On positive operator-valued continuous maps

Ryszard Grząślewicz

Abstract. In the paper the geometric properties of the positive cone and positive part of the unit ball of the space of operator-valued continuous space are discussed. In particular we show that

ext-ray $C_+(K, \mathcal{L}(H)) = \{\mathbb{R}_+ \mathbf{1}_{\{k_0\}} \mathbf{x} \otimes \mathbf{x} : \mathbf{x} \in \mathbf{S}(H), k_0 \text{ is an isolated point of } K\}$ ext $\mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H))) = \mathbf{s}$ -ext $\mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H)))$

 $= \{ f \in \mathsf{C}(K, \mathcal{L}(H) : f(K) \subset \mathsf{ext} \; \mathbf{B}_+(\mathcal{L}(H)) \}.$

Moreover we describe exposed, strongly exposed and denting points.

Keywords: exposed point, denting point, Hilbert space, positive operator *Classification:* Primary 47D20; Secondary 46B20

1. Introduction

The paper is devoted to the geometric properties of the space of continuous functions from a compact Hausdorff space K with values in the space of operators acting on a Hilbert space H. Namely, we deal with the positive part of the unit ball and the cone of positive operators in $\mathcal{L}(H)$. We consider such points as strongly extreme, exposed, strongly exposed and denting points.

For a Banach space E we denote by $\mathbf{B}(E)$ and $\mathbf{S}(E)$ respectively the unit ball and the unit sphere of E. A subset P of E is called a *convex cone* (of vertex 0) if P is convex $(\mathbf{x}, \mathbf{y} \in P, \alpha \in [0, 1] \Rightarrow \alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in P)$ and invariant under multiplication by positive constant $(\mathbf{x} \in P, \lambda \in \mathbb{R}_+ \Rightarrow \lambda \mathbf{x} \in P)$. A ray $R = \{\lambda \mathbf{x}_o : \lambda \in \mathbb{R}_+\} = \mathbb{R}_+ \mathbf{x}_o, 0 \neq \mathbf{x}_o \in P$, is called an *extreme ray* $(R \in \mathbf{ext}\text{-ray } P)$ if $\mathbf{x} \in R, \mathbf{y} \in P$, and $\mathbf{x} - \mathbf{y} \in P$ imply $\mathbf{y} \in R$.

A point **q** of a convex set $Q \,\subset E$ is *extreme* ($\mathbf{q} \in \mathbf{ext} Q$) if it is not the midpoint of any segment of positive length contained in Q; *strongly extreme* ($\mathbf{q} \in \mathbf{s}$ -ext Q) if $\|\frac{\mathbf{x}_n + \mathbf{y}_n}{2} - \mathbf{q}\| \to 0$ for \mathbf{x}_n , $\mathbf{y}_n \in Q$ implies $\|\mathbf{x}_n - \mathbf{q}\| \to 0$ (or equivalently $\|\mathbf{x}_n - \mathbf{y}_n\| \to 0$, since $\mathbf{x}_n - \mathbf{q} = \frac{\mathbf{x}_n - \mathbf{y}_n}{2} + (\frac{\mathbf{x}_n + \mathbf{y}_n}{2} - \mathbf{q})$); *exposed* ($\mathbf{q} \in \mathbf{exp} Q$) if there exists $\xi \in Q^*$ such that $\xi(q) = \sup \xi(Q) > \xi(\mathbf{x})$ for all $\mathbf{x} \in Q \setminus \{\mathbf{q}\}$; *strongly exposed* ($\mathbf{q} \in \mathbf{s}$ -exp Q) if it is exposed and if $\xi(x_n) \to \xi(q)$ for $\mathbf{x}_n \in Q$ then $\|\mathbf{x}_n - \mathbf{q}\| \to 0$; and *denting* ($\mathbf{q} \in \mathbf{dent} Q$) if for all $\varepsilon > 0$ we have $\mathbf{q} \notin \overline{\mathbf{conv}} (Q \setminus \{\mathbf{q} + \varepsilon \mathbf{B}(E)\})$. Note that in general this classes of points do not coincide. We have \mathbf{s} -exp $Q \subset \mathbf{dent} Q \subset \mathbf{s}$ -ext $Q \subset \mathbf{ext} Q$ and \mathbf{s} -exp $Q \subset \mathbf{exp} Q \subset \mathbf{ext} Q$.

