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Characterization of sets of determination for parabolic

functions on a slab by coparabolic (minimal) thinness

Jarmila Ranošová

Abstract. Let T be a positive number or +∞. We characterize all subsetsM of Rn×]0, T [
such that

(i) inf
X∈Rn×]0,T [

u(X) = inf
X∈M

u(X)

for every positive parabolic function u on R
n×]0, T [ in terms of coparabolic (minimal)

thinness of the set Mδ = ∪(x,t)∈MBp((x, t), δt), where δ ∈ (0, 1) and Bp((x, t), r) is the

“heat ball” with the “center” (x, t) and radius r. Examples of different types of sets
which can be used instead of “heat balls” are given.
It is proved that (i) is equivalent to the condition supX∈Rn×R+

u(X) = supX∈M u(X)

for every bounded parabolic function on R
n ×R

+ and hence to all equivalent conditions
given in the article [7].
The results provide a parabolic counterpart to results for classical harmonic functions

in a ball, see References.

Keywords: heat equation, parabolic function, Weierstrass kernel, set of determination,

Harnack inequality, coparabolic thinness, coparabolic minimal thinness, heat ball

Classification: 35K05, 35K15, 31B10

I. Preliminaries

In this paper the following notation is used: Small letters, such as x, y, will
denote points in R

n; capital letters, such as X , points in R
n+1, and t denotes the

“time”. (We will write X = (x, t) for x ∈ R
n and t ∈ R.) The set R

n × {0} is
identified with R

n, and, when there is no danger of confusion, the point (y, 0) ∈
R

n × {0} is denoted by y. The Lebesgue measure in R
n will be denoted by λn.

The Green function G is defined on R
n+1 by

G(X, Y ) = G((x, t), (y, s)) = [4π(t − s)]−n/2 exp(−‖x − y‖2
4(t − s)

) for t > s;

= 0 for t ≦ s.

The symbol B(x, r) denotes the closed ball centered at x ∈ R
n with radius r.
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In this paper the following subsets of Rn+1 will be of special interest:

Let X ∈ R
n × R

+, X = (x, t) = (x1, x2, . . . , xn, t), r ∈ R
+, α, β, γ ∈ R

+,
γ ≧ β, a, b ∈ R

+, δ ∈ R
+.

Discs: D(X, r) = B(x, r) × {r}; DX,α,β = B(x, α
√

t)× {βt};
Cylinders: C(X, r, [a, b]) = B(x, r) × [a, b];

CX,α,β,γ = B(x, α
√

t)× [βt, γt];

Parabolic balls: Bp(X, r) = {Z ∈ R
n+1 : G(X, Z) ≧ (4πr)−n/2} ∪ {X};

B
p
X,δ = Bp(X, δt);

Coparabolic balls: Bcp(X, r) = {Z ∈ R
n+1 : G(Z, X) ≧ (4πr)−n/2} ∪ {X};

B
cp
X,δ = Bcp(X, δt);

Intervals: I(X, r) = (x1 − r, x1 + r)× . . .×(xn − r, xn + r) × (t − r2, t);
IX,δ = I(X, δ

√
t);

Paraboloids: P (X, a) = {(z, s) ∈ R
n+1 : ‖z − y‖2 ≦ a(s − t)};

P (X, a, v) = {(z, s) ∈ R
n+1 : ‖z − y‖2 ≦ a(s − t)

and s ≦ t+ v};
PX,a,δ = P (X, a, δt).

Let T ∈]0,∞], M ⊂ R
n×]0, T [ and let a set AX be associated with every

X ∈ M . Then MA will denote the set ∪X∈MAX ∩ (Rn×]0, T [). We will use the
obvious notation MDα,β

, MCα,β,γ
, MBp

δ
, MBcp

δ
, MIδ

and MPa,δ
.

ForM ⊂ R
n+1 the set {(y, s) ∈ R

n+1; (y,−s) ∈ M} will be called the reflection
of M and denoted by M⊖.

Let T ∈]0,∞], M ⊂ R
n×]0, T [ and Y ∈ R

n × {0}. The set is coparabolic
minimal thin at Y , if and only if M is coparabolic thin at Y . (See section III.2.)
We will write M is coparabolic (minimal) thin.

