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In quest of weaker connected topologies

M.G. Tkačenko, V.V. Tkachuk, V.V. Uspenskii, R.G. Wilson

Abstract. We study when a topological space has a weaker connected topology. Various
sufficient and necessary conditions are given for a space to have a weaker Hausdorff or
regular connected topology. It is proved that the property of a space of having a weaker
Tychonoff topology is preserved by any of the free topological group functors. Examples
are given for non-preservation of this property by “nice” continuous mappings.
The requirement that a space have a weaker Tychonoff connected topology is rather

strong, but we show that it is difficult to construct spaces which would contain no infinite
subspaces with a weaker connected T
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-topology.
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0. Introduction

Let X be a topological space. If we assume no separation axioms, then it
evidently has a weaker connected topology, namely the indiscrete one. In Section 2
we show that any T0-space has a weaker connected T0-topology and a non-one-
point T1-space has a weaker connected T1-topology if and only if it is infinite —
these results are easy to prove.
The nontrivial situations arise when we require the weaker connected topology

of X to be Hausdorff or regular. For example, no compact Hausdorff disconnected
space has a weaker Hausdorff connected topology. On the other hand, every
regular (or Tychonoff) space X is a retract of a regular (Tychonoff) space with a
weaker connected topology (see Corollary 2.3).
The problem of finding an inner characterization for the existence of a weaker

connected topology seems to be too difficult to be solved in the general case. We
give a characterization for locally connected spaces and a number of sufficient
conditions for having, as well as for not having, a weaker connected topology.

1. Notation and terminology

All spaces under consideration are Hausdorff if no other separation axioms
are assumed explicitly. If X is a space, then T (X) is its topology. If A ⊂ X ,
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then T (A,X) = {U ∈ T (X) : A ⊂ U} and T (x,X) = T ({x}, X). A “map”
means a “continuous function”. A map f : X → Y is called a condensation if
it is a bijection. We also say that f condenses X onto Y . A space is called Ti-

subconnected if it can be condensed onto a connected Ti-space or, equivalently,
has a weaker connected Ti-topology. We say that a space X is Ti-closed if X is a
Ti-space and it is closed in any Ti-space containing X . The terms “regular space”
and “normal space” mean “regular T1-space” and “normal T1-space” respectively.
If (X, ν) is a space and A ⊂ X , then clν(A) (or simply cl(A) if it does not lead to
a misunderstanding) is the closure of A in the topology ν. A filter ξ on the space
(X, ν) is called open if ξ ∩ ν is a base of ξ. If for every U ∈ ξ there is a V ∈ ξ ∩ ν
such that clν(V ) ⊂ U , then ξ is called a regular open filter. If ξ is an open (or a
regular open) filter, then it is called an open (or regular open) ultrafilter, if it is
not properly contained in any open (resp. regular open) filter.
All other notions are standard and can be found in [4].

2. On the existence and non-existence of weaker connected topologies
We start with the simplest case of T0- and T1-spaces.

2.1 Proposition. (1) Any T0-space has a weaker connected T0-topology;

(2) a T1-space consisting of more than one point has a weaker connected T1-
topology if and only if it is infinite.

Proof: Let X be a T0-space. To prove (1) consider two cases.
(a) No finite subset of X is dense in X . Let the base of a new topology U be
the family of all sets X\A where A is a finite subset of X . It is clear that U is a
topology on X weaker than the original one. Each pair of nonempty open subsets
of (X,U) intersect so that (X,U) is a connected space.
If we have two different points of X , then the closure of one of them in the

original topology does not contain the other. The complement of this closure
belongs to U and T0-separates {x, y} which proves that (X,U) is a T0-space.

(b) If X = {x1, . . . , xn}, then let Ai = {xi} for all i = 1, . . . , n. The set Ai

is connected so the space X is a union of ≤ n of its clopen components, say
X = C1 ∪ . . . ∪ Ck. If k = 1, then there is nothing to prove. If k > 1, then let
U ∈ U iff U is an open subset of C2 ∪ . . . ∪ Ck or if U is an open subset of X
containing C2 ∪ · · · ∪ Ck.
It is straightforward to check that U is a weaker connected T0-topology on X ,

so (1) is proved.
If X is a finite T1-space, then any weaker T1-topology on X is discrete. If it is

infinite, then the cofinite topology on X is connected, T1 and is weaker than the
original one, which proves (2). �

2.2 Proposition. Let X be a Ti-space for some i ∈ {2, 3, 312}. If H is a con-
nected Ti-space, which is not Ti-closed, then X × H has a weaker connected
Ti-topology.
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Proof: Choose a Ti-space G containing H as a non-closed subspace. Let g ∈
G\H . The space X × H is a subspace of Y where Y is a quotient space of
X × (H ∪ {g}) obtained by identifying the points of the set X × {g}. The space
Y is connected and Y \(X ×H) consists of one point y. Now choose any point x
in X ×H and identify the points x and y in Y . It is clear that X condenses onto
the resulting space Z and that Z is a connected Ti-space. �

2.3 Corollary. Let X be a topological space. Assume that P ∈ {Hausdorff
spaces, regular spaces, Tychonoff spaces, normal spaces, collectionwise normal

spaces, perfectly normal spaces, paracompact spaces, Lindelöf spaces, pseudo-

compact spaces, countably compact spaces}. If X belongs to the class P , then
there is a topological space Y with the following properties:

(1) Y is subconnected and belongs to P ;
(2) the space X is homeomorphic to a retract of Y ;
(3) if X is a Ti-space, then Y is Ti-subconnected.