 $^{^1}$ Written while the author was a research fellow of the Alexander von Humboldt-Stiftung at Mathematisches Institut der Eberhard Karls-Universität in Tübingen.

Moreover, if Q is compact then dent $Q = \mathbf{s} - \mathbf{ext} \ Q = \mathbf{ext} \ Q$ and $\mathbf{s} - \mathbf{exp} \ Q = \mathbf{exp} \ Q$. Note that if $\mathbf{q} \in \mathbf{ext} Q$ is a point of continuity for Q ($\mathbf{x}_n \to \mathbf{q}$ weakly, $\mathbf{x}_n \in Q$, implies $\mathbf{x}_n \to \mathbf{q}$ in norm) then $\mathbf{q} \in \mathbf{dent} \ Q$ ([14]). For an operator $T: E \to E$ we denote by **IsDom** $T = \{\mathbf{x} \in E : ||T\mathbf{x}|| = ||\mathbf{x}||\}$ its isometric domain.

Let H be a (real or complex) Hilbert space equipped with the inner product $\langle \cdot, \cdot \rangle$. By $\mathcal{L}(H)$ we denote the space of bounded operators acting on H. The space $\mathcal{L}(H)$ is equipped with the standard operator norm. Note that **IsDom** T is a closed linear subspace for all $T \in \mathbf{B}(\mathcal{L}(H))$. Moreover, $T(\{\mathbf{x}\}^{\perp}) \subset (T\mathbf{x})^{\perp}$ for $\mathbf{x} \in \mathbf{lsDom} \ T$ and $T\left((\mathbf{lsDom} \ T)^{\perp}\right) \perp T(\mathbf{lsDom} \ T), \ T \in \mathbf{B}(\mathcal{L}(H))$. For $\mathbf{y}, \mathbf{z} \in H$ we denote by $\mathbf{y} \otimes \mathbf{z}$ the one dimensional operator defined by

 $(\mathbf{y} \otimes \mathbf{z})(\mathbf{x}) = \mathbf{y} \langle \mathbf{x}, \mathbf{z} \rangle, \ \mathbf{x} \in H.$

The operator $T \in \mathcal{L}(H)$ is called *positive* $(T \ge 0)$ if T is self-adjoint $(T = T^*)$ and $\langle T\mathbf{x}, \mathbf{x} \rangle > 0$ for all $\mathbf{x} \in H$. An operator T is a (orthogonal) projection if $T = T^2$ and $T = T^*$. If T is a projection then $T\mathbf{x} = \mathbf{0}$ for all $\mathbf{x} \perp \mathbf{IsDom} T$.

The cone of all positive operators is denoted by $\mathcal{L}_+(H)$. The positive part of the unit ball is denoted by $\mathbf{B}_+(\mathcal{L}(H))$. Note that $||T|| = \sup\{\langle Tx, x \rangle : ||x|| \le 1\}$ for $T \ge 0$. Hence $||T|| \le ||T + R||$ for $T, R \in \mathcal{L}_+(H)$.

Let $T \in \mathbf{B}_+(\mathcal{L}(H)) = \{T \in \mathcal{L}(H) : 0 \le T \le I\}$. Then $T^2, (I-T) \in \mathbf{B}_+(\mathcal{L}(H))$. We have $2T - T^2 = T(2I - T) \ge 0$ and $0 \le (I - T)^2 = I - 2T + T^2$, so $2T - T^2 \le I$. Thus $2T - T^2 \in \mathbf{B}_+(\mathcal{L}(H))$, too.

A one dimensional operator $\mathbf{x} \otimes \mathbf{y}, \mathbf{x}, \mathbf{y} \in \mathbf{S}(H)$, is positive if and only if $\mathbf{x} = \mathbf{y}$. Let $\mathbf{C}(K, E)$ denote the Banach space of all continuous functions from a compact Hausdorff space K into a Banach space E equipped with the supremum norm $||f|| = \sup_{k \in K} ||f(k)||_E.$

Obviously for a convex set $Q \subset E$ if $f(K) \subset \text{ext } Q$ then $f \in \text{ext } \{f \in C(K, E) :$ $f(K) \subset Q$. There is a natural question for which classes of convex sets Q the inverse implication characterize extreme points. Negative example of continuous function $F: K \to Q$ (Q is closed symmetric subset of \mathbb{R}^4) was presented in [2]. In fact $f \in \text{ext } f \in \mathbf{B}(\mathbf{C}(K, E))$ with $f(k) \notin \text{ext } \mathbf{B}(E)$ for all $k \in K$.

