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On finite loops whose inner

mapping groups have small orders

Markku Niemenmaa

Abstract. We investigate the situation that the inner mapping group of a loop is of order
which is a product of two small prime numbers and we show that then the loop is soluble.
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1. Introduction

If Q is a loop then the left and right translations are permutations of Q and
they generate the multiplication groupM(Q) of the loop Q. The stabilizer of the
neutral element of Q is denoted by I(Q) and is called the inner mapping group
of Q. One of the interesting problems here is to study how the structure of I(Q)
influences the structure of M(Q) and Q. In this short note we give a partial
answer to the following general problem (stated in [8]): If |I(Q)| = pq, where p
and q are two different prime numbers, does it then follow that M(Q) is a soluble
group? We have already answered this problem in the positive in the case that
|I(Q)| = 6 (for the details, see [5]) and now we are able to show that M(Q) is
soluble provided that pq ≤ 21. We emphasize that all groups and loops in this
paper are finite. For the background material about loops and their multiplication
groups the reader is advised to consult [6], [7], [8].

2. H-connected transversals

Now many properties of loops can be reduced to the properties of connected
transversals in the multiplication group. Thus we first consider some properties
of these transversals in this section. If G is a group, H ≤ G and A and B
are two left transversals to H in G such that the commutator subgroup [A, B]
is a subgroup of H then we say that A and B are H-connected in G. For the
properties of connected transversals the reader is advised to consult [6]. In the
following lemmas we assume that A and B are H-connected transversals.

Lemma 1. If C ⊆ A ∪ B and T = 〈H, C〉 then C ⊆ TG (here TG denotes the

core of T in G).

Lemma 2. If H is cyclic then G is soluble.

For the proofs, see [6, Lemma 2.5] and [4, Corollary 2.3].
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Lemma 3. If |H | = k then [G : CG(d)] ≤ k2 for any d ∈ A ∪ B.

Proof: Let d ∈ A and h be a fixed element from H and write F (d, h) = {b ∈
B : d−1b−1db = h}. If b, c ∈ F (d, h) then bc−1 ∈ CG(d) and b ∈ CG(d)c.
Thus F (d, h) ⊆ CG(d)bh where bh is a fixed element from F (d, h). Clearly, B =
∪F (d, h) where h goes through all the elements of H . Thus G = BH and BH ⊆
CG(d){bh : h ∈ H}H , hence our proof is complete. �

Lemma 4. If HG = 1 and [A, B] = 1 then A and B are isomorphic subgroups
of G.

For the proof, see [7, Lemma 2.3].
After these preparations we are ready to prove our main theorem.

Theorem 1. Let G be a finite group, H ≤ G, |H | = pq (where p > q are two
different prime numbers) and let A and B be two H-connected transversals such
that G is generated by A and B. Then G is soluble at least in the following cases:

(a) q is not a factor of p − 1;
(b) q = 2 and p = 3, 5, 7;
(c) q = 3 and p = 7.

Proof: If (a) holds then H is cyclic and we are ready by Lemma 2. Clearly, we
may assume that H is noncyclic and therefore we can write H = PQ where P is
the normal subgroup of order p and Q is nonnormal of order q. Let G be a minimal
counterexample. We first assume that G has a proper subgroup T such that H is
a maximal subgroup of T . If P is normal in T then it is easy to see that T/P has
H/P -connected transversals. Since H/P is cyclic, T/P is soluble by Lemma 2,
hence T is soluble. Thus we can assume that P is not normal in any subgroup of
G which properly contains H , hence NG(P ) = H . Then consider the group TG

from Lemma 1. If H ≤ TG then T = TGH is normal in G. Now P is a Sylow
p-subgroup of T and by Frattini lemma, G = NG(P )T = T , a contradiction. Now
TG ∩H is normal in H and thus TG ∩H ≤ P . If E = TGP then NE(P ) = P and
we conclude that E is a Frobenius group with P as the Frobenius complement.
Since the Frobenius kernel is always nilpotent ([3, p. 499]) we conclude that E and
TG are soluble. Then consider the factor group G/TG. Now HTG/TG is cyclic
or of order pq and G/TG is generated by connected transversals. Then from the
minimality of G or from Lemma 2, it follows that G/TG is soluble. Since TG is
soluble we conclude that G is soluble. Thus we can assume that H is a maximal
subgroup of G.
Now if N is a nontrivial proper normal subgroup of G then G = NH . It is easy

