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Strong tightness as a condition

of weak and almost sure convergence

Grzegorz Krupa, Wies law Ziȩba

Abstract. A sequence of random elements {Xj , j ∈ J} is called strongly tight if for an

arbitrary ε > 0 there exists a compact set K such that P
�T

j∈J [Xj ∈ K]
�

> 1 − ε.

For the Polish space valued sequences of random elements we show that almost sure
convergence of {Xn} as well as weak convergence of randomly indexed sequence {Xτ}
assure strong tightness of {Xn, n ∈ N}. For L1 bounded Banach space valued asymptotic
martingales strong tightness also turns out to the sufficient condition of convergence. A
sequence of r.e. {Xn, n ∈ N} is said to converge essentially with respect to law to
r.e. X if for all sets of continuity of measure P ◦ X−1, P (lim supn→∞

[Xn ∈ A]) =
P (lim infn→∞[Xn ∈ A]) = P ([x ∈ A]). Conditions under which {Xn} is essentially
w.r.t. law convergent and relations to strong tightness are investigated.
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Classification: 60B10, 60G40

1. Notations and definitions

Let (Ω,F , P ) be a probability space, (S, ̺) — a Polish space i.e. metric,
complete and separable. A random element (r.e.) is any measurable mapping
X : Ω 7→ S. For any sequence {Xn, n ∈ N} of random elements Fn will denote a
smallest σ-algebra containing X1, . . . , Xn. A mapping τ : Ω 7→ N will be called
a stopping time if [τ = n] ∈ Fn. Let T be a collection of all bounded stopping
times i.e. such stopping times that P [τ < M ] = 1. A generalized sequence aτ is a
mapping f : T 7→ S such that f(τ) = aτ . A generalized sequence aτ converges to
a if for any ε > 0 there exists ν ∈ T such that ̺(aτ , a) < ε for all τ ≥ ν, a.s.

A sequence {Xn, n ≥ 1} of random elements is randomly convergent in law to a

random elementX
(

Xτ
D
−→ X

)

if for any given ε > 0 there exists τ0 ∈ T such that

L(Xτ , X) < ε for every τ ∈ T, τ ≥ τ0 a.s., where L denotes the Lévy-Prokhorov
metric.

Definition 1.1. A collection {Pj , j ∈ J} of probability measures is tight if for
any ε > 0 there exists a compact set K ⊂ S such that for all j ∈ J

Pj(K) > 1− ε.
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Definition 1.2. A collection {Xj, j ∈ J} of random elements is strongly tight if
for any ε > 0 there exists a compact set K ⊂ S such that

P




⋂

j∈J

[Xj ∈ K]



 > 1− ε.

Obviously if a collection {Xj , j ∈ J} is strongly tight then the collection of

probability measures {P ◦ X−1
j , j ∈ J} is tight.

2. Essential with respect to law convergence of random elements

In this section we will consider random elements with values in a Polish space.
Let CPX

denote a set of continuity of measure PX , i.e.

CPX
= {A ∈ B : P [X ∈ ∂A] = 0},

where ∂A is a boundary of A.

Definition 2.1. A sequence of random elements {Xn, n ∈ N} is said to converge

essentially w.r.t. law
(

Xn
ED
−−→ X

)

if for all A ∈ CPX

P

(

lim sup
n→∞

[Xn ∈ A]

)

= P
(

lim inf
n→∞

[Xn ∈ A]
)

= P [X ∈ A].

This type of convergence was investigated in [10]. It seems to be worth men-
tioning that essential w.r.t. law convergence follows from a.s. convergence. On

the other side if Xn
ED
−−→ X then there exists a r.e. X ′ with the same distribution

as X such that Xn
a.s.
−−→ X ′.

The following theorem is analogous to Theorem 2.1 of [3].

Theorem 2.1. Let {Xn} be a sequence of r.e., and X – a r.e. Then the following
conditions are equivalent:

1. Xn
ED
−−→ X , as n → ∞,

2. for allA ∈ CPX
P (lim supn→∞[Xn ∈ A]) = limn→∞ P (

⋃∞
k=n[Xk ∈ A]) =

P [X ∈ A],
3. for any closed set F limn→∞ P (

⋃∞
k=n[Xk ∈ F ]) ≤ P [X ∈ F ],

4. for any open set G limn→∞ P (
⋂∞

k=n[Xk ∈ F ]) ≥ P [X ∈ G].

