (namely K ∈ O′

C , K ∗F
∈ B′). Counterexample 6 shows that there are such distributions. Indeed, take
F , k, h by this counterexample (formulas (18)–(20)). We have F ∈ S′ r B′ as
otherwise we would have F = o′(1) by Theorem 12. Further, we can easily see
by (23) that F ∗ h is a bounded function, so F ∗ h ∈ B′. By the same argument
F ∗ k ∈ B′. Thus, by Corollary 13 we have F ∗ h = o′(1) and yet F ∗ h (x) = o(1),
x→ ∞, does not hold, as we have shown in the counterexample.
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Charles University, Sokolovská 83, 186 00 Praha 8, Czech Republic

(Received January 17, 1996)