Let 0 < T ≦ ∞. A point Y = (y, 0) is called a parabolic limit of a sequence
{Xk}, Xk = (xk, tk), of points in R

n×]0, T [, if {Xk} converges to Y and

lim inf
k→∞

tk‖xk − y‖−2 > 0

(that is all Xk belong to some paraboloid of revolution with vertex Y and opening
upward).
Let M ⊂ R

n×]0, T [. A point Y ∈ R
n × {0} is called a parabolic limit point

of the set M , if there exists a sequence {Xk} such that every Xk ∈ M and Y is
a parabolic limit of {Xk}.
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II. The main results

Theorem. Let 0 < T ≦ ∞ and M ⊂ R
n×]0, T [. Then the following statements

are equivalent:

(i) inf
X∈Rn×]0,T [

u(X) = inf
X∈M

u(X)

for all bounded parabolic functions u on R
n×]0, T [;

(ii) inf
X∈Rn×]0,T [

u(X) = inf
X∈M

u(X)

for all positive parabolic functions u on R
n×]0, T [;

(iii) there exist α, β, γ ∈ R
+, γ ≧ β such that

the set of points of R
n × {0} at which MCα,β,γ

is (minimal) coparabolic thin

has Lebesgue measure zero;

(iv) for any α, β, γ ∈ R
+, γ ≧ β

the set of points of R
n × {0} at which MCα,β,γ

is (minimal) coparabolic thin

has Lebesgue measure zero;

(v) the set of points of R
n × {0} which are not parabolic limit points of M

has Lebesgue measure zero;

(vi) there exists δ ∈ (0, 1) such that
the set of points of R

n × {0} at which MBp
δ
is (minimal) coparabolic thin

has Lebesgue measure zero;

(vii) for any δ ∈ (0, 1)
the set of points of R

n × {0} at which MBp
δ
is (minimal) coparabolic thin

has Lebesgue measure zero;

Remark 1. A set satisfying condition (i) will be called a set of determination.

Remark 2. The equivalence of (i), (ii), (v) and (vi) was announced in the abstract.

Remark 3. The “cylinder” conditions (iii) and (iv) include “disc” conditions,
because CX,α,β,γ = DX,α,β for β = γ.

Corollary. Conditions (ix)–(xiii) are equivalent to (i) from previous Theorem:

(ix) there exists δ ∈ R
+ such that

the set of points of R
n × {0} in which MBcp

δ
is (minimal) coparabolic thin

has Lebesgue measure zero;

(x) for any δ ∈ R
+

the set of points of R
n × {0} at which MBcp

δ
is (minimal) coparabolic thin

has Lebesgue measure zero;
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(xi) there exists δ ∈ (0, 1) such that
the set of points of R

n × {0} at which MIδ
is (minimal) coparabolic thin

has Lebesgue measure zero;

(xii) for any δ ∈ (0, 1)
the set of points of R

n × {0} at which MIδ
is (minimal) coparabolic thin

has Lebesgue measure zero;

(xiii) there exist a, δ ∈ R
+ such that

the set of points of R
n × {0} at which MPa,δ

is (minimal) coparabolic thin

has Lebesgue measure zero;

(xiv) for any a, δ ∈ R

the set of points of R
n × {0} at which MPa,δ

is (minimal) coparabolic thin

has Lebesgue measure zero.

In Part III, results from parabolic and coparabolic potential theory needed in
this paper are summarized.

The proof of Theorem is given in Part IV. First equivalence of (i), (ii), (iii),
(iv) and (v) for α, β, γ ∈ R

+, γ ≧ β and β > 1 will be proved.

The implications (ii) ⇒ (i) and (iv) ⇒ (iii) are trivial. The equivalence (i) ⇔
(v) was established in [7] for T = ∞. But any bounded parabolic function u on
R

n×]0, T [ is a restriction of a bounded parabolic function on R
n × R

+ and for
any u parabolic on R

n×R
+: inf

X∈Rn×R+
u(X) = inf

X∈Rn×]0,T [
u(X) (both assertions

follow immediately from Theorem III.1), so (i)⇔ (v) is true on R
n×]0, T [ as well.

We will prove (iii) ⇒ (ii) and (v) ⇒ (iv).
Then the assumption β > 1 will be removed and in the end the rest of Theorem

and Corollary will be proved.

III. Parabolic and coparabolic potential theory

1. The case of R
n+1.

Parabolic and coparabolic function (see [4, p. 263]).
A real function u on an open set D ⊂ R

n+1 having continuous partial deriva-

tives ∂u
∂t and

∂2u
∂x2i
for i = 1, . . . , n, and satisfying the equation

∂u

∂t
=

n
∑

i=1

∂2u

∂x2i
(resp.