Proof: Implication ((1)⇒ (2)) is obvious.

((2)⇒ (1)). Consider condition (2) for a complement Ac of the set A ∈ CPX

lim
n→∞

P

(
∞⋃

k=n

[Xk ∈ Ac]

)

= P [X ∈ Ac].
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Then, obviously

lim
n→∞

P

((
∞⋃

k=n

[Xk ∈ Ac]

)c)

= P [X ∈ A]

and finally

lim
n→∞

P

(
∞⋂

k=n

[Xk ∈ A]

)

= P [X ∈ A].

((2)⇒ (3)). Let F δ = {x : ̺(x, F ) ≤ δ}. Then ∂F δ ⊂ {x : ̺(x, F ) = δ}. For

any closed set F there exists a sequence δk ↓ 0 such that the sets F δk ∈ CPX
and

⋂∞
k=n F δk = F . Take a closed set F . Moreover, there exists F δ ∈ CPX

such that

PX (F
δ \ F ) < ε. Then

lim
n→∞

P

(
∞⋃

k=n

[Xk ∈ F ]

)

≤ lim
n→∞

P

(
∞⋃

k=n

[Xk ∈ F δ]

)

= P [X ∈ F δ] ≤ P [X ∈ F ] + ε.

Since ε is an arbitrary positive number

lim
n→∞

P

(
∞⋃

k=n

[Xk ∈ F ]

)

≤ P [X ∈ F ].

((3)⇒ (4)). For an open set G we have

lim
n→∞

P

(
∞⋂

k=n

[Xk ∈ G]

)

= lim
n→∞

(

1− P

((
∞⋂

k=n

[Xk ∈ G]

)c))

= 1− lim
n→∞

P

(
∞⋃

k=n

[Xk ∈ Gc]

)

≥ 1− P [X ∈ Gc]

= P [X ∈ G].

The case ((4)⇒ (3)) can be proved in the similar way.

Now we need only (((3) and (4))⇒ (2)). Let A ∈ CPX
and let IntA denote

interior of A. Then

P [X ∈ IntA] ≤ lim
n→∞

P

(
∞⋂

k=n

[Xk ∈ IntA]

)

≤ lim
n→∞

P

(
∞⋃

k=n

[Xk ∈ IntA]

)

≤ lim
n→∞

P

(
∞⋃

k=n

[Xk ∈ A]

)

≤ lim
n→∞

P

(
∞⋃

k=n

[Xk ∈ Ā]

)

≤ P [X ∈ Ā].
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Since A ∈ CPX
, (2) holds. �

There is a connection between essential w.r.t. law convergence and strong tight-
ness.

Theorem 2.2. If a sequence of random elements {Xn, n ∈ N} converges essen-
tially w.r.t. law to a random element X , then it is strongly tight.

Proof: Since S is separable there exists a countable dense set {xi, i ∈ N}. Let
K(xi, δ) = {x : ̺(x, xi) < δ}. Define

Bm(δ) =

m⋃

i=1

K(xi, δ).

For any ε > 0 there exists m ∈ N such that

P [X ∈ Bm(δ)] > 1−
ε

2
.

By (4) of Theorem 2.1

lim
n→∞

P

(
∞⋂

k=n

[Xk ∈ Bm(δ)]

)

≥ P [X ∈ Bm(δ)] > 1−
ε

2

and, by the definition of the limit, there exists an n0 ∈ N such that

P





∞⋂

k=n0

[Xk ∈ Bm(δ)]



 > 1−
3ε

4
.

On the other side, for each random element Xi (i = 1, . . . , n0 − 1) there exists mi

such that
P [Xi ∈ Bmi(δ)] > 1−

ε

4 · 2i
.

Put m(ε, δ) = max{m, m1, m2, . . . , mn0−1}. Then

P

(
∞⋂

i=1

[Xi ∈ Bm(ε,δ)(δ)]

)

> 1− ε.