Using Michael's selection theorem ([16]) we can prove that **ext** $\{f \in \mathbf{C}(K, E):$ $f(K) \subset Q$ = { $f \in \mathbf{C}(K, E) : f(K) \subset \mathbf{ext} Q$ } for any stable convex subset Q of E. Recall that a convex set $Q \subset E$ is said to be *stable* if the barycenter map $Q \times Q \ni (\mathbf{x}, \mathbf{y}) \to \frac{\mathbf{x} + \mathbf{y}}{2} \in Q$ is open. Point out that in finite dimensional space a set is stable (see [18]) if and only if all *m*-skeletons (m = 0, 1, ..., n) of Q are closed (an *m*-skeleton of Q is a set of all $\mathbf{x} \in Q$ such that the face generated by \mathbf{x} in Q has dimension less than or equal to m).

We say that a compact Hausdorff space K carries a strict positive measure if there exists a strictly positive Radon measure μ on K (i.e. $\mu(U) > 0$ for all nonempty open $U \subset K$). The problem of characterization of spaces K which carry a strictly positive measure has been studied by many authors (e.g., see [1], [5], [11], [15], [17]). In particular Kelley ([13]) introduced the notion of intersection numbers of a collection of subsets to give the characterization of spaces which carry a strictly positive measure. It should be pointed out that in the case of a compact Hausdorff space the problem mentioned above is equivalent to the problem of existence of a finitely additive strictly positive measure. Note that $\mathbf{C}(K, \mathbb{R})$ carries a strictly positive functional if and only if its dual $\mathbf{C}(K, \mathbb{R})$ contains a weakly compact total subset ([19, Theorem 4.5b]). We refer the reader [3, Chapter 6], for summary of those and related results. In fact a strictly positive measure on K can be considered as a functional on $\mathbf{C}(K, \mathbb{R})$ which exposes the function $\mathbf{1}_K$. By $\mathbf{1}_A$ we denote the characteristic function of a set $A \subset K$.

We have

$$\begin{aligned} & \operatorname{ext} \, \mathbf{B}_{+}(\mathcal{L}(H)) = \{T \in \mathcal{L}(H) : T^{2} = T, T^{*} = T\} & ([12], [7]) \\ & \operatorname{s-ext} \, \mathbf{B}_{+}(\mathcal{L}(H)) = \operatorname{ext} \, \mathbf{B}_{+}(\mathcal{L}(H)) & ([9]). \\ & \operatorname{exp} \, \mathbf{B}_{+}(\mathcal{L}(H)) = \begin{cases} \operatorname{ext} \, \mathbf{B}_{+}(\mathcal{L}(H)) & \text{if } H \text{ is separable} \\ \emptyset & \text{if } H \text{ is not separable} \end{cases} & ([7]), \\ & \operatorname{s-exp} \, \mathbf{B}_{+}(\mathcal{L}(H)) = \operatorname{dent} \, \mathbf{B}_{+}(\mathcal{L}(H)) = \begin{cases} \operatorname{ext} \, \mathbf{B}_{+}(\mathcal{L}(H)) & \text{if } \dim H < \infty \\ \emptyset & \text{if } \dim H = \infty \end{cases}, \\ & \operatorname{ext-ray} \, \mathcal{L}_{+}(H) = \{\mathbb{R}_{+}\mathbf{x} \otimes \mathbf{x} : \mathbf{0} \neq \mathbf{x} \in H\}. \end{aligned}$$

The aim of this paper is to continue investigation for the space of operator valued continuous functions with values in $\mathcal{L}_+(H)$. We show that