∂u

∂t
= −

n
∑

i=1

∂2u

∂x2i
)

on D is called parabolic (resp. coparabolic) on D.

A function (x, t) → u(x, t) is coparabolic on D, if and only if the function
(x, t)→ u(x,−t) is parabolic on D⊖.
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The Green function of R
n+1 (see [4, p. 266]) .

Let b be a function on R
n+1 defined as

b(x, t) = (4πt)−n/2 exp(−‖x‖2
4t
) for t > 0,

= 0 for t ≦ 0.

The Green function G is defined on R
n+1 × R

n+1 by

G(X, Y ) = G((x, t), (y, s)) = b(x − y, t − s).

The function G(., Y ) is the Green function with pole Y for the heat equation.
This function is positive, parabolic on R

n+1\{Y } and vanishes below Y and the
limit at the point ∞ is zero.
The function G(X, .) is the Green function with poleX for the adjoint equation.

This function is positive, coparabolic on R
n+1\{X} and vanishes above X and

the limit at the point ∞ is zero.
If µ is a measure on R

n+1 the functions Gµ and µG defined by

Gµ(X) =

∫

Rn+1

G(X, Y ) dµ(Y ) and µG(Y ) =

∫

Rn+1

G(X, Y ) dµ(X)

will be called potential and copotential on R
n+1, respectively.

The Green function of an interval (see [4, p. 272]).
Let

I = (a1, b1)× (a2, b2)× · · · × (an, bn)× (t1, t2)
and cj = bj − aj .
The Green function GI is defined by

GI (X, Y ) =
n

∏

j=1

∞
∑

i=−∞

[b(2icj − xj + yj , t − s)− b(2icj + 2aj − xj − yj , t − s)]

forX = (x1, x2, . . . , xn, t) and Y = (y1, y2, . . . , yn, s) and −∞ < t1 < t < t2 < ∞.

Parabolic measure for an interval (see [4, p. 273]).
Let X ∈ I, µI(X, .) be supported by the part of ∂I strictly below X :

- on the lower boundary µI(X, .) is absolutely continuous relative to λn with
continuous density

Y → GI(X, Y );
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- on the part of the lateral boundary with jth coordinate bj

Y → − ∂

∂yj
GI (X, Y );

- on the part of the lateral boundary with jth coordinate aj

Y → ∂

∂yj
GI(X, Y ).

Parabolic averages (see [4, p. 275]).

Let X ∈ R
n+1 and δ > 0. Recall that

I(X, δ) = (x1 − δ, x1 + δ)× (x2 − δ, x2 + δ)× · · · × (xn − δ, xn + δ)× (t − δ2, t).

If u is a Borel measurable function on ∂I(X, δ), we define

L(u, X, δ) = µI(X,δ)(X, u).

If u is a parabolic function on D and I(X, δ) ⊂ D, then

u(X) = L(u, X, δ).

Superparabolic, subparabolic, cosuperparabolic and cosubparabolic
functions (see [4, p. 277]).

A function u from an open set D into ]−∞,∞] is called superparabolic if
(a) u is lower semicontinuous;

(b) u is finite on a dense subset of D;

(c) u(X) ≧ L(u, X, δ) if I(X, δ) ⊂ D.

A subparabolic function is defined as the negative of a superparabolic function.

A cosuperparabolic (resp. cosubparabolic) function is defined as a function on
an open set D for which the function (x, t) → u(x,−t) is superparabolic (resp.
subparabolic) on D⊖.

Let u be a function defined on D. The greatest subparabolic minorant, if
there is one, is denoted by GMDu. If u is a superparabolic function which has a
subparabolic minorant, then GMDu exists and is parabolic. (See [4, p. 295].)
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The Green function of an open set D (see [4, p. 298]).
Let D be a nonempty open subset of Rn+1 and Y a point of D. The parabolic

Green function with pole Y is defined on D by

GD(., Y ) = G(., Y )− GMDG(., Y ).

The functionGD(., Y ) is positive and superparabolic onD, parabolic onD\{Y }
and differs from G(., Y ) by a continuous function and GMDGD(., Y ) = 0.

The Riesz decomposition (see [4, p. 305]).
Let D be a nonempty open subset of Rn+1. If v is a superparabolic function on

D which has a subparabolic minorant on D, then there exist a parabolic function
u on D and a measure µ on D such that v = GDµ+ u on D.