to conclude that NP is a Frobenius group with P as the Frobenius complement.
It follows that N is soluble and therefore also G is soluble. This means that we
can assume that G is simple.
Let a ∈ A. If the commutator subgroup [a, B] is not contained in any cyclic

subgroup of H then the set [a, B] generates H . Thus we can find elements b and
c from B such that G = 〈a, b, c〉. From Lemma 3 we see that [G : CG(d)] ≤ (pq)2
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for any d ∈ A ∪ B. Since G is simple and therefore Z(G) = 1, we conclude that
|G| ≤ (pq)6.
Then let a1 and a2 be elements from A such that the commutator subgroups

[a1, B] and [a2, B] are both nontrivial and they are contained in two different
proper subgroups of H . Then we can find elements b and c from B such that
G = 〈a1, a2, b, c〉, hence |G| ≤ (pq)8 by Lemma 3.
Finally, let [A, B] ≤ S where S is a proper subgroup of H . If [A, B] = 1

then A and B are isomorphic subgroups of G by Lemma 4. If A 6= B then
A ∩ B = 1, because G is generated by A ∪ B and Z(G) = 1. It follows that
|G| ≤ (pq)2. If A = B then G = 〈A〉 = A which is not possible. Then assume
that 1 6= [A, B] ≤ S. We also assume that no subset of A∪B containing less than
six elements can generate G. Now we can proceed as in the proof Theorem 3.1
in [6] (here S is cyclic of prime order) and it follows that A = B is an abelian
group. Since this is not possible we conclude that there exists such a subset of
A∪B containing at most five elements that it generates G. Since [A, B] ≤ S and
|S| ≤ p, we can apply the proof of Lemma 3 and we have that [G : CG(d)] ≤ p2q

for any d ∈ A ∪ B. Thus |G| ≤ (p2q)
5
= p10q5.

Now we can sum up what we have obtained so far: G is simple, H is maximal
in G and in any case |G| ≤ max{(pq)8, p10q5}.
The list of maximal subgroups of finite simple groups is complete up to the

order D = 495766656000 for the sporadic Conway group (see the Atlas of Finite
Groups, p. 134). Simple calculations show that pq ≤ 21. By checking the orders
of maximal subgroups from Atlas we have to investigate the following cases (we
list here the order of H and after that the corresponding finite simple group): 6
and 10 for PSL(2,5); 14 for PSL(2,8), PSL(2,13) and for the Suzuki group Sz(8);
21 for PSL(2,7). Now it follows from the results of Vesanen ([9] and [10]) that the
special linear groups that appear in our list do not have connected transversals
to the corresponding subgroups. Thus we only have to have a closer look at
the Suzuki group Sz(8) of order 29120 (for the properties of this group, see [1,
pp. 182–195] and [2, p. 28]). We can now apply Lemma 3 (with G = Sz(8) and
|H | = 14) and we see that |CG(d)| > 148 for any d ∈ A∪B. Now CG(d) = G is not
possible and therefore CG(d) has to be a maximal subgroup of order 448. From [1,
Theorem 3.11, p. 193] it follows that this subgroup is nilpotent, a contradiction.
Thus we conclude that the group Sz(8) does not have connected transversals to
maximal subgroups of order 14. The proof of the theorem is complete. �

3. Soluble loops
The connection between multiplication groups of loops and connected transver-

sals is given in [6, Theorem 4.1]. From this and Theorem 1 we can conclude that
if Q is a finite loop and |I(Q)| = pq where p and q are as in Theorem 1 then
M(Q) is soluble. Quite recently it has been shown by Vesanen [11] that if Q is
a finite loop such that M(Q) is soluble then also Q is soluble. By combining all
these results we get
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Theorem 2. If Q is a finite loop such that |I(Q)| = pq where p and q are two
different prime numbers as in Theorem 1 then Q is a soluble loop.
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