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Fréchet directional differentiability

and Fréchet differentiability

J.R. Giles, Scott Sciffer

Abstract. Zaj́ıček has recently shown that for a lower semi-continuous real-valued func-
tion on an Asplund space, the set of points where the function is Fréchet subdifferentiable
but not Fréchet differentiable is first category. We introduce another variant of Fréchet

differentiability, called Fréchet directional differentiability, and show that for any real-
valued function on a normed linear space, the set of points where the function is Fréchet
directionally differentiable but not Fréchet differentiable is first category.
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A real-valued function F on an open subset A of a normed linear space X
is said to be Fréchet differentiable at x ∈ A if there exists a continuous linear
functional F ′(x) on X where, given ǫ > 0 there exists a δ(ǫ, x) > 0 such that

|F (x+ y)− F (x)− F ′(x)(y)| < ǫ‖y‖ for all y ∈ X, ‖y‖ < δ.

In determining Fréchet differentiability properties, interest has focused on variants
of Fréchet differentiability. The function F is said to be Fréchet subdifferentiable
at x ∈ A if there exists a continuous linear functional f on X where, given ǫ > 0
there exists a δ(ǫ, x) > 0 such that

F (x+ y)− F (x)− f(y) > −ǫ‖y‖ for all y ∈ X, ‖y‖ < δ.

In particular, Borwein and Preiss proved that when X is a Banach space with
an equivalent norm Fréchet differentiable away from the origin, a lower semi-
continuous function F on an open subset A of X is densely Fréchet subdifferen-
tiable, [BP, p. 521]. Recently Zaj́ıček proved that when X is an Asplund space, a
lower semi-continuous function F on an open subset A of X has the property that
the set of points where F is Fréchet subdifferentiable but not Fréchet differentiable
is first category in A, [Z2, p. 485].
In this paper we study another variant of Fréchet differentiability. Given a

real-valued function F on an open subset A of a normed linear space X , we say
that F has a right-hand derivative at x ∈ A in the direction v ∈ X if

F ′
+(x)(v) = lim

λ→0+

F (x+ λv)− F (x)

λ
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exists. Clearly F ′
+(x)(v) is positively homogeneous in v. We say F is directionally

differentiable at x ∈ A if F ′
+(x)(v) exists in every direction v ∈ X and is a

continuous function in v. If F ′
+(x)(v) is also linear in v then we say that F is

Gâteaux differentiable at x. We note that although F may have a right-hand
derivative at x ∈ A in every direction v ∈ X , F ′

+(x)(v) need not be continuous in
v, even if F is continuous at x.

Example. Consider F on R2 defined in polar coordinates by

F (r, θ) =

{

cos θ sin(r/ cos θ) for cos θ 6= 0 and r 6= 0

0 for cos θ = 0 or r = 0.

Now at the origin
∂F

∂r
=

{

1 when cos θ 6= 0

0 when cos θ = 0.

�

However, if a locally Lipschitz function has a right-hand derivative at a point
in every direction, then it is directionally differentiable at the point. This is the
implication of the following well known result whose proof is included for the sake
of completeness.

Proposition 1. Consider a locally Lipschitz function ψ on an open subset A of
a normed linear space X . Given x ∈ A, if ψ′

+(x)(v) exists for all v ∈ X then

ψ′
+(x)(v) is Lipschitz in v.

Proof: Since ψ is locally Lipschitz on A, there exists a K > 0 and a δ > 0 such
that

|ψ(y)− ψ(z)| ≤ K‖y − z‖ for all y, z ∈ B(x; δ) ∩A.

Given u ∈ X , ‖u‖ ≤ 1 and ǫ > 0 there exists a 0 < δ1 < δ such that

ψ′
+(x)(u)− ǫ <

ψ(x + λu)− ψ(x)

λ
for 0 < λ < δ1

≤
ψ(x + λv)− ψ(x)

λ
+K‖u− v‖

for v ∈ X, ‖v‖ ≤ 1 and 0 < λ < δ1.