$$\begin{aligned} & \operatorname{ext} \, \mathbf{B}_{+}(\mathbf{C}(K,\mathcal{L}(H))) = \{f \in \mathbf{C}(K,\mathcal{L}(H)) : f(K) \subset \operatorname{ext} \, \mathbf{B}_{+}(\mathcal{L}(H))\}, \\ & \operatorname{s-ext} \, \mathbf{B}_{+}(\mathbf{C}(K,\mathcal{L}(H))) = \operatorname{ext} \, \mathbf{B}_{+}(\mathbf{C}(K,\mathcal{L}(H))), \\ & \operatorname{exp} \, \mathbf{B}_{+}(\mathbf{C}(K,\mathcal{L}(H))) = \begin{cases} \operatorname{ext} \, \mathbf{B}_{+}(\mathbf{C}(K,\mathcal{L}(H))) & \text{if } H \text{ is separable and } K \\ & \operatorname{carries \ a \ strictly \ positive} \\ & \operatorname{measure} \\ & \text{if } H \text{ otherwise} \end{cases}, \\ & \operatorname{s-exp} \, \mathbf{B}_{+}(\mathcal{L}(H)) = \operatorname{dent} \, \mathbf{B}_{+}(\mathcal{L}(H)) = \begin{cases} \operatorname{ext} \, \mathbf{B}_{+}(\mathcal{L}(H)) & \text{if } \dim H < \infty \text{ and} \\ & \operatorname{carrd} K < \infty \\ & \emptyset & \text{if } \dim H = \infty \end{cases} \end{aligned}$$

ext-ray $\mathbf{C}_+(K, \mathcal{L}(H)) = \{\mathbb{R}_+ \mathbf{1}_{\{k_0\}} \mathbf{x} \otimes \mathbf{x} : \mathbf{0} \neq \mathbf{x} \in H, k_0 \text{ is an isolated point of } K\}.$ The corresponding results for the whole unit ball are presented in [8], [10].

2. Extremality

Theorem 1. For any Hilbert space *H* we have

ext
$$\mathbf{B}_{+}(\mathbf{C}(K,\mathcal{L}(H))) = \{f \in \mathbf{C}(K,\mathcal{L}(H)) : f(K) \subset \text{ext } \mathbf{B}_{+}(\mathcal{L}(H))\}$$

PROOF: Fix $f \in \mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H)))$ with non extremal value. Let $\mathbf{x}_o \in \mathbf{S}(H)$ be such that $f^2(k)\mathbf{x}_o \neq f(k)\mathbf{x}_o$ for some $k \in K$. Put $f_1 = 2f - f^2$ and $f_2 = f^2$. We have $\frac{f_1+f_2}{2} = f$ and $0 \leq f_i(k) \leq I$. Moreover $f_1(k)\mathbf{x}_o = 2f(k)\mathbf{x}_o - f^2(k)\mathbf{x}_o \neq f^2(k)\mathbf{x}_o = f_2(k)\mathbf{x}_o$, so $f_1 \neq f_2$. **Theorem 2.** We have s-ext $\mathbf{B}_+(\mathbf{C}(K,\mathcal{L}(H))) = \text{ext } \mathbf{B}_+(\mathbf{C}(K,\mathcal{L}(H))).$

PROOF: Let $f \in \text{ext } \mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H)))$. Fix $\varepsilon > 0$. We need to show that there exists $\delta > 0$ such that $\|\frac{g_n + h_n}{2} - f\| < \delta$, $\mathbf{x}, \mathbf{y} \in \mathbf{B}(H)$ implies $\|g_n - h_n\| < \varepsilon$.

From the uniform convexity of H there exists $\delta(\varepsilon)$ such that $\left\|\frac{\mathbf{x}+\mathbf{y}}{2}\right\| > 1-\delta(\varepsilon)$ implies $\|\mathbf{x}-\mathbf{y}\| < \varepsilon/2$. Put $\delta = \min(\frac{\varepsilon}{8}, \delta(\varepsilon))$. Fix $k \in K$. For $\mathbf{x} \perp \mathsf{IsDom} f(k)$ with $\|\mathbf{x}\| \leq 1$ we have $\|g_n(k)\mathbf{x} - h_n(k)\mathbf{x}\| \leq 2\|g_n(k)\mathbf{x} + h_n(k)\mathbf{x}\| \leq 4\delta \leq \frac{\varepsilon}{2}$.

For $\mathbf{y} \in \mathbf{IsDom} \ f(k)$ with $\|\mathbf{y}\| \leq 1$ we have $\|\frac{g_n(k)\mathbf{y}+h_n(k)\mathbf{y}}{2}\| \geq \|f_n(k)\mathbf{y}\| - \|\frac{g_n(k)\mathbf{y}+h_n(k)\mathbf{y}}{2} - f_n(k)\mathbf{y}\| \geq 1 - \delta$. Thus $\|g_n(k)\mathbf{y} - h_n(k)\mathbf{y}\| \leq \frac{\varepsilon}{2}$.