Parabolic reduction operation (see [4, p. 310]) .
Let D be an open subset of R

n+1 and M ⊂ D. Let v be a positive super-
parabolic (resp. cosuperparabolic) function on D.
The superparabolic (resp. cosuperparabolic) reduction of v on M is defined as

RM
v = inf{u;u is positive superparabolic function on D, u ≧ v on M};

(resp.∗RM
v = inf{u;u is positive cosuperparabolic function on D, u ≧ v on M}).

The smooth reduction ‖v‖M (x, t) (resp. ∗‖v‖M (x, t)) is defined by

‖v‖M (x, t) = lim inf
(y,s)→(x,t)

RM
v (y, s);

(resp.∗‖v‖M (x, t) = lim inf
(y,s)→(x,t)

∗RM
v (y, s)).

If the set D is not specified it is supposed that D = R
n+1.

Theorem. Let M ⊂ R
n+1, G be the Green function. Then

∗‖G(X, .)‖M (Y ) = ‖G(., Y )‖M (X).

The common value will be denoted by GM (X, Y ).
If µ is a measure on R

n+1, then

‖Gµ‖M = GMµ and ‖µG‖M = µGM .

Proof: (See [4, p. 342].) �
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Parabolic and coparabolic thinness (see [4, p. 346]).
A set M ⊂ R

n+1 is said to be parabolic (resp. coparabolic) thin at X (resp.
at Y ), if

GM (X, .) 6= G(X, .) on the set {G(X, .) > 0};
(resp. GM (., Y ) 6= G(., Y ) on the set {G(., Y ) > 0}).

This definition is equivalent to the “usual” definition of parabolic and co-
parabolic thinness. (See [4, p. 346].)
Parabolic (resp. coparabolic) thinness is a local property. It means: Let r ∈

R
+. A setM is parabolic (resp. coparabolic) thin at X , if and only ifM∩B(X, r)
is parabolic (resp. coparabolic) thin at X .

It is clear that the set M ⊂ R
n+1 is parabolic thin at X = (x, t), if and only if

M⊖ is coparabolic thin at (x,−t).

2. The case of the slab.

Let 0 < T ≦ ∞. The Green function for a slab R
n×]0, T [ is the restriction of

G to (Rn×]0, T [)× (Rn×]0, T [).
The Weierstrass kernel for R

n×]0, T [ with the pole at y in R
n is given by

p(X, y) = (4πt)−n/2 exp(−‖x − y‖2
4t

),

where X = (x, t) ∈ R
n×]0, T [.

Clearly, p(X, y) = b(x − y, t) = G(X, (y, 0)).

Theorem 1. A function u on R
n×]0, T [ is a difference of two positive parabolic

functions, if and only if there is a signed measure µu on R
n for which

∫

Rn

exp(−‖y‖2
4t
) d|µu|(y) < ∞

for all t ∈]0, T [ and

u(X) =

∫

Rn

p(X, y) dµu(y), X ∈ R
n×]0, T [.

The map u → µu is a one-to-one linear order-preserving map from the class of

parabolic functions satisfying these conditions onto the vector lattice of charges

on R
n satisfying the above inequality.

The function u is bounded, if and only if there exists fu ∈ L∞(R
n) such that

µu = fuλ.

Proof: (See [4, p. 290].) �
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From this theorem inf
X∈Rn×]0,T [

u(X) = ess inf
y∈Rn

fu(y) for any bounded parabolic

function u on R
n×]0, T [.

Coparabolic minimal thinness on R
n×]0, T [.

Let M ⊂ R
n×]0, T [, Y ∈ R

n × {0}. The set M is said to be coparabolic
minimal thin at Y , if

‖p(., y)‖M 6= p(., y) on the set {p(., y) > 0}.

(Compare [4, p. 378].)

The reduction is, of course, taken with respect to D = R
n×]0, T [. But:

The restriction of any function superparabolic on R
n+1 to R

n×]0, T [ is super-
parabolic on R

n×]0, T [.
If v is a positive function superparabolic on R

n×]0, T [, there exists a positive
parabolic function u on R

n×]0, T [ and a measure µ on R
n×]0, T [ such that

v = GRn×]0,T [µ+ u on R
n×]0, T [.

But knowing that GRn×]0,T [ = G and p(X, y) = G(X, (y, 0) on R
n×]0, T [ and

using the representation of u guaranteed by previous Theorem, we have

v = Gµ+Gµu on R
n×]0, T [.

The function Gµ+Gµu is a positive superparabolic function on R
n+1.

So the reduction can be taken with respect to R
n+1.