But there exists 0 < δ2 < δ1 such that

ψ(x+ λv)− ψ(x)

λ
< ψ′

+(x)(v) + ǫ for 0 < λ < δ2.

And so

ψ′
+(x)(u) − ǫ < ψ′

+(x)(v) + ǫ+K‖u− v‖ for all u, v ∈ X, ‖u‖, ‖v‖ ≤ 1.
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This holds for all ǫ > 0 and so we conclude that

ψ′
+(x)(u) ≤ ψ′

+(x)(v) +K‖u− v‖

and so
|ψ′
+(x)(u)− ψ′

+(x)(v)| ≤ K‖u− v‖ for all u, v ∈ X,

since ψ′
+(x)(v) is positively homogeneous in v. �

For a real-valued function F on an open subset A of a normed linear space X
we say that F is Fréchet directionally differentiable at x ∈ A if F is directionally
differentiable at x and given ǫ > 0 there exists δ(ǫ, x) > 0 such that
∣

∣

∣

∣

F (x + λv)− F (x)

λ
− F ′

+(x)(v)

∣

∣

∣

∣

< ǫ for all 0 < λ < δ and all v ∈ X, ‖v‖ ≤ 1.

Of course F is Fréchet differentiable at x ∈ A if it is Fréchet directionally differ-
entiable at x and F ′

+(x)(v) is linear in v.
It is of interest to see how Fréchet directional differentiability and Fréchet

subdifferentiability relate. A continuous convex function φ on an open convex
subset A of a normed linear spaceX has a subgradient at each point of its domain;
that is, given x ∈ A there exists a continuous linear functional f on X such that

φ(x + y)− φ(x) ≥ f(y) for all y ∈ X, [Ph, p. 7].

So φ is Fréchet subdifferentiable at each point in its domain. But also φ′+(x)(y)
exists and is a continuous sublinear functional in y at each point x ∈ A, [Ph,
p. 2], so φ is directionally differentiable at each point of its domain. However, the
norm is always Fréchet directionally differentiable at the origin, but it need not
be Fréchet directionally differentiable at any other point; there exists on ℓ1 an
equivalent norm which is Gâteaux differentiable away from the origin but which
is nowhere Fréchet differentiable, [Ph, p. 86].
More generally, for a real-valued function F on an open subset A of a normed

linear space X , if F is Fréchet directionally differentiable at x ∈ A then given
ǫ > 0 there exists a δ > 0 such that

F (x+ y)− F (x) > F ′
+(x)(y)− ǫ‖y‖ for all y ∈ X, ‖y‖ < δ,

and if F ′
+(x)(y) is also sublinear in y then any subgradient f of F

′
+(x) at x satisfies

F (x + y)− F (x) > f(y)− ǫ‖y‖ for all y ∈ X, ‖y‖ < δ,

that is, F is Fréchet subdifferentiable at x. However, if F is Fréchet directionally
differentiable at x then it is not necessarily Fréchet subdifferentiable at x; for the
norm ‖.‖ on X , F = −‖.‖ is Fréchet directionally differentiable at 0 but is not
Fréchet subdifferentiable at 0.
We now establish for Fréchet directional differentiability a general result com-

parable to that of Zaj́ıček for Fréchet subdifferentiability, [Z2, p. 485].
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Theorem 2. Given a real-valued function F on an open subset A of a normed
linear space X , the set of points W ⊂ A where F is Fréchet directionally differ-
entiable, but not Fréchet differentiable, is first category in A.

Proof: For each n, p ∈ N consider the set Wn,p consisting of those points in A
where F is Fréchet directionally differentiable and

(i)

∣

∣

∣

∣

F (x+ λv) − F (x)

λ
− F ′

+(x)(v)

∣

∣

∣

∣

<
1

p

for all 0 < λ ≤
2

n
and all v ∈ X, ‖v‖ ≤ 1,

(ii)

there exist u, v ∈ X, ‖u‖, ‖v‖ ≤ 1 and

|F ′
+(x)(u) + F

′
+(x)(v) − F ′

+(x)(u + v)| >
16

p
.

