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The a priori estimate of the maximum modulus

to solutions of doubly nonlinear parabolic equations∗

Liang Xiting, Wu Zaide

Abstract. The a priori estimate of the maximum modulus of the generalized solution is
established for a doubly nonlinear parabolic equation with special structural conditions.
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Introduction

Since Lions [1] proposed in 1969 to consider the doubly nonlinear parabolic
equation,

∂

∂t

(

|u|λ−2u
)

−
∂

∂t

(

|uxi |
p−2uxi

)

= f,

there are papers devoted to the existence of generalized solutions of more general
doubly nonlinear parabolic equations (see, for example, [2]–[3]). But the inves-
tigations concerning the properties of generalized solutions still seldom appear.
In [4], Liang Xiting & Liang Xuexin proved the local and global boundedness to
generalized solutions of doubly nonlinear parabolic equations with a more general
structural condition than (1), (2) below. However, in that paper, it does not sup-
ply any a priori estimate for the maximum modulus of solutions. In this present
paper, we give a certain a priori estimate of the maximum modulus for the gen-
eralized solutions of the doubly nonlinear parabolic equation (1) with structure
conditions (2). These are the extensions of the corresponding results for elliptic
equations.
Let G be a bounded domain in the n-dimensional Euclidean space En and

T > 0 a finite real number. Consider on Q = G × (0, T ) the following doubly
nonlinear parabolic equation

(1)
∂

∂t

(

|u|λ−2u
)

− divA(x, t, u,∇u) +B(x, t, u,∇u) = 0,

where 2 ≤ λ < np/(n− p) as 1 < p < n and 2 ≤ λ < ∞ as p ≥ n, A(x, t, u, ξ) and
B(x, t, u, ξ) are defined on Q × E1 × En, continuous with respect to u and ξ for
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fixed x and t, measurable with respect to x and t for fixed u and ξ and satisfying
the following structural conditions, respectively:

(2)

ξ · A(x, t, u, ξ) ≥ |ξ|p, p > 1

|A(x, t, u, ξ) ≤ κ|ξ|p−1, κ ≥ 1

B(x, t, u, ξ) = B1(x, t, u, ξ) + µ|u|α−2u

|B1(x, t, u, ξ)| ≤ b(x, t)|ξ|β + f(x, t)

where µ ≥ 0;

q = p(n+ λ)/(n+ p) ≤ α ≤ p(1 + λ/n) = l and

β0 = p − (n+ p)/(n+ λ) ≤ β < p

b(x, t) ∈ Lr(Q)(3)

1/r = 1− β/p − 1/l as β0 ≤ β < β1 = p − n/(n+ λ)

r =∞ as β = β1(4)

r > (n+ p)/(p − β) as β1 < β < p

f(x, t) ∈ Ls(Q), s > (n+ p)/p.(5)

We call u a generalized solution of (1), if

u ∈ C(0, T ;Lλ(G)) ∩ Lp(0, T ;W
1
p (G)) as β0 ≤ β ≤ β1

u ∈ C(0, T ;Lλ(G)) ∩ Lp(0, T ;W
1
p (G)) ∩ Lt∗(Q)

(1− (p − β)(n+ λ)/(n+ p))/t∗ + (p − β)(n+ λ)/((n+ p)l) + β/p+ 1/r = 1,

as β1 < β < p

and the following holds

(1)′

∫ t

0

∫

G
{−νt|u|

λ−2µ+∇ν · A(x, t, u,∇u) + νB(x, t, u,∇u)} dx dt

+

∫

G
ν(x, t)|u(x, t)|λ−2u(x, t) | t=t

t=0 dx = 0

∀ t ∈ (0, T ), φ ∈ W 1
λ (0, T ;Lλ(G)) ∩ Lp(0, T ; W̊

1
p (G));

our results are the following:

Theorem 1. Suppose (2)–(5) are fulfilled in which µ > 0 and s = ∞. Let u be
a generalized solution of (1). In addition, there is a constant M > 0 such that

(6) (u − M)+ = max(u − M, 0) ∈ Lp(0, T ; W̊
1
p (G)) and (u − M)+ | t=0 = 0.
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Then holds:

(7) ess sup
Q

u+ ≤ max{M, (‖f‖L∞(Q)/µ)1/(α−1)}.