Now let $\mathbf{z} \in \mathbf{B}(H)$. And let $\mathbf{y} \in \mathbf{lsDom} f(k)$ and $\mathbf{x} \in (\mathbf{lsDom} f(k))^{\perp}$ be such that $\mathbf{z} = \mathbf{x} + \mathbf{y}$. Obviously $\|\mathbf{x}\|, \|\mathbf{y}\| \leq 1$. Now we have $\|(g_n(k) - h_n(k))\mathbf{z}\| = \|g_n(k)\mathbf{x} - h_n(k)\mathbf{x} + g_n(k)\mathbf{y} - h_n(k)\mathbf{y}\| \leq \|g_n(k)\mathbf{x} - h_n(k)\mathbf{x}\| + \|g_n(k)\mathbf{y} - h_n(k)\mathbf{y}\| \leq \varepsilon/2 + \varepsilon/2 = \varepsilon$, so $\|g_n(k) - h_n(k)\| \leq \varepsilon$ and $\|g_n - h_n\| \leq \varepsilon$.

Theorem 3. ext-ray $C_+(K, \mathcal{L}(H)) = \{\mathbb{R}_+ f : f = \mathbf{1}_{\{k_0\}} \mathbf{x} \otimes \mathbf{x} \in C(K, \mathcal{L}(H)), \mathbf{0} \neq \mathbf{x} \in H, k_0 \text{ is an isolated point of } K\}.$

PROOF: Fix $f = \mathbf{1}_{\{k_0\}} \mathbf{x} \otimes \mathbf{x} \in \mathbf{C}(K, \mathcal{L}(H))$. Let $0 \neq g \in \mathbf{C}_+(K, \mathcal{L}(H))$ such that $f - g \in \mathbf{C}_+(K, \mathcal{L}(H))$. Then $g \leq f$, so g(k) = 0 for $k \neq k_0$. Moreover $0 \leq g(k_0) \leq \mathbf{x} \otimes \mathbf{x}$. Hence $g(k_0) = \alpha \mathbf{x} \otimes \mathbf{x}$ where $\alpha \in (0, 1]$, i.e. $g = \alpha f$ and $f \in \mathsf{ext-ray} \mathbf{C}_+(K, \mathcal{L}(H))$.

Let k_0 be a not isolated point of K such that $f(k_0) \neq 0$. Then there exists a continuous function $\gamma: K \to [0,1]$ with $\gamma(k_0) = 1$ and $\gamma(k_1) = 0$ for some $k_1 \neq k_0$ such that $f(k_1) \neq 0$. Put $g = \gamma f \in \mathbf{C}_+(K, \mathcal{L}(H))$. Then $f - g \in \mathbf{C}_+(K, \mathcal{L}(H))$ and $g \neq \lambda f, \lambda \in \mathbb{R}_+$, i.e. f do not generate the extreme ray.

If for two isolated points k_i , i = 1, 2, $f(k_i) \neq 0$, then by the analogous arguments $\mathbb{R}_+ f \notin \text{ext-ray } \mathbf{C}_+(K, \mathcal{L}(H))$.

If k_0 is an isolated point of K and $f(k_0)$ is not of the form $\mathbf{x} \otimes \mathbf{x}$ ($f(k_0)$ do not generate extreme ray in $\mathcal{L}_+(H)$). Then there exists $0 \neq T \in \mathcal{L}_+(H)$ such that $f(k_0) \pm T \in \mathbf{C}_+(K, \mathcal{L}(H))$ and $T \neq \lambda f(k_0), \ \lambda \in \mathbb{R}_+$. For $g = \mathbf{1}_{\{k_0\}}T \in$ $\mathbf{C}_+(K, \mathcal{L}(H))$ we have $f - g \in \mathbf{C}_+(K, \mathcal{L}(H))$ and $g \neq \lambda f, \ \lambda \in \mathbb{R}_+$, i.e. f do not generate the extreme ray, too.