Proof: Let D be a discrete space of power continuum. If P is any of the prop-
erties above except for countable compactness, pseudocompactness or Lindelöf
property, then Y = X ×D will have P . It is clear that X is a retract of Y . The
space Y can be condensed onto X × R and the latter space is subconnected by
Proposition 2.2. It is evident that the axioms of separation are preserved in this
case.
If X is a Lindelöf space, then Y = X×R is also Lindelöf (since R is σ-compact)

and Ti-subconnected. Let G be a Σ-product lying in some uncountable power of
the unit segment [0, 1]. If X is countably compact (or pseudocompact), then
Y = X × G is Ti-subconnected (by Proposition 2.2) and countably compact (or
pseudocompact respectively), because in G the closure of every countable set is
compact. �

2.4 Proposition. Suppose that X is a Hausdorff space which can be densely
embedded in a connected Hausdorff space Y in such a way that

(1) Y \X is closed and discrete;
(2) there is a bijection ϕ between Y \X and some A ⊂ X such that A is closed
and discrete in Y .

Then X is T2-subconnected.

Proof: For each z ∈ Y \X identify z and ϕ(z). The resulting quotient space Z
is Hausdorff and connected. It is evident that X can be condensed onto Z. �

2.5 Corollary. LetX be a Hausdorff non-countably compact space without open
H-closed subspaces. If πw(X) ≤ ω, then X is T2-subconnected.

Proof: It was proved in [11] that X is countably connectifiable, i.e. it em-
beds densely into a connected Hausdorff space Y with Y \X countable. Fix any
countably infinite closed discrete subset A of X . Simple modifications of the con-
struction in [11, Theorem 3.5] make the set A closed and discrete in Y . Now use
Proposition 2.4. �
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Recall that a space X is called feebly compact if every locally finite family of
non-empty open subsets of X is finite.
We shall need the following fact from [11].

2.6 Fact. (1) A countable space is H-closed iff it is feebly compact.
(2) No countable space without isolated points is H-closed.

2.7 Corollary. Every countable Hausdorff space X without isolated points is
T2-subconnected.

Proof: The topology of X can be weakened to a Hausdorff second countable
topology ν ([2, Chapter 2, Problem 148]). It is evident that ν does not have
isolated points and hence (X, ν) has no open H-closed subsets by Fact 2.6. Now
use Corollary 2.5. �

2.8 Proposition. A countable spaceX is notH-closed if and only if it condenses
onto a dense in itself space.

Proof: Suppose that X condenses onto a dense in itself space Y . Since Y is
countable it cannot be H-closed by Fact 2.6. Since the property of being H-closed
is preserved by continuous maps ([4, Problem 3.12.5(b)]), the space X cannot be
H-closed and we have established the sufficiency.
If X is not H-closed, then let us consider two cases.

Case 1. The set D of isolated points of X has a non-H-closed closure. Then
cl(D) is not feebly compact by Fact 2.6. Let {Un : n ∈ ω} be a locally finite
family of non-empty open subsets of cl(D). Let xn ∈ Un ∩ D for each n ∈ ω.
The set E = {xn : n ∈ ω} is closed, infinite and consists of isolated points of X .
This means X is homeomorphic with X⊕ (ω×ω), where ω is considered with the
discrete topology. The space ω×ω condenses onto X×ω so that X also condenses
onto Y = X × ω. Let Z be any connected space with the underlying set ω (see
[11] for examples of such spaces). Evidently, Y condenses onto X × Z and since
the space Z is not H-closed, we can use Proposition 2.2 to conclude that X × Z
condenses onto a connected space which, of course, has no isolated points. The
composition of these condensations now gives a condensation of X onto a dense
in itself space.

Case 2. The set K = cl(D) is H-closed. The space X being non-H-closed, there
is a locally finite family γ = {Un : n ∈ ω} of non-empty open subsets of X . Only
finitely many of them can intersect K, so we may assume Un ⊂ X\K for all
n ∈ ω. Choosing smaller sets if necessary we can make the family γ disjoint (see
[11, Lemma 2.1]).
The set X\K is dense in itself, so none of the Un’s has isolated points. Hence

for every n ∈ ω there exists a free open ultrafilter ξn in X such that Un ∈ ξn. It
is clear that ξn 6= ξm if n 6= m. Fix an injection p : D → ω and for every pair
of different points x, y ∈ X pick disjoint open sets Vx,y and Vy,x in the following
way:
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(i) if x and y are not isolated, then Vx,y and Vy,x are any disjoint open neigh-
bourhoods of x and y respectively;

(ii) if x ∈ D and y /∈ D, then Vx,y = {x} ∪W , and Vy,x = X\cl(Vx,y), where
W ∈ ξp(x) does not contain y in its closure;

(iii) if x, y ∈ D, then Vx,y = {x} ∪ Up(x) and Vy,x = {y} ∪ Up(y).

Let µ be the topology generated by the subbase consisting of the sets Vx,y, Vy,x

constructed for all pairs x, y ∈ X . It is clear that µ is Hausdorff and that the
space (X,µ) does not have isolated points which proves our Proposition in Case 2
as well. �

2.9 Theorem. A countably infinite space X is T2-subconnected if and only if it
is not H-closed.

Proof: If X condenses onto a connected space Y , then Y can have no isolated
points. Since Y is countably infinite, it is not H-closed by Fact 2.6. Therefore X
is not H-closed and we have proved the necessity.
If X is not H-closed, then it condenses onto a dense in itself space Y by

Proposition 2.8. Now use Corollary 2.7 to condense Y onto a connected space.
�

2.10 Corollary. A countably infinite regular space is Hausdorff subconnected if

and only if it is not compact.