As p(., y) = G(., Y ), we have for any M ⊂ R
n×]0, T [:

‖p(., y)‖M = ‖G(., Y )‖M = GM (., Y ).

It means that if M ⊂ R
n ×R

+ and Y ∈ R
n × {0}, M is coparabolic thin at Y , if

and only if M ∩ (Rn×]0, T [) is coparabolic minimal thin at Y . So we will write
M is coparabolic (minimal) thin at Y .

Theorem 2. Let M ⊂ R
n × R

+. If the set of points of R
n × {0} at which M is

coparabolic (minimal) thin has Lebesgue measure equal to zero, then ‖1‖M = 1
on R

n × R
+.

Proof: We have 1 =
∫

Rn

p(X, y) dλ(y) on R
n × R

+ and

‖1‖M = ‖
∫

Rn

p(X, y) dλ(y)‖M = ‖
∫

Rn+1

G(X, Y ) dλ(Y )‖M = ‖Gλ‖M = GMλ

on R
n × R

+.
Because GM (., Y ) = G(., Y ) on R

n × R
+ for λ-almost all Y we have GMλ =

Gλ = 1 on R
n × R

+. �
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Theorem 3 (Harnack inequality). Let n ∈ N. Then there exists a constant cH
such that for any T ∈]0,∞] and any (x1, t1), (x2, t2) belonging to R

n×]0, T [ such
that t2 > t1 and for any positive parabolic function u on R

n×]0, T [

u(x1, t1) ≦ u(x2, t2).e
cH(

‖x2−x1‖
t2−t1

+1)
(

t2

t1

)cH

.

Proof: (See [6, p. 104].) �

3. Parabolic capacity.

Let K ⊂ R
n+1 be a compact set. The parabolic capacity of K is defined by

γ(K) = sup{µ(Rn+1);µ ∈ M+(K), Gµ ≦ 1 in R
n+1},

whereM+(K) is the set of Borel measures supported by K.

Let M ⊂ R
n+1 be an arbitrary set. Then

γ⋆(M) = sup{γ(K);K ⊂ M, K compact}

is called the inner parabolic capacity of M and

γ⋆(M) = inf{γ⋆(G);G ⊃ M, G open}

the outer parabolic capacity of M .

Lemma 1. Let F be a Borel subset of R
n+1, t0 ∈ R. Then

γ(F × {t0}) = λn(F ).

Proof: See [8, p. 355]. �

Theorem. Let M ⊂ R
n+1, Y ∈ R

n+1. Then M is parabolic thin at Y , if and

only if
1

∫

0

γ⋆(M ∩ Bp(Y, r))r−
n
2
−1 dr < ∞.

Proof: See [3, p. 99]. �

From this and from what was said about the relation between parabolic and
coparabolic thinness and the relation between coparabolic minimal thinness on
R

n×]0, T [ and coparabolic thinness on R
n+1 follows:
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Theorem 4. Let M ⊂ R
n × R

+ and Y ∈ R
n × {0}. Then M is coparabolic

(minimal) thin at Y , if and only if

1
∫

0

γ⋆(M⊖ ∩ Bp(Y, r))r−
n
2
−1 dr < ∞.

4. Geometrical properties of the heat ball, the coparabolic ball
and the paraboloid.

Lemma 2. Let X ∈ R
n+1, r ∈ R

+.

Then

Bp(X, r) ⊂ C(X,

√

2n

e

√
r, [t, t − r]);

Bp(X, r) ⊃ D((x, t − r

e
),

√

2n

e

√
r);

and

Bcp(X, r) ⊂ C(X,

√

2n

e

√
r, [t, t+ r]);

Bcp(X, r) ⊃ D((x, t +
r

e
),

√

2n

e

√
r).

Lemma 3. Let a ∈ R
+, then there exists a number a1 such that for allX ∈ R

n+1,

r ∈ R
+ and v ≦ a1r is P (X, a, v) ⊂ Bcp(X, r).

Lemma 4. Let a1, α, β ∈ R
+.

Then there exists a number a2 such that for any Y ∈ R
n+1, and for any

X ∈ P (Y, c1), X 6= Y , the disc DX,α,β is a subset of P (Y, a2).

Proofs of these lemmas are elementary.