In particular, if 1 < p < 2n/(n+ λ − 2) holds,

(8) vraimax
Q

u+ ≤ M or vrai max
Q

u+ < (‖f‖L∞(Q)/µ)1/(α−1)

and there exists a constant θ > 0 depending only on n, p, µ, λ, κ, b(x, t) and |Q|,
the n+ 1 dimensional Lebesgue measure of Q, such that

(9) ess sup
Q

u+ ≤ max{M, (‖f‖L∞(Q)/µ(1 + θ))1/(q−1)},

provided α = q and β = β0.

Theorem 2. Suppose (2)–(5) are fulfilled in which µ ≥ 0 and β = β0. Let u
be a generalized solution of (1) satisfying (6). Then there exists a constant C
depending only on n, p, µ, λ, κ, b(x, t) and |Q| such that

(10) ess sup
Q

u+ ≤ M + C‖f‖
1/(q−1)
Ls(Q)

.

Proof of Theorems

In order to prove the theorems we need the following lemmata. The proof of
Lemma 1 is essentially the same as in [5, Chapter II, § 3] and Lemma 2 is a special
case of [6, Chapter II, Lemma 5.1].

Lemma 1. Let u ∈ C(0, T ;Lλ(G)) ∩ Lp(0, T ; W̊
1
p (G)). Then

‖u‖Ll(Q) ≤ C(n, p, λ)|||u|||
1/q
Q , l = p(1 + λ/n), q = p(n+ λ)/(n+ p),

|||u|||Q = ess sup
t∈(0,T )

∫

G
|u|λ dx +

∫ ∫

Q
|∇u|p dx dt.

Lemma 2. Let u ∈ L1(Q) satisfying

∫ ∫

Q
(u − k)+ dx dt ≤ F |Q ∩ {u > k}|1+τ ∀ k ≥ k0 ≥ 0,

where F , τ are positive constants. Then

ess sup
Q

u+ ≤ k0 + (1 + 1/τ)F |Q|τ .



112 Liang Xiting, Wu Zaide

Proof of Theorem 1: We take for θ ≥ 0

k(θ) = (‖f‖L∞(Q)/(µ(1 + 2θ)))
1/(α−1).

If M < k(θ), then there is a θ′ > 0 such that M < k(θ) for θ ∈ (0, θ′). Let
k0 = max{M, k(θ)}. For any k ≥ k0, we have on the set Q ∩ {u > k} that

(11) f(x, t)− µ|u|α−2 ≤ F =

{

0 as M ≥ k(θ),

(2θ/(1 + 2θ))‖f‖L∞(Q) as M < k(θ).

For the sake of simplicity we assume u ∈ W 1
λ (0, T ;Lλ(G)). Then for k ≥ k0,

we may take ν = (u − k)+ as a test function (in general we should take the time
average of ν as a test function and invoke a limit process). Inserting such a ν into
(1)′ we obtain by integrating by part with respect to t that

(12)

∫ t

0

∫

G
(u − k)+(|u|λ−2u)t dx dt+

∫ t

0

∫

G∩{u>k}
|∇u|p dx dt

≤

∫ t

0

∫

G
(u − k)+(b(x, t)|∇u|β + F ) dx dt, t ∈ (0, T ).

Represent

(13) I =

∫ t

0

∫

G
(u − k)+(|u|λ−2u)t dx dt.

In order to estimate I we put

ũ =

{

u as u > k,

k as u ≤ k;

then

I =

∫ t

0

∫

G
(ũ − k)(|u|λ−2ũ)t dx dt

= (λ − 1)

∫ t

0

∫

G

(uλ

λ
−

kuλ−1

λ − 1
+

kλ

λ(λ − 1)

)

t
dx dt

= (λ − 1)

∫

G

(uλ

λ
−

kuλ−1

λ − 1
+

kλ

λ(λ − 1)

)

dx

≥ (λ − 1)

∫

G∩{k<u<h}

(uλ

λ
−

kuλ−1

λ − 1
+

kλ

λ(λ − 1)

)

dx.