2.11 Proposition. Let X be a σ-compact Tychonoff totally disconnected space.
Then X is not T3-subconnected.

Proof: Let X =
⋃
{Fn : n ∈ ω} where every Fn is compact. Each Fn is

totally disconnected and hence zero-dimensional. Assume that ϕ : X → Y is a
condensation with Y regular. The subspace Gn = ϕ(Fn) is homeomorphic to Fn

for each n and
⋃
{Gn : n ∈ ω} = Y ; thus Y is σ-compact and hence normal. The

sets Gn are zero-dimensional so by the countable sum theorem for the covering
dimension ([4, Theorem 7.2.1]) the space Y is zero-dimensional too. �

2.12 Lemma. Let {Cα : α ∈ I} be a family of connected non-empty spaces. Let
X =

⊕
{Cα : α ∈ I}. For each α ∈ I, choose xα ∈ Cα and let ν be a connected

topology on A = {xα : α ∈ I}. We define a topology µ on X as follows:

(i) if U ∩A = ∅, then U ∈ µ iff U ∈ τ , where τ is the topology of the discrete
sum on X ;

(ii) if U ∩ A 6= ∅, then U ∈ µ iff U ∩ A ∈ ν and for each xα ∈ U ∩ A,
U ∩ Cα ∈ τ .

Then (X,µ) is connected and µ ⊂ τ . Furthermore, (X,µ) is a Ti-space, if (X, τ)

and (A, ν) are Ti-spaces (i = 2, 3, 3
1
2).

The proof is straightforward and left to the reader. �

2.13 Definition. Say that a topological space is a CO-space if all its components
are open.
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2.14 Theorem. (1) Let X be a Hausdorff CO-space with an infinite number of
components. Then X is T2-subconnected.
(2) If X is a T3- (Tychonoff ) CO-space with at least 2

ω components, then it is

T3- (T3 1
2

-)subconnected.

Proof: It is clear that any CO-space is a discrete sum
⊕

{Cα : α ∈ B} of its
components. Choose xα ∈ Cα for each α ∈ B. The set B being infinite, there
is a connected Hausdorff topology on A = {xα : α ∈ B}. Now use Lemma 2.12
to conclude that (1) holds. If |B| ≥ 2ω, then there exists a connected Tychonoff
topology on A and hence we can use Lemma 2.12 once more to establish (2). �

2.15 Lemma. Let (X, τ) be a regular (Tychonoff ) space such that X = Y ⊕C,
where

(1) C is a connected subspace of X ;
(2) there exists a discrete family {Un : n ∈ ω} of non-empty open subsets
of C;

(3) Y =
⊕

{Yα : α ∈ A}, where each Yα 6= ∅ is connected and |A| ≤ 2ω.

Then X is regular (Tychonoff ) subconnected.

Proof: Let m ∈ ω. For any f ∈ {0, 1}m fix a non-empty open set Vf ⊂ Um in

such a way that Vf ∩ Vg = ∅ if f, g ∈ {0, 1}m, f 6= g. It is possible because C is
connected and infinite. Pick a point xf ∈ Vf for each f ∈ {0, 1}m and m ∈ ω.
Let yα ∈ Yα for all α ∈ A. It follows from (3) that there exists an injection
ϕ : A→ {0, 1}ω. We are going to construct a new topology µ on X changing the
original one only at the points yα.
The base of µ-open neighbourhoods at the point yα will consist of the sets

W ∪
⋃
{Wk : k ≥ m}, where W ⊂ Yα is a τ -open neighbourhood of yα and

Wk ∈ T (xfk
, Vfk
), where fk = ϕ(α) ↾ k for all k ≥ m.

The space (X,µ) is connected. Indeed, let O be a µ-clopen subset containing
C. Then yα ∈ clµ(O) and consequently Yα ⊂ O for all α so that O = X .
To establish that (X,µ) is regular (Tychonoff) we only need to prove regularity

(the Tychonoff property) at every yα. Let O =W ∪
⋃
{Wk : k ≥ m} be a basic µ-

open neighbourhood of yα. Choose a τ -open neighbourhoodW
′ of yα and τ -open

neighbourhoods W ′

k of xfk
in such a way that clτ (W

′) ⊂ W and clτ (W
′

k) ⊂ Wk

for all k ≥ m.
Let us prove that clµ(O

′) ⊂ O, where O′ = W ′ ∪
⋃
{W ′

k : k ≥ m}. We only
need to show that yβ /∈ clµ(O

′) for every β 6= α. Take any β 6= α. There is a
p ∈ ω such that (g = ϕ(β)) ↾ p 6= (f = ϕ(α)) ↾ p. Then U = Yβ ∪

⋃
{Vg↾k : k ≥ p}

is a µ-neighbourhood of yβ and U ∩ O′ = ∅. This proves regularity of (X,µ) in
case (X, τ) is regular.
If (X, τ) is a Tychonoff space, then there is a τ -continuous function h : X → R

such that h(yα) = 1 = h(xfk
) and h ↾ X\O ≡ 0. It is straightforward that h is

µ-continuous and our lemma is proved. �
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2.16 Theorem. If (X, τ) is a T3 (Tychonoff ) CO-space with an infinite set of
infinite components, then X is T3-subconnected (T3 1

2

-subconnected respectively).

Proof: IfX has at least 2ω components, then the result follows from the previous
theorem. Thus we suppose that the number of components is less than 2ω. Let
{Cn : n ∈ ω} be different non-trivial components ofX and let C = ∪{Cn : n ∈ ω}.
For each n ∈ ω, choose xn ∈ Cn and sequences Sn = {xm,n : m ∈ ω} and
γn = {Vm,n : m ∈ ω} such that

(i) Vm,n is open in X and xm,n ∈ Vm,n ⊂ Cn;

(ii) Vm,n ∩ Vp,n = ∅ if m 6= p;
(iii) xn /∈ ∪γn for all n ∈ ω.