IV. Proof of Theorem

1. In this part it will be proved that (iii) ⇒ (ii) for β > 1.

Theorem 1. Let n ∈ N, α, β, γ ∈ R
+ and γ ≧ β > 1. Then there exists a

positive constant c such that for every T ∈]0,∞] and M ⊂ R
n×]0, T [, and for

every positive parabolic function u on R
n×]0, T [,

inf
X∈MCα,β,γ

u(X) ≧ c inf
X∈M

u(X).

Proof: Let M ⊂ R
n×]0, T [ and X = (x, t), X ∈ M . Since β > 1, T ≧ γt ≧

s ≧ βt > t whenever (y, s) ∈ CX,α,β,γ ∩ (Rn×]0, T [), we have by the Harnack
inequality:

u(y, s).ecH(
‖y−x‖2

s−t
+1)

.
(s

t

)cH

≧ u(x, t).
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Using the fact that γt ≧ s ≥ βt and ‖y − x‖ ≦ α
√

t we arrive at

u(y, s).e
cH(

α2t
βt−t

+1)
.

(

γt

t

)cH

≧ u(x, t)

or

u(y, s).e
cH(

α2

β−1
+1)

.γcH ≧ u(x, t),

thus

u(y, s) ≧ e
−cH(

α2

β−1
+1)

.γ−cH u(x, t).

From here the theorem immediately follows. �

Theorem 2. Let 0 < T ≦ ∞ and M ⊂ R
n×]0, T [ for which there exist α, β, γ ∈

R
+, γ ≧ β > 1 such that the set of points of R

n × {0} at which MCα,β,γ
is

(minimal) coparabolic thin has Lebesgue measure zero.
Then there exists a constant c depending only on α, β, γ, n such that

inf
X∈Rn×]0,T [

u(X) ≧ c inf
X∈M

u(X)

for all positive parabolic functions u on R
n×]0, T [.

Proof: This theorem is obtained by combining the previous Theorem and The-
orem III.2.

�

Theorem 3. Let 0 < T ≦ ∞ andM ⊂ R
n×]0, T [. Then the following statements

are equivalent:

(i)
inf

X∈Rn×]0,T [
u(X) = inf

X∈M
u(X)

for all positive parabolic functions u on R
n×]0, T [;

(ii) there exists c > 0 such that

inf
X∈Rn×]0,T [

u(X) ≧ c inf
X∈M

u(X)

for all positive parabolic functions u on R
n×]0, T [.

Proof: (i) ⇒ (ii) is clear, put c = 1.
(ii) ⇒ (i) Let us suppose that there exists a set M satisfying (ii), but not (i).
Then c in (ii) belongs to (0, 1).
Let u be a positive parabolic function for which (i) is not true.

Denote inf
X∈Rn×]0,T [

u(X) = c1 and inf
X∈M

u(X) = c2.
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We suppose that c2 > c1 ≧ c.c2. Let ε be a positive number and v(X) =
u(X)− c1 + ε for X ∈ R

n×]0, T [.
Then v is a positive parabolic function and

inf
X∈Rn×]0,T [

v(X) = c1 − c1 + ε = ε, and inf
X∈M

v(X) = c2 − c1 + ε.

It follows from (ii) that ε ≧ c(c2−c1+ε) for every ε > 0, which is a contradiction.
�

Theorem 4. Let 0 < T ≦ ∞ and M ⊂ R
n×]0, T [ for which there exist α, β, γ ∈

R
+, γ ≧ β > 1 such that the set of points of R

n × {0} at which MCα,β,γ
is

(minimal) coparabolic thin has Lebesgue measure zero.
Then

inf
X∈Rn×]0,T [

u(X) = inf
X∈M

u(X)

for all positive parabolic functions u on R
n×]0, T [.

Proof: The result is obtained by combining two previous Theorems. �

The implication (iii) ⇒ (ii) is proved.

2. In this part the implication (v) ⇒ (iv) will be proved.

Lemma 1. Let {αk}∞k=0 be a decreasing sequence of strictly positive numbers
with limit zero.

Then
∞
∑

k=1

(1− αk

αk−1
) =∞.

Proof: The infinite product
∏∞

k=1
αk

αk−1
obviously diverges to 0. Consequently,

the above sum diverges. �

Theorem 5. Let 0 < T ≦ ∞ and M ⊂ R
n×]0, T [, Y ∈ R

n ×{0} and α, β ∈ R
+.

If Y is a parabolic limit point of M , then MDα,β
is not coparabolic (minimal)

thin at Y .

Proof: Theorem III.4 will be used and so we are interested in the set M⊖
Dα,β

∩
Bp(Y, r), which is clearly equal to the set (MDα,β

∩ Bcp(Y, r))⊖.