Define a set

K =

∞⋂

i=1

B
m( ε

2k
, 1
k

)(
1

k
),

which is compact (it is closed and contains a finite ε-net). Moreover,

(1) P

(
∞⋂

i=1

[Xi ∈ K]

)

> 1− ε.
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Indeed,

P

(
∞⋂

i=1

[Xi ∈ K]

)

= 1− P

(
∞⋃

i=1

[Xi /∈ K]

)

= 1− P

(
∞⋃

i=1

[

Xi ∈

∞⋂

k=1

Bm( ε

2k
, 1
k

)(
1

k
)

])

= 1− P

(
∞⋃

i=1

∞⋃

k=1

[

Xi /∈ B
m( ε

2k
, 1
k

)(
1

k
)

])

≥ 1−

∞∑

k=1

P

(
∞⋃

i=1

[

Xi /∈ Bm( ε

2k
, 1
k

)(
1

k
)

])

= 1−

∞∑

k=1

(

1− P

(
∞⋂

i=1

[

Xi ∈ B
m( ε

2k
, 1
k

)(
1

k
)

]))

≥ 1−

∞∑

k=1

ε

2k
= 1− ε.

Condition (1) assures strict tightness of the sequence {Xi}. �

Essential w.r.t. law convergence of random elements sequence {Xn} is equiv-
alent to the weak convergence of {Xτ} for all τ → ∞ (τ ∈ T ). It is easy to see
that the following theorem holds.

Theorem 2.3. Suppose that for all τ → ∞ (τ ∈ T ) Xτ
D
−→ X , then a collection

of probability measures PXτ
= PX−1

τ is tight.

By the Prokhorov theorem ([3]) if a sequence {Xn, n ≥ 1} of random elements
converges in law to a random element X , then the sequence of their distributions
is tight, i.e. for any ε > 0 there exists a compact Kε such that

P [Xn ∈ Kε] > 1− ε.

By the Theorem 2.3 we have

Corollary 2.1. If for any τ → ∞, (τ ∈ T ) Xτ
D
−→ X , then the sequence

{Xn, n ≥ 1} is strongly tight.

3. Strong tightness in Polish spaces

Theorem 3.1. Let (S, ̺) be a Polish space and let {Xn, n ≥ 1} be a sequence of

S-valued random elements. If Xn
a.s.
−−→ X as n → ∞, for some r.e. X , then the

sequence {Xn} is strongly tight.

Proof: By the Theorem 2 in [5], Xτ
D
−→ X for any τ ∈ T , such that τ → ∞.

This combined with Corollary 2.1 completes the proof. �
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Some properties of the metric space (S, ̺) carry over to the space of random
elements ES with the Lévy-Prokhorov metric L or with the Ky-Fan metric

K(X, Y ) = inf{ε : P [̺(X, Y ) > ε] < ε}.

Examples of those properties are separability and completeness (see [3]). Unfor-
tunately, compactness of the space S does not assure compactness of the (ES , K).

Example 3.1. Let ξ be a random variable uniformly distributed on [0, 1]. Let

0, δ1δ2δ3 . . . be an infinite dyadic representation of ξ, i.e. ξ = δ1
2 +

δ2
22
+ δ3

23
+ . . . .

For any integer number n

[δn = 0] =

2n−1

⋃

i=1

[
2(i − 1)

2n
≤ ξ <

2i − 1

2n

]

,

[δn = 1] =

2n−1

⋃

i=1

[
2i − 1

2n
≤ ξ <

2i

2n

]

.

Obviously,

P [δn = 0] =

2n−1

∑

i=1

P

[
2(i − 1)

2n
≤ ξ <

2i − 1

2n

]

=

2n−1

∑

i=1

1

2n
=
1

2
.

Analogously, P [δn = 1] =
1
2 . Random variable δn are also independent. Indeed,

take any finite sequence {i1, i2, . . . , in} ⊂ N. Let m = in and η(m) =
δi1

2i1
+

δi2

2i2
+ · · · +

δin

2in
be an m-digital dyadic number. (This does not affect the above

assumption of ξ having infinite representations.) Let {εi} be a 0-1 sequence.

P ([δi1 = ε1] ∩ [δi2 = ε2] ∩ · · · ∩ [δin = εn])

= P

[

η(m) =
δi1

2i1
+

δi2

2i2
+ · · ·+

δin

2in

]

=
1

2m

= P [δi1 = ε1] · P [δi2 = ε2] · . . . · P [δin = εn].