NowW = ∪n,p≥2Wn,p and we show that for each n, p ≥ 2, Wn,p is nowhere dense
in A.
Suppose on the contrary that for some n, p ≥ 2, Wn,p is dense in some open

subset U of A. We may assume that 0 ∈ Wn,p ∩ U and F (0) = 0. We examine
estimates of F near 0. For m > n, by (i), we have

|F (
1

n
u)−

1

n
F ′
+(0)(u)| <

1

np
, |F (

1

m
v)−

1

m
F ′
+(0)(v)| <

1

mp
and

|F (
1

m
(u + v))−

1

m
F ′
+(0)(u + v)| <

1

mp
.

We now choose m sufficiently large that B(0; 2/m) ⊂ U and, to satisfy the conti-
nuity of F ′

+(0), such that

|F ′
+(0)(

1

n
u)− F ′

+(0)(x+
1

n
u)| <

1

np
for all x ∈ B(0; 2/m).

Since Wn,p is dense in U , by the continuity of F
′
+(0), there exists an xm ∈

B(0; 2/m) ∩Wn,p such that both

|F ′
+(0)(

1

m
v)− F ′

+(0)(xm)| <
1

mp
and

|F ′
+(0)(

1

m
(u+ v))− F ′

+(0)(xm +
1

m
u)| <

1

mp
.

However, by property (i), |F (xm)− F ′
+(0)(xm)| < (1/p)‖xm‖ and so

|F (xm)− F ′
+(0)(

1

m
v)| ≤ |F (xm)− F ′

+(0)(xm)|+ |F ′
+(0)(xm)− F ′

+(0)(
1

m
v)|

<
1

p
‖xm‖+

1

mp
<
3

mp
. . . . (a)
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Similarly, when m ≥ 2n we have

|F (xm +
1

m
u)− F ′

+(0)(
1

m
(u+ v))|

≤ |F (xm +
1

m
u)− F ′

+(0)(xm +
1

m
u)|+ |F ′

+(0)(xm +
1

m
u)− F ′

+(0)(
1

m
(u + v))|

<
1

p
‖xm +

1

m
u‖+

1

mp
<
4

mp
since ‖xm +

1

m
u‖ ≤

3

m
≤
2

n
. . . . (b)

Also

|F (xm +
1

n
u)− F ′

+(0)(
1

n
u)|

≤ |F (xm +
1

n
u)− F ′

+(0)(xm +
1

n
u)|+ |F ′

+(0)(xm +
1

n
u)− F ′

+(0)(
1

n
u)|

<
1

p
‖xm +

1

n
u‖+

1

np
<
3

np
. . . . (c)

Since xm ∈Wn,p,
∣

∣

∣

∣

F (xm + (1/m)u)− F (xm)

1/m
−
F (xm + (1/n)u)− F (xm)

1/n

∣

∣

∣

∣

≤

∣

∣

∣

∣

F (xm + (1/m)u)− F (xm)

1/m
− F ′

+(xm)(u)

∣

∣

∣

∣

+

∣

∣

∣

∣

F (xm + (1/n)u)− F (xm)

1/n
− F ′

+(xm)(u)

∣

∣

∣

∣

<
2

p
.

But
∣

∣

∣

∣

F (xm + (1/m)u)− F (xm)

1/m
−
F (xm + (1/n)u)− F (xm)

1/n

∣

∣

∣

∣

≥

∣

∣

∣

∣

F ′
+(0)((1/m)(u + v))− F ′

+(0)((1/m)v)

1/m
−
F ′
+(0)((1/n)u)− F ′

+(0)((1/m)v)

1/n

∣

∣

∣

∣

−m|F ′
+(0)((1/m)(u + v))− F (xm + (1/m)u)| −m|F ′

+(0)((1/m)v)− F (xm)|

− n|F ′
+(0)((1/n)u)− F (xm + (1/n)u)| − n|F ′

+(0)((1/m)v)− F (xm)|

≥ |F ′
+(0)(u+ v)− F ′

+(0)(v)− F ′
+(0)(u)| −

n

m
|F ′
+(0)(v)| −

4

p
−
3

p
−
3

p
−
3n

mp

from (a), (b) and (c)