Let a1 ∈ R
+ and {Xk}∞k=1 be a sequence of points of M for which

Xk = (xk, tk), lim
k→∞

xk = y, lim
k→∞

tk = 0, ‖xk − y‖ ≦ a1tk.

We can suppose that tk ↓ 0.
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By Lemma III.4, there exists a constant a2 ∈ R
+ depending on a1, α, β such

that DXk,α,β is a subset of P (Y, a2) for all Xk.
Having a2, there exists, by Lemma III.3, a positive constant a3, such that

P (Y, a2, v) ⊂ Bcp(Y, r) for all v ≦ a3r.

Now it is clear that DXk,α,β ⊂ Bcp(Y, r) for all Xk = (xk, tk) satisfying βtk ≦

a3r. Let us denote rk =
β
a3

tk. Without loss of generality we can suppose that

r1 ≦ 1 and put r0 = 1. Of course, rk ↓ 0.
Now we have that DXk,α,β ⊂ Bcp(y, r) for all k ∈ N such that r ≧ rk.

For r ∈]rk, rk−1] let us take instead of MDα,β
∩ Bcp(Y, r) its subset DXk,α,β .

Then

1
∫

0

γ⋆(M⊖
Dα,β

∩ Bp(Y, r))r−
n
2
−1 dr =

1
∫

0

γ⋆((MDα,β
∩ Bcp(Y, r))⊖)r−

n
2
−1 dr =

∞
∑

k=1

rk−1
∫

rk

γ⋆((MDα,β
∩ Bcp(Y, r))⊖)r−

n
2
−1 dr ≧

∞
∑

k=1

rk−1
∫

rk

γ⋆(D⊖
Xk,α,β)r

−n
2
−1 dr =

∞
∑

k=1

γ⋆(D⊖
Xk,α,β)

[

− 2
n

r−
n
2

]rk−1

rk

=
2

n

∞
∑

k=1

γ⋆(D⊖
Xk,α,β)(r

−n
2

k − r
−n
2

k−1).

Let κ denote the volume of the unit ball in R
n. Since D⊖

Xk,α,β = B(xk, α
√

tk)×
{−βtk}, Lemma III.1. yields

γ⋆(DXk,α,β) = λn(B(xk , α
√

tk)) = καnt
n
2
k

and this is equal to καn(a3β )
n
2 rk

n
2 .

Denoting a4 = καn(a2β )
n
2 we arrive at

γ⋆(D⊖
Xk,α,β) = a4rk

n
2 .

So the series is equal to

2

n
a4

∞
∑

k=1

rk
n
2 (
1

rk
n
2

− 1

rk−1
n
2

) =
2

n
a4

∞
∑

k=1

(1− ( rk

rk−1
)

n
2 )

and by Lemma 1 its sum is equal to ∞, finishing the proof. �

The implication (v) ⇒ (iv) immediately follows from this theorem.
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3. So far we have proved the equivalence of (i), (ii), (iii), (iv), (v)
for β > 1. Now this condition will be removed.

Let 0 < T ≦ ∞ and M ⊂ R
n×]0, T [, d ∈ R

+ and

M(d) = {(y, s) ∈ R
n×]0, T [; ex. (x, t) ∈ M, x = y, s = d.t}.

Let X = (x, t), X ∈ R
n × R

+. We denote X(d) the point (x, d.t).

Lemma 2. Let 0 < T ≦ ∞ and M ⊂ R
n×]0, T [, d ∈ R

+, Y ∈ R
n × {0}. The

point Y is a parabolic limit point of the set M if and only if Y is a parabolic

limit point of M(d).

Proof: Let Y be a parabolic limit point of M . Then there exist c ∈ R
+ and

{Xk}∞k=1 such that

Xk = (xk, tk) ∈ M, lim
k→∞

tk = 0, and ‖xk − y‖ ≦ ctk.

There exist k0 such that for all k > k0 is dtk < T and so Xk(d) ∈ M(d).

And lim
k→∞

dtk = d lim
k→∞

tk = 0, so lim
k→∞

Xk(d) = Y and ‖xk − y‖ ≦
c

d
.d.tk.

Thus Y is a parabolic limit of {Xk(d)}∞k=k0
and thus a parabolic limit point of

M(d).

As M(d)(1d) ⊂ M , the opposite is true. �

Remark. From this lemma and Theorem (v) it follows that M is a set of deter-
mination if and only if M(d) is a set of determination.