Theorem 4. If *H* is separable and a compact Hausdorff space *K* carries a strictly positive measure then

$$\exp \mathbf{B}_+(\mathbf{C}(K,\mathcal{L}(H))) = \operatorname{ext} \mathbf{B}_+(\mathbf{C}(K,\mathcal{L}(H))).$$

Otherwise

$$\exp \mathbf{B}_+(\mathbf{C}(K,\mathcal{L}(H))) = \emptyset.$$

PROOF: Let *H* be separable and let μ be a strictly positive measure on *K* with $\mu(K) = 1$. We fix an orthonormal basis $\{\mathbf{e}_i\}_{i \in I}$ and a sequence of strictly positive

reals α_i such that $\sum_{i \in I} \alpha_i = 1$. Fix $f_o \in \text{ext } \mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H)))$. We define a functional ξ on $\mathbf{C}(K, \mathcal{L}(H))$ by

$$\xi(g) = \int_K \sum_{i \in I} \alpha_i Re \langle (2g(k) - I) \mathbf{e}_i, (2f_o(k) - I) \mathbf{e}_i \rangle \, d\mu(k),$$

 $g \in \mathbf{B}(\mathbf{C}(K, \mathcal{L}(H)))$. We have $\xi(g) \leq 1 = \xi(f_o)$ for $g \in \mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H)))$. Now suppose that $\xi(g) = 1$ for some $g \in \mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H)))$. Note that if $0 \leq T \leq I$ then $-I \leq (2T - I) \leq I$ and $||2T - I|| \leq 1$. We get $\langle (2g(k) - I)\mathbf{e}_i, (2f_o(k) - I)\mathbf{e}_i \rangle = 1$ μ -a.e. and $(2g(k) - I)\mathbf{e}_i = (2f_o(k) - I)\mathbf{e}_i$. Hence $(2g(k) - I) = (2f_o(k) - I)$ and $g = f_o$, i.e. $f_o \in \exp \mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H)))$.

Now suppose that a functional ξ_o exposes $\mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H)))$ at f_o belonging to $f_o \in \exp \mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H)))$. Obviously $||f_o(k)|| = 0$ or 1. Put $K_0 = \{k \in K : f_o(k) = 0\}$ and $K_1 = K \setminus K_0$. The sets K_0 , K_1 are clopen.

Fix $\mathbf{x} \in \mathbf{S}(H)$. We define a functional ν on $\mathbf{C}(K, \mathbb{R})$ by

$$\nu(h) = \xi_o(h(f_o - \mathbf{1}_{K_0} \mathbf{x} \otimes \mathbf{x})), \qquad h \in \mathbf{C}(K, \mathbb{R}).$$

We claim that ν is strictly positive. Indeed, suppose to get a contradiction, that there exists $h_o \in \mathbf{C}(K, \mathbb{R})$ such that $0 \leq h_o \leq 1$, $h_o \neq 0$, and $\nu(h_o) \leq 0$. If **supp** $h_o \subset K_1$ then $h_o f_o \neq 0$, and $\nu(1) \leq \nu(1) - \nu(h_o) = \nu(1 - h_o) = \xi_o((1 - h_o)f_o) - \xi_o(\mathbf{1}_{K_0}\mathbf{x} \otimes \mathbf{x}) < \xi_o(f_o) - \xi_o(\mathbf{1}_{K_0}\mathbf{x} \otimes \mathbf{x}) = \nu(1)$, which is impossible. It follows that K_1 carries a strictly positive measure.

If supp $h_o \subset K_0$ then $\nu(1) \leq \nu(1) - \nu(h_o) = \nu(1 - h_o) = \xi_o(f_o + h_o \mathbf{x} \otimes \mathbf{x}) - \xi_o(\mathbf{1}_{K_0} \mathbf{x} \otimes \mathbf{x}) < \xi_o(f_o) - \xi_o(\mathbf{1}_{K_0} \mathbf{x} \otimes \mathbf{x}) = \nu(1)$, which is impossible. It follows that K_0 carries a strictly positive measure. Therefore if $\exp \mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H))) \neq \emptyset$ then K carries a strictly positive measure.