Such a selection is possible, because each set Cn is infinite. We define a new
topology µ on C as follows. A basic open neighbourhood of xn is of the form:

V ∪
⋃

{Um : m ≥ k},

where k is a natural number, V ⊂ Cn is a τ -neighbourhood of xn, and Um ⊂ Vn,m

is an open τ -neighbourhood of xn,m.
The µ-neighbourhoods of any x ∈ C\{xn : n ∈ ω} are defined to be its τ -

neighbourhoods.
It is easy to see that the topology µ differs from τ only at the points xn and that

for each n, xn has a local base of µ-neighbourhoods which miss {xm} ∪ {xm,k :
k ∈ ω} for each m 6= n.
Now fix a basic neighbourhood W = V ∪

⋃
{Um : m ≥ k} of the point xn for

some n ∈ ω. Since C is regular, there exist τ -open sets V ′ and U ′

m with xn ∈ V ′ ⊂
clτ (V

′) ⊂ V and xn,m ∈ U ′

m ⊂ clτ (U
′

m) ⊂ Um for all m ≥ k. It is immediate,
that the µ-closure of the µ-open neighbourhood W ′ = V ′ ∪

⋃
{U ′

m : m ≥ k} of
the point xn is contained in W . This proves regularity of (C, µ).
If C is Tychonoff, then there is a τ -continuous function f : C → R such that

f(xn) = 1 = f(xn,m) for all m ≥ k and f ↾ (C\W ) ≡ 0. It is immediate, that f
is µ-continuous, so that (C, µ) is Tychonoff if C is.
Furthermore, a µ-clopen subset W of C would be a τ -clopen subset of C and

hence W =
⋃
{Cn : n ∈ A} for some A ⊂ ω. Without loss of generality the set

A could be assumed infinite (otherwise consider the τ -clopen set C\W ). Since
for each µ-neighbourhood of any point xn ∈ Cn meets all but finitely many τ -
components Cm, it follows that xn ∈ W for each n ∈ ω. Thus W = C and this
proves that (C, µ) is connected.
Consider the components {Yα : α ∈ A} of X\C. Now X = C ⊕ Y , where

Y =
⊕

{Yα : α ∈ A}. Let Un be a τ -open set with Un ⊂ Cn\(γn ∪ {xn}). It is
clear that Un is µ-open and the family {Un : n ∈ ω} is µ-discrete. Now apply
Lemma 2.15. �

2.17 Corollary. If X is a locally connected Ti-space with an infinite set of

infinite components, then X is Ti-subconnected (i = 2, 3, 3
1
2).
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Proof: Every locally connected space is a CO-space, so we may use Theo-
rem 2.16.

�

2.18 Examples. (1) Let Cα be the Cantor set for each α ∈ A. The space⊕
{Cα : α ∈ A} is T3-subconnected if and only if it is Tychonoff subconnected

and the latter occurs iff |A| ≥ ω1. It is T2-subconnected iff |A| ≥ ω.
(2) Let Iα be the unit segment [0, 1] for each α ∈ A. The space

⊕
{Iα : α ∈ A}

is T3-subconnected if and only if |A| ≥ ω.

Proof: If the set A is countable, then Proposition 2.11 shows that X =
⊕

{Cα :
α ∈ A} is not T3-subconnected. Suppose that |A| ≥ ω1. It suffices to construct
a weaker connected topology on X when |A| = ω1. Indeed, if |A| > ω1, then
represent A as an infinite union of its subsets of cardinality ω1. Introduce a weaker
connected topology on the corresponding subsets of X and use Theorem 2.16.
Without loss of generality we can assume that the index set A coincides with

ω1. Choose a subset {pα : α < ω1} ⊂ [0, 1] such that pα 6= pβ if α 6= β. For each
α < ω1 it is easy to construct a map fα : Cα → [0, 1]ω1 in such a way that

(i) πα(fα(Cα)) = [0, 1]
α, where πα(f) = f ↾ α for all f ∈ [0, 1]ω1;

(ii) fα is an embedding for all α < ω1;
(iii) g(β) = pα for any g ∈ fα(Cα) and β > α+ 1.

It is evident that fα(Cα) ∩ fβ(Cβ) = ∅ if α 6= β. The union of the maps fα
is a condensation of X onto the subset C =

⋃
{fα(Cα) : α < ω1} of [0, 1]

ω1.
The subspace C is connected, because its projections cover all countable faces of
[0, 1]ω1 ([9]). This proves that X is T3 1

2

-subconnected and (1) is established.

To prove (2), observe that if A is finite, then
⊕

{Iα : α ∈ A} is a compact
disconnected space and hence is not T2-subconnected. If A is infinite, use Theo-
rem 2.16.

�

We now turn to the case in which X has a finite number of components.

2.19 Definition. Given a natural number n let us call a spaceX Hausdorff (resp.
regular or Tychonoff ) n-extendable if there exists a Hausdorff (resp. regular or
Tychonoff ) space Y such that X is a dense subspace of Y and |Y \X | = n.

2.20 Theorem. If a Hausdorff (regular or Tychonoff ) space (X, τ) has a finite
number of components {Ci : 1 ≤ i ≤ n}, then X is Hausdorff (regular or Ty-
chonoff respectively) subconnected if and only if it is Hausdorff (resp. regular or
Tychonoff ) (n− 1)-extendable.