Lemma 3. Let X ∈ R
n × R

+, X ∈ R
n × R

+, α, β, γ, d ∈ R
+. Then

CX,α,β,γ = C
X(d),α, β

d
, γ
d

and MCα,β,γ
=M(d)C

α,
β
d

,
γ
d

.

Proof: A straightforward calculation. �

Now we will remove the condition β > 1:

Let α, β, γ ∈ R
+, γ ≧ β > 0.

Using Remark to Lemma 2 we have the equivalence of these conditions:

(i) M is a set of determination;

(i1) there exists β ∈ R
+ such that M(β2 ) is a set of determination;

(i2) for any β ∈ R
+, M(β2 ) is a set of determination.
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Now we will use the equivalence of (i), (iii) and (iv) of Theorem for

M(β2 )Cα,2,2
γ
β

. (2 > 1.) From the equivalence of (i) and (iii) it follows that

(i1) is equivalent with (ii1) and from the equivalence of (i) and (iv) it follows that
(i2) is equivalent with (ii2):

(ii1) There exist α, β, γ ∈ R
+, γ ≧ β such that

the set of points of Rn ×{0} at which M(β2 )Cα,2,2
γ
β

is (minimal) coparabolic thin

has Lebesgue measure zero;

(ii2) for any α, β, γ ∈ R
+, γ ≧ β

the set of points of Rn ×{0} at which M(β2 )Cα,2,2
γ
β

is (minimal) coparabolic thin

has Lebesgue measure zero.

From Lemma 3 we have

MCα,β,γ
=M(

β

2
)C

α,2,2
γ
β

.

Using this equality, (ii1) and (ii2) can be formulated in this way:

(iii) There exist α, β, γ ∈ R
+, γ ≧ β such that

the set of points of R
n × {0} at which MCα,β,γ

is (minimal) coparabolic thin has

Lebesgue measure zero;

(iv) for any α, β, γ ∈ R
+, γ ≧ β

the set of points of R
n × {0} at which MCα,β,γ

is (minimal) coparabolic thin has

Lebesgue measure zero.

The condition β > 1 was removed. The equivalence of (i), (ii), (iii), (iv) and
(v) is proved.

4. In this part the rest of Theorem and Corollary will be proved.

Lemma 4. Let 0 < T ≦ ∞ and M ⊂ R
n×]0, T [ and α1, β1, γ1, α2, β2 ∈ R

+ and

let with every point of M a set AX be associated such that

DX,α2,β2 ⊂ AX ⊂ CX,α1,β1,γ1 .

Then M is a set of determination if and only if the set of points of R
n × {0} at

which MA is (minimal) coparabolic thin has Lebesgue measure zero.

Proof: Let M be a set of determination. Then by Theorem (iv), the set of
points of Rn ×{0} at which MDα2,β2

is (minimal) coparabolic thin has Lebesgue

measure zero. From MA ⊃ MDα2,β2
the assertion of the lemma follows.

If the set of points of R
n × {0} at which MA is (minimal) coparabolic thin

has Lebesgue measure zero, then the same is true for MCα1,β1,γ1
(because MA ⊂

MCα1,β1,γ1
) and by Theorem (iii) the converse implication of this lemma follows.

�
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Proof of Theorem (v), (vi) and Corollary:
Using Lemma III.2 we have

D
X,
q
2n
e

δ,1− δ
e

⊂ B
p
X,δ ⊂ C

X,
q
2n
e

δ,1−δ,1
;

and D
X,
q
2n
e

δ,1+ δ
e

⊂ B
cp
X,δ ⊂ C

X,
q
2n
e

δ,1,1+δ
.

Similar properties are true for the paraboloid and the interval:

D
X,

√
δ,1+δ

⊂ PX,a,δ ⊂ C
X,

√
δ,1,1+δ,

;

and DX,δ,1 ⊂ IX,δ ⊂ CX,δ,1−δ2,1.

From here and from previous lemma, Theorem (v), (vi) and Corollary imme-
diately follow.

�

Added in the proof. After having submitted the paper I found out that Theo-
rem 5 is a known result, see Proposition 3.1 in Mair B.: Fine and parabolic limits
for solutions of second order linear parabolic equations on an infinite slab, Trans.
Amer. Math. Soc. 284 (1984), 583–599.
Theorem 5 is a consequence of Corollary 2 in Netuka I.: Thinnesss and the

heat equation, Časopis Pěst. Mat. 99 (1974), 293–299, as well.
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