Consider now the matrix

δ1 δ3 δ6 . . .
δ2 δ5 . . . . . .
δ4 . . . . . . . . .

and random dyadic numbers

ξ1 = 0, δ1δ3δ6 · · · =
δ1

2
+

δ3

22
+

δ6

23
+ . . .

ξ2 = 0, δ2δ5δ9 · · · =
δ2

2
+

δ5

22
+

δ9

23
+ . . .

ξ3 = 0, δ4δ8 · · · =
δ4

2
+

δ8

22
+ . . .
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ξi are independent for δi are. Now we will prove that ξi are uniformly distributed
on [0, 1]. Indeed, for any n

ξ
(n)
i =

n∑

k=1

δk

2k

may take values from the set {0, 1
2n , 2

2n , . . . , 2n−1
2n } with probabilities 1

2n . As n →

∞, ξ
(n)
i → ξi and the distribution of ξ

(n)
i converges to the uniform distribution.

Let {ξn, n ≥ 1} be a sequence of i.i.d. random variables uniformly distributed
on [0, 1] defined above. By the Borel-Cantelli Lemma a sequence of i.i.d. r.v.
converges in law (and, equivalently, in the Ky-Fan metric) to a degenerated r.v.
Indeed, let

Fn(x) =







0, for x ≤ 0,

x, for x ≤ 1,

1, for x > 1,

be the distribution function of ξn. Let An = [ξn < x]. Then

∞∑

n=1

P (An) =
∞∑

n=1

Pξ−1
n ((−∞, x)) =

∞∑

n=1

Fn(x) =

{
0, for x ≤ 0,

∞, for x > 0.

For x ≤ 0, obviously Fn(x) → 0. If x > 0, then, since
⋂∞

n=1

⋃∞
k=n ξ−1

k
((−∞, x))

is a decreasing sequence,

P

(
∞⋂

n=1

∞⋃

k=n

ξ−1
k
((−∞, x))

)

= lim
n→∞

Pξ−1
n ((−∞, x)) = lim

n→∞
Fn(x) = 1

which equals 1, by the Borel-Cantelli Lemma.

4. Convergence in Banach spaces

Let E denote a Banach space with the norm ‖ · ‖ and let E∗ be its dual with
the norm ‖ · ‖∗.
We have the following result similar to the one obtained in [1].

Lemma 4.1. Let E be a separable Banach space. Suppose Y is an integrable
cluster point of the sequence {Xn, n ≥ 1} ⊂ E . Then there exists an increasing
sequence of stopping times {τn, n ∈ B} ⊂ T , such that

Xτn → Y a.s.

as n → ∞.

Proof: We have to show that for any ε > 0 there exists δ > 0 such that for all
m ≥ 1 we can choose τk ≥ m so that

(4) P [̺(Xτk
, Y ) > δ] ≤ ε.
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For N ≥ m define a random element

Z = E(Y | FN )

measurable with respect to FN . Then P [̺(Y, Z) < δ
2 ] > 1 −

ε
2 , (see Proposition

V-2-6 in [6]), and for all N ≥ 1, 2, . . . there exists n > N such that ̺(Xn, Y ) < δ
2 .

Moreover ̺(Xn, Z) ≤ ̺(Xn, Y ) + ̺(Y, Z), therefore

[̺(Y, Z) <
δ

2
] ⊂ [̺(Xn, Z) <

δ

2
, n ≥ N ].

Thus there exists N0 > N such that

P [̺(Xn, Z) <
δ

2
for some N ≤ n ≤ N0] > 1−

ε

2
.

Define the set Φn = [̺(Xn, Z) < δ
2 ] and a stopping time

τk+1(ω) =







m k = 0,

inf{n > τk(ω) : ω ∈ Φn for some N ≤ n ≤ N0}

N0 ω /∈ Φn.

Now P [̺(Xτk
, Z) < δ

2 ] ≥ 1−
ε
2 and

P [̺(Xτk
, Z) < δ] ≥ 1− ε.