Proof: The sufficiency is proved by induction on n. If we have a Hausdorff
(resp. regular or Tychonoff) extension Y of the space X such that Y \X =
{y1, . . . , yn−1}, then yj ∈ Ci for some i, j. Take any point x ∈ X\Ci and define
the topology at x to be a τ -neighbourhood of x union with the trace of some
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neighbourhood of yj on X . The weaker topology thus defined has ≤ (n− 1) com-
ponents and is Hausdorff (resp. regular or Tychonoff) (n − 2)-extendable. Now
use the inductive hypothesis.
For the necessity, suppose that (X, τ) has n components and is not (n − 1)-

extendable. The proof is by induction on n. If n = 2, then X is H-closed
(regular closed or compact, respectively) and so each component of X is H-closed
(regular closed or compact, respectively). However, if µ is some Hausdorff (regular
or Tychonoff) topology on X with µ ⊂ τ , then each τ -component of X with
the relative µ-topology is still H-closed (regular closed or compact, respectively)
because all these properties are preserved by continuous maps. Thus (X,µ) is not
connected.
Now suppose that the result is true for any space with k components, and

suppose that X has (k + 1) components and is not k-extendable within the class

of Ti-spaces, i = 2, 3, 3
1
2 . If there is a weaker connected Ti topology ν on X , then

one of the τ -components Cj of X is not ν-closed; let x ∈ clν(Cj) ∩ Cl. Define a
new topology µ on X by:

(i) if x /∈ U , then U ∈ µ iff U ∈ τ ;
(ii) open µ-neighbourhoods of x are of the form U ∩ (Cl ∪ Cj), where U ∈ ν.

Clearly, ν ⊂ µ ⊂ τ and (X,µ) is a Ti-space with k components. Now suppose
that (X,µ) has a Ti-extension (Z, ξ) with |Z\X | = k − 1. Change the topology
ξ at the point x by defining the new base of open neighbourhoods of x to be its
τ -neighbourhoods. A routine verification shows that the resulting topology ζ on
Z is Ti and (Z, ζ) is a (k − 1)-extension of (X, τ).
If i ∈ {2, 3}, consider the traces of the µ-open neighbourhoods of x on Cj .

They form a free τ -open (resp. regular τ -open) filter which is contained in some
non-convergent τ -open (resp. regular τ -open) ultrafilter F on (X, τ). However,
no point of Z\X is a limit point of F (neither in ξ nor in ζ) because Z is a
Ti-extension of (X,µ). Consequently, we can adjoin the filter F to Z as a new
point in a standard way obtaining thus a k-extension of (X, τ) (with the necessary
axiom of separation) which is a contradiction.
If we consider the Tychonoff case, then it suffices to prove that (Z, ζ) is not

compact. But the traces of the µ-open neighbourhoods of x on Cj form a regular
open filter on (Z, ζ), which, since it has empty intersection, can have no limit.
Hence (Z, ζ) is at least 1-extendable. But this extension would give a k-extension
of (X, τ) and we have a contradiction in this case as well.

Thus, for any i = 2, 3, 312 we may apply the inductive hypothesis, concluding
that (X,µ) is not Ti-subconnected, which contradicts the existence of the con-
nected Ti-topology ν on X .

�

2.21 Corollary. If a Hausdorff (regular) space X has a finite number n of com-
ponents, then X is Hausdorff (regular) subconnected if and only if it has at least
(n− 1) open (regular open) ultrafilters.
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2.22 Proposition. Let (X, τ) be a separable metrizable non-compact space.
Then X admits a weaker separable metrizable topology µ which is nowhere locally
compact. (In particular, (X,µ) has no open compact subsets.)

Proof: It suffices to define a condensation g : (X, τ) → Y ⊂ Iω such that both
Y and Iω\Y are dense in Iω. Here I = [0, 1] is the unit segment with its natural
topology. Identifying X and Y we obtain a weaker separable metrizable topology
µ on X which is nowhere locally compact.
Since (X, τ) is not compact, there exists an infinite closed discrete subset K =

{xn : n ∈ ω} of X with xn 6= xm for n 6= m. Choose two disjoint countable dense
subsets S = {sn : n ∈ ω} and T = {tn : n ∈ ω} of (0, 1]ω. Obviously, both S and
T are dense in Iω.
For every n ∈ ω we will define a continuous function gn : Z → I satisfying

(∗) gn(xk) = pn(sk) and gn(k) = pn(tk) for each k ∈ ω,

where pn : I
ω → In is the projection onto the n-th factor In.

Let B be a countable base in X such that |U ∩K| ≤ 1 for any U ∈ B. Denote
by P the family of all pairs (U, V ) of elements of B such that U ∩ V = ∅ and let
P = {Pn : n ∈ ω} be a faithful enumeration of elements of P .
Now for every n ∈ ω construct a function gn which satisfies (∗) and also

(∗∗)

if Pn = (U, V ) and U ∩K = ∅ = V ∩K

then gn(U) = {0} and gn(V ) = {1};

if only one of the sets U, V intersects K, say U ∩K = {xi},

then gn(U) = {gn(xi)} = {pn(si)} and gn(V ) = {0}.