Let

g(η) =
1

λ
−

η

λ − 1
+

ηλ

λ(λ − 1)
−
(1− η)λ

λ2
, η ∈ (0, 1).
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On account of g(0) = 1/λ − 1/λ2 > 0 and g(1) = 0 and

ηλ−1 +
(λ − 1

λ

)

(1− η)λ−1 < 1 for λ ≥ 2 and η ∈ (0, 1)

we have

g′(η) =
1

λ − 1
+

ηλ−1

λ − 1
+
(1− η)λ−1

λ
< 0 for η ∈ (0, 1).

This implies

(14)

uλ

λ
−

kuλ−1

λ − 1
+

kλ

λ(λ − 1)
≥
(u − k)λ

λ2
on Q ∩ {u > k},

I ≥ C(λ)

∫

G∩{u>k}
(u − k)λ dx.

Combining (13), (14) with (12) we get that

(15)

∫

G∩{u>k}
(u − k)λ dx+

∫ t

0

∫

G∩{u>k}
|∇u|p dx dt

≤ C

∫ t

0

∫

G
(u − k)+(b(x, t)|∇u|β + F ) dx dt.

Take the supremum for t ∈ (0, T ) yields

(16) ess sup
t∈(0,T )

∫

G
|(u − k)+|λ dx+

∫ ∫

Q∩{u>k}
|∇u|p dx dt

≤ C

∫ ∫

Q
(u − k)+(b(x, t)|∇u|β + F ) dx dt.

In what follows we write

(17) F (k) =

∫ ∫

Q
(u − k)+F dxdt

which is a nondecreasing function of k. In virtue of (u − k)+ ∈ Lp(0, T ; W̊
1
p (G))

for k ≥ M we have by the use of Lemma 1 that

(18)

∫ ∫

Q
(u − k)+b(x, t)|∇u|β dx dt

=

∫ ∫

Q
|(u − k)+|1−(p−β)(n+p)/(n+λ)+(p−β)(n+p)/(n+λ)b(x, t)|∇u|β dx dt

≤ ε(k)
(

∫ ∫

Q
|(u − k)+|l dx dt

)(p−β)(n+p)/(n+λ)l
×

×
(

∫ ∫

Q
|∇(u − k)+|p dx dt

)β/p

≤ Cε(k)|||(u − k)+|||Q,
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where ε(k) = ‖b(x, t)‖Lr(Q∩{u>k})U ,

(19)
U = ‖u‖

1−(p−β)(n+p)/(n+λ)
Ll(Q)

as β0 ≤ β ≤ β1 and

U = ‖u‖
1−(p−β)(n+p)/(n+λ)
Ll∗(Q)

as β1 < β < p.

In virtue of

|Q ∩ ‖u > k‖| ≤ k−l
∫ ∫

Q
|u|l dx dt → 0 as k → ∞

and the absolute continuity of a Lebesgue integral we have ε(k) → 0 as k → ∞.
So, we can take an h0 > k0 such that

(20) Cε(k) ≤ 1/2 as k ≥ h0.

From (16)–(19) it follows

(21) |||(u − h0)
+|||Q ≤ CF (h0).

Let h > k ≥ k0 be arbitrary; it follows from (16) that

(22) ess sup
t∈(0,T )

∫

G
((u − k)+ − (u − h)+) dx+

∫ ∫

Q∩{k<u<h}
|∇u|p dx dt

≤ C
{

∫ ∫

Q
(u − k)+b(x, t)|∇u|β dx dt+ F (k)

}

.

The effective domain of the integral appearing on the right hand side of (22)
excludes any set of the form Q ∩ {u = const} having a positive measure. For
simplicity we assume |Q ∩ {u = const}| = 0. For any k > k0, we take

h−1 =∞ > h0 > h1 > · · · > hm > hm+1 = k

such that Qi = Q ∩ {hi−1 > u > hi} satisfies

|Qi|
1/r = ε/N (i = 1, 2, . . . , m) and |Qm+1|

1/r ≤ ε/N,

where ε will be specified and N is defined by

(23) ε(N) =
(

∫ ∫

Q∩{b(x,t)>N}
b(x, t)r dx dt

)1/r
≤ ε.