Let $\{\mathbf{e}_i\}_{i\in I}$ be an orthonormal basis of H such that, $\{\mathbf{e}_i\}_{i\in J}$, $J \subset I$, is the orthonormal base of $\bigcap_{k\in K} \mathsf{Ker} f(k)$. For $L \subset I$ we denote by P_L a projection on $\mathsf{lin} \{\mathbf{e}_i\}_{i\in L}$. Consider now a function m on all subsets of I defined by

$$m(L) = \xi_o(f_o P_{L \cap (I \setminus J)} - P_{L \cap J}).$$

If $i \in J$ then $f_o + \mathbf{e}_i \otimes \mathbf{e}_i \in \mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H)))$ and $\xi_o(f_o + \mathbf{e}_i \otimes \mathbf{e}_i) < \xi_o(f_o)$. Thus $\xi_o(\mathbf{e}_i \otimes \mathbf{e}_i) < 0$ and $m(\{i\}) = \xi_o(-\mathbf{e}_i \otimes \mathbf{e}_i) > 0$. If $i \notin J$ then there exists $k \in K$ such that $\mathbf{e}_i \in (\mathsf{Ker} \ f_o(k))^c$ i.e. $f_o(k)\mathbf{e}_i \neq 0$ and $f_oP_{\{i_o\}} \neq 0$. We have $f_o = f_oP_{\{i_o\}} + f_oP_{I\setminus\{i_o\}}$ and $\xi_o(f_oP_{I\setminus\{i_o\}}) < \xi_o(f_o)$. Hence $m(\{i_o\}) = \xi_o(f_oP_{\{i_o\}}) > 0$.

Using the same arguments we get that m(L) > 0 if L is a subset of J or L is a subset of $I \setminus J$.

Thus the function m is finitely additive and strictly positive on the family of all subsets of I. Therefore if $\exp \mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H))) \neq \emptyset$ then I is countable and H is separable. \Box

Theorem 5. If dim $H = \infty$ or card $K = \infty$ then

dent $\mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H))) = \emptyset$.

PROOF: Suppose that dim $H = \infty$. Fix $f \in \text{ext } \mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H)))$ and $k_0 \in K$. Consider the case when dim IsDom $f(k_0) = \infty$. Let $\{\mathbf{e}_i\}_{i=1}^{\infty}$ be orthonormal system in IsDom $f(k_0)$. Let P_j be a projection on $\{\mathbf{e}_j\}^{\perp}$. Put $f_j = P_j f$. Obviously $\|f_j - f\| \ge \|f_j(k_0) - f(k_0)\| = \|\mathbf{e}_j \otimes \mathbf{e}_j\| = 1$. We have $\|I - \frac{1}{n} \sum_{i=1}^n P_i\| = \|\frac{1}{n} \sum_{i=1}^n \mathbf{e}_i \otimes \mathbf{e}_i\| = \frac{1}{n}$ and $\|f - \sum_{i=1}^n f_i\| \le \|I - \frac{1}{n} \sum_{i=1}^n P_i\| = \frac{1}{n}$, i.e. $f \notin \text{dent } \mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H)))$.

Consider the case when dim Ker $f(k_0) = \infty$. Then for $g = I - f \in \mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H)))$ dim IsDom $g = \infty$, and we can apply the above argument for g.

Now suppose that **card** $K = \infty$.

Suppose that there exists a sequence $\{k_n\}$ of distinct points of K such that $\lim_n k_n = k_0$ and $f(k_n) \neq 0$. We choose the sequence of continuous functions $\gamma_n : K \to [0,1]$ such that $\gamma_n(k_n) = 1$ and $\operatorname{supp} \gamma_{n_1} \cap \operatorname{supp} \gamma_{n_2} = \emptyset$ if $n_1 \neq n_2$. Put $f_j = (1 - \gamma_j)f_o \in \mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H)))$. Obviously $||f_j - f|| \geq ||f_j(k_j) - f(k_j)|| = 1$. We have $||f - \sum_{i=1}^n f_i|| \leq ||\frac{1}{n} \sum_{i=1}^n h_i|| = \frac{1}{n}$, i.e. $f \notin \operatorname{dent} \mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H)))$.

Finally if such sequence $\{k_n\}$ does not exist we can find a closed $K_1 \subset K$ such that **card** $K_1 = \infty$ and f(k) = 0 for all $k \in K_1$. We choose the sequence of continuous functions $\gamma_n : K \to [0,1]$ such that $\|\gamma_n\| = 1$, **supp** $\gamma_n \subset K_1$ and **supp** $\gamma_{n_1} \cap$ **supp** $\gamma_{n_2} = \emptyset$ if $n_1 \neq n_2$. Put $f_j = f + \gamma_j \mathbf{x} \otimes \mathbf{x} \in \mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H))),$ $\mathbf{x} \in \mathbf{S}(H)$. Obviously $\|f_j - f\| \ge \|\mathbf{x} \otimes \mathbf{x}\| = 1$. We have $\|f - \sum_{i=1}^n f_i\| \le \|\frac{1}{n} \sum_{i=1}^n h_i\| = \frac{1}{n}$, i.e. $f \notin \text{dent } \mathbf{B}_+(\mathbf{C}(K, \mathcal{L}(H)))$.