If U and V both intersect K, then gn is defined to satisfy (∗). That such a
function gn exists, is a simple consequence of Tietze’s theorem. The functions gn
having been constructed for all n ∈ ω let g = ∆{gn : n ∈ ω} be the diagonal
product of gn’s. Clearly, g is a continuous map of Z to I

ω . From (∗) it follows
that g(xn) = sn and g(yn) = tn for all n ∈ ω, that is g(K) = S. In particular,
g(X) is dense in Iω . Let us show that T ⊂ Iω\g(X).
If x ∈ X\K, then there is a pair Pn = (U, V ) ∈ P such that x ∈ U and

U ∩K = ∅ = V ∩ K. Therefore gn(x) = pn(g(x)) = 0 while pn(T ) 6∋ 0 so that
g(x) /∈ T . If x = xn ∈ K, then g(x) ∈ S ⊂ Iω\T . Thus, both sets g(X) and
Iω\g(X) are dense in Iω .
It remains to verify that the mapping g is one-to-one. Let x, y ∈ X\K. There

exist U, V ∈ B such that x ∈ U, y ∈ V and U ∩V = ∅, U ∩K = ∅ = V ∩K. Then
(U, V ) = Pn for some n and gn(x) = 0, gn(y) = 1 by (∗∗), that is g(x) 6= g(y). If
x ∈ K and y /∈ K, then there exist Pn = (U, V ) such that x ∈ U, y ∈ V ⊂ V ⊂
X\K. By (∗∗) we have gn(y) = 0 6= gn(x) because gn(x) ∈ pn(S) 6∋ 0. Therefore
g(y) 6= g(x).
Finally, if both x and y are in K, say x = xm, y = xn, m 6= n, then g(x) = sm

and g(y) = sn and the conclusion follows since sm 6= sn. �
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2.23 Remark. In 2.22 we have proved even more: given a countably infinite
closed discrete subspace K of (X, τ), the set K can be made dense in (X,µ).

2.24 Theorem. A regular disconnected space X with a countable network is
T2-subconnected if and only if it is not compact.

Proof: We need to prove only the sufficiency. If X is not compact, there exists
a discrete family {Un : n ∈ ω} of non-empty open subsets of X . Choose a point
xn ∈ Un for all n ∈ ω. Let f0 be a continuous function on X with f0(xn) = n for
each n ∈ ω. Find a family {fn : n = 1, 2, . . .} of real-valued continuous functions
on X which separates the points of X — it exists because X has a countable
network. Now let f = ∆{fn : n ∈ ω} be the diagonal product of fn’s. The space
Y = f(X) is second countable and X condenses onto Y . Let p0 be the projection
of Y onto the 0-th coordinate. It is clear that p0(f(xn)) = n, so that p0 is an
unbounded real-valued continuous function on Y . Hence Y is not compact and we
may use Proposition 2.22 to condense Y onto a second countable space Z without
open compact subsets. Finally, apply Corollary 2.5 to conclude that Z and hence
X has a weaker connected Hausdorff topology. �

2.25 Corollary. A regular disconnected second countable space is T2-subcon-
nected iff it is not compact.

2.26 Remark. Theorem 2.24 gives another proof of Corollary 2.10. However,
it does not cover Theorem 2.9 because it says nothing about the non-regular
case. The interesting question then arises as to whether a Hausdorff space with

countable network is T2-subconnected as long as it is not H-closed.

2.27 Proposition. Let (X, τ) be a second countable T3-space with at least one
non-compact component. Then X is T3-subconnected.

Proof: Let C be a non-compact component of X . There exists a countably
infinite K ⊂ C which is closed and discrete in X . Use Proposition 2.22 and
Remark 2.23 to find a weaker separable metrizable topology µ on X with K
dense in (X,µ). From K ⊂ C it follows that C is a dense connected subspace of
(X,µ), so that (X,µ) is connected. �

2.28 Lemma. Let (X, τ) be a second countable T3-space which has an infinite
set of non-trivial components {Cn : n ∈ ω} such that cl(∪{Cn : n ∈ ω}) is not
compact. Then (X, τ) can be condensed onto a second countable T3-space with
at least one non-compact component.

Proof: If (X, τ) has a non-compact component, then we are done; hence suppose
that all components of (X, τ) are compact. Since (X, τ) is second countable and
cl(∪{Cn : n ∈ ω}) is not compact, there exists an infinite A ⊂ ω and xn ∈ Cn for
each n ∈ A such that the set E = {xn : n ∈ A} is closed and discrete in X .
There exists a discrete family {Un : n ∈ A} of open subsets of X such that

Un ∩ E = {xn}, and since each Cn is connected and non-trivial, it follows that
Un ∩ Cn is infinite (in fact, has cardinality 2

ω). For each n ∈ A, we choose a
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disjoint family {Vmn : m ∈ ω} of open subsets of X and a set {smn : m ∈ ω} ⊂ X
such that

(i) Vmn ⊂ Un for all n ∈ A, m ∈ ω;
(ii) Vmn ∩ Vpn = ∅ if p 6= m;
(iii) smn ∈ Vmn ∩ Cn for all n ∈ A, m ∈ ω.

Let Sk = {skn : n ∈ A}. Clearly Sk is closed and discrete for any k ∈ ω. We
define a new topology µ on X as follows:

(iv) if x /∈ E, then U is a µ-neighbourhood of x if and only if U is a τ -
neighbourhood of x;

(v) U is a µ-neighbourhood of xn ∈ E if U = V ∪
⋃
{Vr : r ≥ i}, where

V is a τ -neighbourhood of xn and Vr is an open subset of X such that
snr ∈ Vr ⊂ Vnr for every r ≥ i.