It follows from (23) that

(24)
‖b(x, t)‖Lr(Qi) ≤

(

∫ ∫

Q∩{b(x,t)>N}
b(x, t)r dx dt

)1/r
+N |Qi|

1/r

≤ ε(N) +N |Qi|
1/r ≤ 2ε i = 1, 2, . . . , m+ 1.
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Denote for i = 1, 2, . . . , m+ 1

(25) ui = (u − hi)
+ − (u − hi−1)

+.

Then for almost everywhere (x, t) ∈ Q we have

(u − hi)
+ =

i
∑

j=0

uj on Q ∩ {u > hi},

∇ui = ∇u as (x, t) ∈ Qi and ∇ui = 0 as (x, t) otherwise. It follows from (22) by
taking k = hi+1 and h = hi that

(26) |||ui+1|||Q ≤ C(II + F (k)),

where

(27)

II =

∫ ∫

Q∩{u>hi+1}
(u − hi+1)b(x, t)|∇u|β dx dt

=

∫ ∫

Q∩{u>hi+1}

(

ui+1 +
i

∑

j=0

uj

)

b(x, t)|∇u|β dx dt = III + IV

(28)

III =

∫ ∫

Q∩{u>hi+1}
ui+1b(x, t)|∇u|β dx dt

≤

∫ ∫

Q∩{u>hi+1}
ui+1b(x, t)

(

i+1
∑

j=0

|∇uj |
)β

dx dt

≤ 2β
∫ ∫

Q∩{u>hi+1}
ui+1b(x, t)

[

|∇ui+1|
β +

(

i
∑

j=0

|∇uj |
)β]

dx dt

≤ 2β
∫ ∫

Qi+1

ui+1b(x, t)|∇ui+1|
β dx dt

+ (2m)β
i

∑

j=0

∫ ∫

Qi∩Qj

ui+1b(x, t)|∇uj |
β dx dt

≤ 2βU‖b(x, t)‖Lr(Qi)‖ui+1‖
(p−β)(n+p)/(n+λ)
Ll(Q)

‖∇ui+1‖
β
Lp(Q)

+ C(m, U)‖b(x, t)‖Lr(Qi)‖ui+1‖
(p−β)(n+p)/(n+λ)
Ll(Q)

i
∑

j=0

‖∇ui‖
β
Lp(Q)

≤ 2βU2εC|||ui+1|||Q + C(m, U)|||ui+1|||
(p−β)/p
Q

i
∑

j=0

|||uj |||
β/p
Q ;
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in the deduction of (28) we have used (24) and for the sake of simplicity we have
absorbed the norm ‖b(x, t)‖Lr(Q) into the constant C(m, U), the U is appearing

in (19). Similarly

(29)

IV =

∫ ∫

Q∩{u>hi+1}

i
∑

j=0

ujb(x, t)|∇u|β dx dt

≤ 2β
∫ ∫

Q∩{u>hi+1}

i
∑

j=0

ujb(x, t)
[

|∇ui+1|
β +

(

i
∑

j=0

|∇uj |
)β]

dx dt

≤ 2βU‖b(x, t)‖Lr(Q)

i
∑

j=0

‖uj‖
(p−β)(n+p)/(n+λ)
Ll(Q)

‖∇ui+1‖
β
Lp(Q)

+ (2m)βU‖b(x, t)‖Lr(Q)

i
∑

j=0

‖uj‖
(p−β)(n+p)/(n+λ)
Ll(Q)

‖∇uj‖
β
Lp(Q)

≤ 1/4|||ui+1|||Q + C(m, U)

i
∑

j=0

|||uj |||Q.

Now we see from (28) that if at the beginning we take ε so small that

(30) 2β+1CUε ≤ 1/4,

then from (26)–(29) we infer

(31) |||ui+1|||Q ≤ C(m, U)
{

i
∑

j=0

|||uj |||Q + F (k)
}

, i = 1, 2, . . . , m.

Because of (30) the ε is controlled by C, U and β. By the definition of Qi we
have

m(ε/N)r ≤
m

∑

i=1

|Qi| ≤ |Q|.

So, m is finite and is also controlled by C, U and β. (31) is now written as

(32) |||ui+1|||Q ≤ C(U)
{

i
∑

j=0

|||uj |||Q + F (k)
}

, i = 1, 2, . . . , m.