≥
16

p
−
n

m
|F ′
+(0)(v)| −

12

p
≥
3

p

for any choice of m ≥ np|F ′
+(0)(v)|. This is our contradiction, so we conclude

that W is first category. �
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A real-valued function F on an open subset A of a normed linear space X is
said to be strictly differentiable at x ∈ A if

lim
z→x

λ→0+

F (z + λv)− F (z)

λ
exists for all v ∈ X

and this limit is F ′(x)(v), where F ′(x) is a continuous linear functional on X .
Further, F is said to be uniformly strictly differentiable at x ∈ A if this limit
exists and is approached uniformly for all v ∈ X , ‖v‖ ≤ 1.
For a real-valued function on an open subset of a normed linear space the set

of points where the function is Fréchet differentiable but not uniformly strictly
differentiable is first category in its domain, [Z1, p. 158]. So using this fact we can
make the following deduction.

Corollary 2.1. Given a real-valued function F on an open subset A of a normed
linear space X , the set of points where F is Fréchet directionally differentiable
but not uniformly strictly differentiable is first category in A.

For a real-valued function on an open subset of a normed linear space the
set of points where the function is both Fréchet subdifferentiable and Fréchet di-
rectionally differentiable contains the set of points where the function is Fréchet
differentiable. So from Theorem 2 and Zaj́ıček’s result for Fréchet subdifferentia-
bility, [Z2, p. 485], we can produce the following relation between points of Fréchet
subdifferentiability and Fréchet directional differentiability.

Corollary 2.2. Consider a real-valued function F on an open subset A of a
normed linear space X .

(i) The set of points where F is Fréchet directionally differentiable but not
Fréchet subdifferentiable is first category in A.

(ii) If F is lower semi-continuous on A and X is an Asplund space then
the set of points where F is Fréchet subdifferentiable but not Fréchet
directionally differentiable is first category in A.

We pointed out before Theorem 2 that there exists on ℓ1 an equivalent norm
which is Gâteaux differentiable away from the origin but is nowhere Fréchet dif-
ferentiable. Now this norm is everywhere Fréchet subdifferentiable but Fréchet
directionally differentiable only at the origin, so there is no obvious improvement
to be made to Corollary 2.2 (ii). In fact for any Banach space X which is not
an Asplund space there exists a continuous convex function φ on an open convex
subset A of X where the set of points of Fréchet differentiability is first category
in A. So the set of points where φ is Fréchet subdifferentiable but not Fréchet
differentiable is residual in A and from Theorem 2, the set of points where φ is
Fréchet subdifferentiable but not Fréchet directionally differentiable is residual
in A. We should point out that for Lipschitz functions on the real line it may be
that the set of points of Fréchet subdifferentiability is first category; there is a Lip-
schitz function ψ where the set of points of differentiability is first category, [GS2,
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p. 210], so it is not possible that both ψ and −ψ are Fréchet subdifferentiable on
a residual set.
For convex functions there is a useful continuity characterization of Fréchet

directional differentiability which has had interesting geometrical consequences.
Given a continuous convex function φ on an open convex subset A of a normed
linear space X , the subdifferential of φ at x is the set

∂φ(x) = {f ∈ X∗ : f(y) ≤ φ′+(x)(y) for all y ∈ X}.

We say that the subdifferential mapping x 7→ ∂φ(x) is restricted norm upper
semi-continuous at x ∈ A if given ǫ > 0 there exists a δ > 0 such that

∂φ(y) ⊂ ∂φ(x) + ǫB(X) for all y ∈ B(x; δ).