It is easy to see that collectionwise normality of (X, τ) enables one to separate
Sk and Sl for any distinct k, l ∈ ω and whence it follows that xk and xl have dis-
joint µ-open neighbourhoods. Thus, the space (X,µ) is Hausdorff. Furthermore,
since (X, τ) is regular and Sn is discrete, each set Vr contains a closed neighbour-
hood of snr and so (X,µ) is regular. Finally, the set C = ∪{Cn : n ∈ A}
is connected but not compact since for each n ∈ A it is possible to choose
zn ∈ (Cn ∩ Un) \ {smn : m ∈ ω} and then the set {zn : n ∈ A} is infinite
closed and discrete in (X,µ) and lies in C.
The space (X,µ) is not necessarily second countable. But it has a countable

network so that it is possible to condense it onto a second countable regular
space Y in exactly the same way as was done at the beginning of the proof of
Theorem 2.24 to achieve the image C′ of C to be closed and non-compact. Now
the component of Y containing C′ will be non-compact and we are done. �

2.29 Theorem. Let (X, τ) be a σ-connected (that is, the family of the compo-
nents of X is countable), disconnected, second countable T3-space. Then X is
T3-subconnected if and only if the closure of the union of its non-trivial compo-
nents is not compact.

Proof: The sufficiency follows from Proposition 2.27 and Lemma 2.28. The
necessity follows from the fact that if the closure D of the union of non-trivial
components is compact, then it must be compact and hence closed in any weaker
regular topology µ. If D coincides with X , the X is a compact disconnected space
and hence it is not even T2-subconnected. Therefore we may assume that X\D is
non-empty. It is obvious, thatX\D is open, countable, and thus zero-dimensional
in µ. Thus (X,µ) is not connected. �

2.30 Corollary. A second countable locally connected regular space X is Ty-
chonoff subconnected if and only if it has an infinite number of nontrivial compo-

nents or has a non-compact component.

It is clear that subconnectedness is preserved by arbitrary products and by
strengthening the topology. The following proposition shows that the free topo-
logical group functors preserve it as well.
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2.31 Proposition. Let X be a Tychonoff subconnected space, |X | > 1. Then
(1) the free Graev topological group FΓ(X) and the free Graev abelian topological
group AΓ(X) admit a weaker connected Hausdorff topological group topology;
(2) the free topological group F (X) and the free abelian topological group A(X)
are T3 1

2

-subconnected.

Proof: Let ϕ : X → Y be a condensation of X onto a connected Tychonoff
space Y .

(1) Denote by ϕ̂ a continuous homomorphism of FΓ(X) to FΓ(Y ) extending ϕ.
It is clear that ϕ̂ is an algebraic isomorphism between these groups. By Fact (A)
of [5, Section 6], the group FΓ(Y ) is connected, which proves our claim about
the group FΓ(X). The same reasoning applies to the group AΓ(X) and gives a
continuous one-to-one homomorphism ψ : AΓ(X) → AΓ(Y ) extending the map-
ping ϕ. The same Fact (A) of [5, Section 6] guarantees the connectedness of the
group AΓ(Y ).

(2) The problem here is that the groups F (Y ) and A(Y ) are not connected, so
the proof is not so straightforward as in (1). For every element g ∈ F (Y ), let
n = l(g) be the length of g, that is, the number of letters in the irreducible word
g written in the alphabet Y ∪ Y −1. If g = yε1

1 . . . yεn
n with y1, . . . , yn ∈ Y and

ε1, . . . , εn ∈ {−1,+1}, denote by l+(g) (respectively l−(g)) the number of indices
i ≤ n such that εi = 1 (resp. εi = −1). Put

G = {g ∈ F (Y ) : l+(g) = l−(g)}.

It is clear that G is a closed subgroup of F (Y ) and the quotient group F (Y )/G is
topologically isomorphic to the discrete group of integers Z. Indeed, let p : Y → Z
be a constant mapping defined by p(y) = 1 for each y ∈ Y . Extend p to a
continuous homomorphism p̂ : F (Y ) → Z. Then ker(p̂) = G, which implies
the facts that G is closed in F (Y ) and F (Y )/G ∼= Z. Since Y is connected,
Assertion 1.1 of [10] implies that the group G is connected (to see that di-
rectly, one can use natural “product” mappings in,ε : Y

2n → G defined by

in,ε(y1, y2, . . . , y2n) = y
ε1
1 ·yε2

2 ·. . .·yε2n
2n for each point y = (y1, y2, . . . , y2n) ∈ Y 2n,

where ε = (ε1, ε2, . . . , ε2n) ∈ {−1,+1}2n, to cover G by a countable family of
connected subspaces containing the identity of G). Thus, the space F (Y ) is
the free topological sum of a countably infinite family of connected subspaces
homeomorphic to G. Apply now Theorem 2.16 to conclude that F (Y ) is T3 1

2

-

subconnected. Since p̂ is a condensation of F (X) onto F (Y ), the space F (X) is
also T3 1

2

-subconnected.

An analogous reasoning shows that the space A(X) is T3 1
2

-subconnected. �

It is well known that connectedness is invariant under any continuous map.
The following examples show that the subconnectedness can be destroyed by as
good a map as one can imagine.
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2.32 Examples. (1) If i ∈ {2, 3, 312}, then Ti-subconnectedness is not preserved

by condensations;

(2) If i ∈ {2, 3, 312}, then Ti-subconnectedness is not preserved by open two-to-one

maps;

(3) Tychonoff (and regular) subconnectedness is not preserved by perfect open
maps.

Proof: A discrete space of power continuum is Tychonoff subconnected. How-
ever, it is condensable onto the discrete union of two unit segments, which is not
Hausdorff subconnected being compact and disconnected. This proves (1).

To establish (2), observe that the set

X = ((0, 1]× {0}) ∪ ([0, 1)× {1}) ∪ (2, 3]× {0}) ∪ ([2, 3)× {1}) ⊂ R × R,

with the topology induced from the plane is Tychonoff subconnected by Corol-
lary 2.21. The projection of X onto the x-axis yields a two-to-one open map of
X onto [0, 1]∪ [2, 3] which is not Hausdorff subconnected. Consequently, we have
proved (2).