Combining this with (21), the latter can be written as

(33) |||u0|||Q ≤ CF (h0) ≤ CF (k),
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we deduce by induction that

(34) |||ui|||Q ≤ C(U)F (k), i = 1, 2, . . . , m+ 1.

Thus

(35)

‖(u − k)+‖
q/l
Ll(Q)

≤ C|||(u − k)+|||Q ≤ C|||

m+1
∑

i=0

ui|||Q

≤ C

m+1
∑

i=0

|||ui|||Q ≤ C(U)F (k)

≤ C(U)F‖(u − k)+‖Ll(Q)|Q ∩ {u > k}|1−1/l,

i.e.

‖(u − k)+‖Ll(Q) ≤ C(U)F 1/(q−1)|Q ∩ {u > k}|(1−1/l)/(q−1),
∫ ∫

Q
(u − k)+ dx dt ≤ C(U)F 1/(q−1)|Q ∩ {u > k}|1+τ , ∀ k ≥ k0

where τ = p/(n(p − 1) + p(λ − 1)) > 0. By Lemma 2 we have

(36)
ess sup

Q
u+ ≤ k0 + (1 + 1/τ)C(U)F 1/(q−1)|Q|τ

≤ max{M, k(θ)}+ C(U)F 1/(q−1)

(for simplicity we have absorbed (1 + 1/τ)|Q|τ into the constant C(U)). From
(36), it follows (7) by letting θ → 0.
In particular, if 1 < p < 2n/(n+ λ − 2), from (36) and (11) we have

ess sup
Q

u+ ≤ max{M.k(θ)} =M as M ≥ k(0) = (‖f‖L∞(Q)/µ)1/(α−1)

and

(37)

ess sup
Q

u+ ≤ k(θ) + C(U)F 1/(q−1)

= (‖f‖L∞(Q)/(µ(1 + 2θ)))
1/(α−1)

+ C(U)(‖f‖L∞(Q)2θ/(1 + 2θ))
1/(q−1) as M < k(0).

Observing q = p(n+ λ)/(n+ p) ∈ (1, 2) as 1 < p < 2n/(n+ λ − 2), we can show
that for θ > 0 small enough, which depends on C(U), ‖f‖L∞(Q), µ, λ, α and p,

(‖f‖L∞(Q)/µ(1 + 2θ))1/(α−1) + C(U)(‖f‖L∞(Q)2θ/(1 + 2θ))
1/(q−1)

≤ (‖f‖L∞(Q)/µ(1 + θ))1/(α−1) < (‖f‖L∞(Q)/µ)1/(α−1).
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The conclusion (8) then follows.
Finally, (37) can be written as

vrai max
Q

u+ ≤ (‖f‖L∞(Q)/µ(1 + 2θ))1/(q−1) + C(‖f‖L∞(Q)2θ/(1 + 2θ))
1/(q−1)

provided α = q and β = β0 owing to the fact that

U = ‖u‖
1−(p−β)(n+p)/(n+λ)
Ll(Q)

= 1 as β = β0.

For q ∈ (1, 2) and θ small enough (θ is now independent of u) we have

C(2θ/(1 + 2θ))1/(q−1) ≤ (µ(1 + θ))−1/(q−1) − (µ(1 + 2θ))−1/(q−1)

and then the conclusion (9) follows. �

Proof of Theorem 2: Under the assumptions of Theorem 2 instead of (11) we
have

(11)′ f(x, t)− µ|u|α−2u ≤ f(x, t) on Q ∩ {u > k}

and then (35) is replaced by

‖(u − k)+‖
q/l
Ll(Q)

≤ C

∫ ∫

Q
(u − k)+f(x, t) dx dt

≤ C‖f‖Ls(Q)‖(u − k)+‖Ll(Q)
|Q ∩ {u > k}|1−1/l−1/s,

where the constant C is independent of u owing to β = β0. Then it follows

∫ ∫

Q
(u − k)+ dx dt ≤ C‖f‖

1/(q−1)
Ls(Q)

|Q ∩ {u > k}|1+t1 ,

where τ1 = (p− (n+ p)/s)/(n(p− 1) + p(λ− 1)) > 0. By the use of Lemma 2 we
infer (10). �
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