The function φ is Fréchet directionally differentiable at x ∈ A if and only if the
subdifferential mapping x 7→ ∂φ(x) is restricted norm upper semi-continuous at
x, [GM, Theorem 3.2]. It has been shown that a Banach space X is an Asplund
space if it has an equivalent norm which is Fréchet directionally differentiable on
the unit sphere, [CP, p. 453].
It is instructive to see that there is no comparable continuity characterization of

Fréchet directional differentiability for locally Lipschitz functions. Given a locally
Lipschitz function ψ on an open subset A of a normed linear space X , the Clarke
subdifferential of ψ at x ∈ A is the set

∂ψ(x) = {f ∈ X∗ : f(y) ≤ lim sup
z→x

λ→0+

ψ(z + λy)− ψ(z)

λ
for all y ∈ X}.

Now ψ is strictly differentiable at x ∈ A if and only if ∂ψ(x) is singleton and
is uniformly strictly differentiable at x ∈ A if and only if the subdifferential
mapping x 7→ ∂ψ(x) is single-valued and norm upper semi-continuous at x, [GS1,
p. 374]. There exists a locally Lipschitz function which is Fréchet differentiable and
strictly differentiable at a point but not uniformly strictly differentiable at that
point, [GS1, p. 373]; so the function is Fréchet directionally differentiable at the
point but its subdifferential is not restricted norm upper semi-continuous there.
But also there exists a Lipschitz function on the real line whose subdifferential
mapping is everywhere restricted norm upper semi-continuous but nowhere single-
valued, [GS2, p. 210], so by Corollary 2.1 the set of points where the function is
not Fréchet directionally differentiable is residual.
We might well ask how our Theorem 2 generalizes for Gâteaux differentiability.

For locally Lipschitz functions on certain Banach spaces we have sufficient infor-
mation about generic sets of points of differentiability to achieve a generalization.
Given a real-valued function F on an open subset A of a normed linear space X

we say that F is intermediately differentiable at x ∈ A if there exists a continuous
linear functional f on X such that

lim inf
λ→0+

F (x+ λv) − F (x)

λ
≤ f(v) ≤ lim sup

λ→0+

F (x+ λv) − F (x)

λ
for all v ∈ X.
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Clearly if F ′
+(x)(v) exists at x ∈ A for all v ∈ X and F is intermediately differ-

entiable at x then F is Gâteaux differentiable at x.
A GSG space is a Banach space which contains a dense continuous linear

image of an Asplund space. Every closed linear subspace of a GSG space is a
weak Asplund space. It has been shown that a locally Lipschitz function ψ on
an open subset A of a closed linear subspace X of a GSG space is intermediately
differentiable on a residual subset of A, [FP, p. 733]. So we can make an immediate
deduction.

Theorem 3. For a locally Lipschitz function ψ on an open subset A of a closed
linear subspace X of a GSG space, the set

{x ∈ A : ψ′
+(x)(v) exists for all v ∈ X and

ψ is not Gâteaux differentiable at x}

is first category in A.

For locally Lipschitz functions on separable Banach spaces rather more can be
stated. For a locally Lipschitz function ψ on an open subset A of a separable
Banach space X the set

{x ∈ A : ψ is Gâteaux differentiable at x and

ψ is not strictly differentiable at x}

is first category in A, [GS2, p. 210]. So from Theorem 3 we deduce the extended
result.

Theorem 4. For a locally Lipschitz function ψ on an open subsetA of a separable
Banach space, the set

{x ∈ A : ψ′
+(x)(v) exists for all v ∈ X and

ψ is not strictly differentiable at x}

is first category in A.

We should make the following remarks about these results. Theorem 3 does not
hold generally for all Banach spaces; on ℓ∞ the continuous semi-norm p defined
for x = (x1, x2, . . . , xn, . . . ) by p(x) = lim supn→∞ |xn| has p

′
+(x)(v) existing

at each x ∈ ℓ∞ for all v ∈ ℓ∞, but p is nowhere Gâteaux differentiable, [Ph,
p. 13]. Even for a locally Lipschitz function on an open interval of the real line,
Theorem 4 has no obvious improvement; there exists a locally Lipschitz function
ψ everywhere differentiable on (a, b) and which is strictly differentiable only on a
set of less than full measure, [M, p. 975].
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