Theorem 6. If dim $H < \infty$ and card $K < \infty$ then

s-exp
$$\mathbf{B}_+(\mathbf{C}(K,\mathcal{L}(H))) = \text{ext } \mathbf{B}_+(\mathbf{C}(K,\mathcal{L}(H))).$$

PROOF: If dim $H < \infty$ or card $K < \infty$ then $C(K, \mathcal{L}(H))$ is finite dimensional, so $B_+(C(K, \mathcal{L}(H)))$ is compact. Hence exposed and strongly exposed coincide. In view of Theorem 4 we finish the proof.

Remark. All the above theorems can be proven using the same arguments for the space of compact operators $\mathcal{K}(H)$ instead of $\mathcal{L}(H)$.

Questions. In [6] and [7] it is shown that the unit ball and the positive part of the unit ball is stable if **dim** $H < \infty$. Are $\mathbf{B}(\mathcal{L}(H))$ and $\mathbf{B}_{+}(\mathcal{L}(H))$ stable for infinite dimensional H?

In [8] it is presented an example of the extreme points of the unit ball of continues operator-valued map into l^p , $1 , <math>p \neq 2$ with non-extremal values. What about extreme positive continuous maps into $\mathcal{L}(l^p)$, $1 , <math>p \neq 2$.

References

- Argyros S., On compact space without strictly positive measures, Pacific J. Math. 105 (1983), 257–272.
- [2] Blumenthal R., Lindenstrauss J., Phelps R., Extreme operators into C(K), Pacific J. Math. 15 (1968), 35–46.
- [3] Comfort W.W., Negrepontis S., Chain conditions in topology, Cambridge University Press, 1982.
- [4] Clarkson J., Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
- [5] Gaifman H., Concerning measures on Boolean algebras, Pacific J. Math. 14 (1964), 61-73.
- [6] Grząślewicz R., Extreme operators on 2-dimensional l^p spaces, Colloquium Math. 44 (1981), 309–315.
- [7] Grząślewicz R., Extreme positive contractions on the Hilbert space, Portugaliae Math. 46 (1989), 341–349.
- [8] Grząślewicz R., Extreme operator valued continuous maps, Arkiv för Matematik 29 (1991), 73–81.
- [9] Grząślewicz R., On the geometry of $\mathcal{L}(H)$, submitted.
- [10] Grząślewicz R., Hadid S.B., Denting points in the space of operator valued continuous maps, Revista Mat. Univ. Comp. Madrid, to appear.
- [11] Herbert D.J., Lacey H.E., On supports of regular Borel measures, Pacific J. Math. 27 (1968), 101–118.
- [12] Kadison R.V., Isometries of operator algebras, Ann. Math. 54 (1954), 325–338.
- [13] Kelley J.L., Measures on Boolean algebras, Pacific J. Math. 9 (1959), 1165–1177.
- [14] Bor-Luh Lin, Pei-Kee Lin, Troyanski S.L., Characterizations of denting points, Proc. Amer. Math. Soc. 102 (1988), 526–528.
- [15] Maharam D., An algebraic characterization of measure algebras, Math. Ann. 48 (1947), 154-167.
- [16] Michael E., Continuous selections I, Ann. of Math. 63 (1956), 361–382.
- [17] Moore L.C., Jr., Strictly increasing Riesz norms, Pacific J. Math. 37 (1971), 171-180.
- [18] Papadopoulou S., On the geometry of stable compact convex sets, Math. Ann. 229 (1977), 193–200.
- [19] Rosenthal H.P., On injective Banach spaces and the spaces L[∞](μ) for finite measures μ, Acta Math. 124 (1970), 205–248.

INSTITUTE OF MATHEMATICS, POLITECHNIKA, WB. WYSPIAŃSKIEGO 27, PL-50-370 WROCŁAW, POLAND

E-mail: grzaslew@im.pwr.wroc.pl

(Received June 20, 1995)