To prove (3) consider the projection map of X = [0, 1] × ω onto ω, where
ω has the discrete topology. It is open and perfect. The space X is Tychonoff
subconnected by Corollary 2.17, while ω is not because it is countable. �

Finally we look at the spaces which have an infinite subconnected subspace.
As one would expect, this class turns out to be much wider than the class of
subconnected spaces. For example, every infinite Hausdorff space has an infinite
discrete and hence T2-subconnected subspace. Hence we only consider Tychonoff
spaces.

2.33 Proposition. The following conditions are equivalent for every Tychonoff

space X :

(1) X has an infinite Tychonoff subconnected subspace;
(2) X has a subspace which can be condensed onto the unit segment [0, 1];
(3) X has a subspace that maps continuously onto [0, 1];
(4) X has a subspace that maps continuously onto an infinite connected Ty-
chonoff space.

Proof: The implications (2)⇒ (3)⇒ (4) are evident. If a subspace of X maps
onto a connected space Y , then choose a point in the inverse image of each point
of Y . The resulting subspace condenses onto Y and the implication (4)⇒ (1) is
established.
Now let f : Z → Y be a condensation, where Z ⊂ X and Y is an infinite

connected Tychonoff space. Take different points y0, y1 ∈ Y and a map h : Y →
[0, 1] with h(y0) = 0 and h(y1) = 1. Since Y is connected we have h(Y ) = [0, 1].
For every t ∈ [0, 1] take a point xt ∈ f−1(h−1(t)). The set {xt : t ∈ [0, 1]}
condenses onto [0, 1] and we have established (1)⇒ (2). �
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2.34 Proposition. The following classes of spaces have infinite Tychonoff sub-

connected subspaces:

(1) any Tychonoff space X with ind(X) > 0;
(2) any compact non-scattered space;
(3) any space X which has a discrete subspace of power continuum;
(4) any Čech-complete space without isolated points.

Proof: (1) Take a point x ∈ X such that the dimension at it is greater than zero.
This means there is a U ∈ T (x,X) such that there is no clopen set containing x
and lying inside U . Pick a continuous function f : X → [0, 1] with f(x) = 1 and
f ↾ X\U ≡ 0. Then f(X) = [0, 1], because if t ∈ [0, 1]\f(X), thenW = f−1([t, 1])
would be a clopen set such that x ∈ W ⊂ U which is a contradiction. Now use
Proposition 2.33(3).
Every compact non-scattered space maps onto the unit segment ([8]), and

therefore (2) holds; (3) is clear and (4) holds because any Čech-complete space
without isolated points contains a non-scattered compact subspace and the latter
maps continuously onto [0, 1]. �

Recall that a Luzin space is a uncountable space without isolated points such
that its nowhere dense sets are countable. It is known that under CH there are
Luzin subsets of the reals ([3], [6]) and that there are no Luzin spaces under
Martin’s axiom and the negation of the continuum hypothesis ([3], [11]).

2.35 Proposition. Let X be a hereditarily separable Luzin space. Then X
contains no Tychonoff subconnected subspace.

Proof: Suppose that Y ⊂ X and f : Y → [0, 1] is a condensation. The set Y is
uncountable, so that Y \A is dense in an open set of X for some countable A ⊂ Y .
The set Y \A is evidently a Luzin set, which condenses onto [0, 1]\f(A). Choose
a countable B ⊂ Y \A ⊂ B. It follows from the definition of a Luzin set, that
(Y \A)\W is countable for every open W ⊃ B. Therefore, [0, 1]\U is countable
for each open U ⊃ f(A)∪ f(B). But this is impossible because f(A) ∪ f(B) is of
measure zero and hence can be covered by an open subset U of [0, 1] of measure

≤ 1
2 ; then [0, 1]\U has measure ≥

1
2 so it cannot be countable. �

3. Unsolved problems

As usual, these are more numerous than those we have solved. The topic seems
to be new, and the problems below might be easy or difficult, but all of them seem
to require some new approach.

3.1 Problem. Find an inner characterization of the regular second countable

Tychonoff subconnected spaces.

3.2 Problem. Find an inner characterization of the Hausdorff second countable

Hausdorff subconnected spaces.
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3.3 Problem. Is it true that a Hausdorff second countable space is T2-subcon-
nected iff it is non-H-closed?

3.4 Problem. Are there Luzin spaces which condense onto the unit segment?

3.5 Problem. Let X be a compact space of cardinality ≥ 2ω. Is it true in ZFC
that X contains an infinite Tychonoff subconnected subspace?

3.6 Problem. Let X be a countably compact space of cardinality ≥ 2ω. Is it
true in ZFC that X contains an infinite Tychonoff subconnected subspace?

3.7 Problem. Let X be a pseudocompact space of cardinality ≥ 2ω. Is it true
in ZFC that X contains an infinite Tychonoff subconnected subspace?

3.8 Problem. Is there in ZFC a Tychonoff space of cardinality ≥ 2ω with no
infinite Tychonoff subconnected subspaces?

3.9 Problem. Let X be a Tychonoff subconnected space. Is it true, that the
Markoff free topological group over X has a weaker connected group topology?

3.10 Problem. Is it true in ZFC that the discrete sum of ω1 copies of the
Cantor set condenses onto a connected compact space?

3.11 Problem. Is Tychonoff subconnectedness invariant with respect to perfect

finite-to-one maps?

3.12 Problem. Is Hausdorff subconnectedness invariant with respect to perfect

finite-to-one maps?
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Av. Michoacán y La Puŕısima, Iztapalapa, A.P. 55-532, C.P. 09340, México, D.F.
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