�

Uniform boundness of E‖Xn‖ is one of the conditions that assure almost sure
convergence of real-valued amarts. However this condition is not sufficient in
Banach spaces. It turns out that strong tightness is necessary and sufficient
condition of almost sure convergence of the L1 bounded Banach space valued
amarts.
Let us outline the proofs of these facts.

Lemma 4.2. Let E be a Banach space and let K be a compact subset of E .
There exists a countable sequence {x∗k} ⊂ E∗ such that for an arbitrary sequence
{xn} ⊂ K, xn → x (in the norm) for some x if and only if for all k, x∗k(xn)
converges ([6]).

Remark 4.1.. In general, even the convergence of {x∗(xn), n ∈ N} for all x∗ ∈ E∗

does not imply even weak convergence of {xn, n ∈ N}. Consider the following
sequence xn = (1, 1, . . . , 1

︸ ︷︷ ︸

n

, 0, . . . ) in the space c0 of all real-valued sequences

converging to zero.
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Lemma 4.3. Suppose {Xn, n ≥ 1} is strongly tight sequence of random ele-

ments. Then there exists a countable subset {x∗k} ⊂ E∗ such that Xn
a.s.
−−→ X if

and only if for any k ∈ N the sequence {x∗k(Xn), n ∈ N} converges for n → ∞.

Proof: If Xn
a.s.
−−→ X then for any x∗ ∈ E∗ x∗(Xn)

a.s.
−−→ x∗(X).

Consider now sufficiency. Take any p ∈ N, then there exists a compact set K 1

p

such that

P

(
∞⋂

n=1

[Xn ∈ K 1

p

]

)

> 1−
1

p
.

By Lemma 4.2 for any {xn, n ∈ N} ⊂ K 1

p

, xn converges to some x if and only if

there exists a countable set {x
∗(p)
l

} ⊂ E∗ such that x
∗(p)
l
(xn) converges. Let

{x∗k} = {x
∗(p)
l

, p, l ∈ N}.

Suppose that for all k ∈ N the sequence {x∗k(Xn)} converges a.s. for n → ∞. Let
Ω0 be a set where {x

∗
k(Xn(ω)), n ∈ N} converges for any k. Define

Ωp =

∞⋂

n=1

[Xn ∈ K 1

p

] ∩ Ω0

and Ω′ =
⋃∞

p=1Ωp. Obviously, P (Ωp) > 1− 1
p and P (Ω′) = 1. Take ω ∈ Ω′, then

ω ∈ Ωp for some p. The sequence x
∗(p)
l
(Xn(ω)) converges for all l. The limit is

measurable. Thus, by Lemma 4.3, Xn(ω) converges, therefore Xn converges a.s.
�

4.1 Almost sure convergence of asymptotic martingales

Definition 4.1 ([5]). A sequence {(Xn,An); n ≥ 1} of Pettis integrable r.v.s. is
called an asymptotic martingale (amart) iff Xn is An-measurable for every n ∈ N

and if for every ε > 0 there exists τ0 ∈ T such that for every τ, ν ∈ T τ, ν ≥ τ0

we have
‖EXτ − EXν‖ < ε.

Theorem 4.1. Let {(Xn,An)} be an L1-bounded asymptotic martingale. The

necessary and sufficient condition for a.s. convergence of Xn to an integrable

random element X is strong tightness of the sequence {Xn}.

Proof: Necessity of the above condition follows from the Theorem 3.1. For suffi-
ciency, assume that {Xn} is strictly tight. For any x∗ ∈ E∗ the sequence x∗(Xn)
is an L1-bounded real-valued asymptotic martingale. Indeed supn E|x∗(Xn)| ≤
supn ‖x∗‖∗ · E‖Xn‖ < ∞ and |Ex∗(Xτ ) − Ex∗(Xσ)| = |(EXτ ) − x∗(EXσ)| ≤
‖x∗‖∗‖EXτ − EXσ‖. Since {x

∗(Xn)} is an L1-bounded asymptotic martingale
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it converges a.s. ([1]) and, by Lemma 4.3 Xn converges a.s. The limit X of {Xn}
is integrable. Indeed, by Fatou lemma

∫

XdP =

∫

lim
n→∞

Xn = lim
n→∞

∫

XndP < ∞.

�
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