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Nonlinear homogeneous eigenvalue problem

in R
N : nonstandard variational approach

Pavel Drábek1, Zakaria Moudan, Abdelfettah Touzani

Abstract. The nonlinear eigenvalue problem for p-Laplacian8<: − div(a(x)|∇u|p−2∇u) = λg(x)|u|p−2u in R
N ,

u > 0 in R
N , lim

|x|→∞
u(x) = 0,

is considered. We assume that 1 < p < N and that g is indefinite weight function. The
existence and C1,α-regularity of the weak solution is proved.
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1. Introduction

We consider the nonlinear eigenvalue problem

(1.1)







− div(a(x)|∇u|p−2∇u) = λg(x)|u|p−2u in R
N ,

u > 0 in R
N , lim

|x|→∞
u(x) = 0,

where 1 < p < N , g is a function that changes sign, i.e. g is an indefinite weight
function, a is a positive and bounded function and λ is a real parameter.
The aim of this work is to prove the existence and C1,α regularity of the weak

solution of (1.1). In comparison to similar results we use a nonstandard variational
approach — we do not minimize a Reyleigh-type quotient.
Let us note that this work was motivated by recent work [3] in which the

following nonhomogeneous eigenvalue problem was considered:






− div(a(x)|∇u|p−2∇u) = λf(x, u) in R
N ,

u > 0 in R
N and lim

|x|→∞
u(x) = 0,

where f is a Carathéodory function satisfying the condition 0 ≤ f(x, t) ≤ g(x)|t|γ
with p < γ < p∗ = Np

N−p and g satisfying suitable integrability assumptions.

1 The author was supported by grant no. 201/94/0008 of the Grant Agency of the Czech
Republic. This support is acknowledged
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Modifying the approach from [3] we can deal with our problem and to get (λ, u)
satisfying (1.1).

In this paper we will use the following notation: Lp := Lp(RN ) denotes the

usual Lebesgue space with the norm ‖·‖p,W
1,p :=W 1,p(RN ) is the usual Sobolev

space and D(RN ) := C∞
0 (R

N ) is the space of all functions with compact support

in R
N with continuous derivatives of all orders.

2. Preliminaries, hypotheses and formulation of the main result

We assume that a = a(x) is a measurable function such that

(2.1) 0 < a0 ≤ a(x) ∈ L∞,

g is an indefinite weight function satisfying:

(g1) there exists an open subset Ω 6= ∅ of R
N such that

g(x) > 0 a.e. in Ω;

(g2) there exists a real number δ, 0 < δ < ∞ such that

g ∈ L
N
p ∩ L

N
p
+δ

.

Let us consider the function space: X := {u ∈ Lp∗ ;∇u ∈ (Lp)N} equipped with
the norm ‖u‖ :=

(∫

a(x)|∇u|p dx
)
1

p . (Here and henceforth the integrals are taken

over R
N unless otherwise specified.) Then X is a reflexive Banach space.

Using (2.1) and Sobolev inequality (see [1]) we conclude that there is a constant
C1 > 0 such that

(2.2) ‖u‖p∗ ≤ C1‖u‖

holds for all u ∈ X .

Definition 2.1. A weak solution of (1.1) is a pair (λ, u) such that λ > 0, u ∈ X ,
u 6= 0 and

(2.3)

∫

a(x)|∇u|p−2∇u∇v dx = λ

∫

g(x)|u|p−2uv dx

for all v ∈ X . In this case u is called an eigenfunction corresponding to the
eigenvalue λ > 0.

Let us remark that under the assumptions (2.1) and (g2) the integrals in (2.3)
are well defined.

The main result of our paper is the following
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Theorem 2.1. Let us assume (2.1), (g1) and (g2). Then the problem (1.1) has
a positive eigenvalue λ > 0 and a corresponding eigenfunction u ∈ X , u > 0
in R

N and lim
|x|→∞

u(x) = 0. Moreover, the eigenvalue λ is simple, isolated and

unique in the following sense: if λ̃ 6= λ is a positive eigenvalue of (1.1) and ũ is

a corresponding eigenfunction then ũ changes sign in R
N .

Corollary. Let the assumptions of Theorem 2.1 be satisfied and moreover, let
a ∈ C1(RN ). Then the assertion of Theorem 2.1 holds with u ∈ C1,α(BR(0)), for
any R > 0 and α = α(R) ∈]0, 1 [ .
Remark 2.1. Similar results were proved in papers [2], [5] and [6]. However,
different (more restrictive) assumptions on the weight function g and different
methods were used in these papers. On the other hand, our result does not
contain any information about “higher” eigenvalues of (1.1).

3. Proof of Theorem 2.1 and of Corollary

Proposition 3.1. Assume (2.1), (g1) and (g2). Then the problem (1.1) has a

weak solution (λ, u), u ∈ X and λ > 0, such that u 6≡ 0 and u ≥ 0 in R
N .

Proof: The proof follows the lines of Theorem 3.1 in [3]. Since the character of
our problem is different from that considered in [3], we give the proof in detail here
for the reader’s convenience. Let α ∈ ]1, p [ be fixed and consider the following
functional:

J =

∫

g(x)|u|p dx

‖u‖α + ‖u‖p∗ .

It is easy to see that J is well-defined for any u ∈ X , u 6≡ 0. Due to (2.2) and the
Hölder inequality we have

(3.1)

∫

g(x)|u|p dx ≤
∫

|g(x)||u|p dx ≤ ‖g‖N
p

‖u‖p
p∗ ≤ C

p
1‖g‖N

p

‖u‖p.

Since α < p < p∗ then ‖u‖p ≤ ‖u‖α + ‖u‖p∗ for all u ∈ X , so

J(u) ≤
∫

g(x)|u|p dx

‖u‖p
≤ C

p
1‖g‖N

p

.

Then there exists a constant s1 < ∞ (s1 = C
p
1‖g‖N

p

) such that J(u) ≤ s1 holds

for all u ∈ X , u 6≡ 0. Thus s := sup
u∈X

u 6=0

J(u) is a real number.

Lemma 3.1. There exist s0 ∈ ]0, s [ and a sequence (un)
∞
n=1 ⊂ X , un ≥ 0

such that s0 ≤ J(un) ≤ s holds for all n, and lim
n→∞

J(un) = s. Furthermore,
∫

g|un|p dx →
∫

g|u|p dx, as n → ∞ and J(u) = s for some u ∈ X .

Proof of Lemma 3.1: Let Ω be from (g1) and choose ϕ0 ∈ D(RN ) such

that suppϕ0 ⊂⊂ Ω and sup
x∈RN

ϕ0(x) > 0. Set s0 =
1
2J(ϕ0). Then s0 =
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1
2

R
Ω

g|ϕ0|p dx

‖ϕ0‖α+‖ϕ0‖p∗ > 0 and s0 < s. Let (un)
∞
n=1 ⊂ X , un 6= 0, be a sequence

such that J(un) → s as n → ∞. Since s0 < s we can choose (un)
∞
n=1 such that

J(un) ≥ s0 for all n and due to the equality J(u) = J(|u|) we may assume that
un ≥ 0. Then (3.1) implies that there exists s1 such that

s0(‖un‖α + ‖un‖p∗) ≤ s1‖un‖p

holds for all n; so we can find real numbers 0 < δ1 < δ2 such that

(3.2) δ1 ≤ ‖un‖ ≤ δ2

hold for all n, and this implies that (un)
∞
n=1 is bounded in X . Due to the reflex-

ivity of X we may assume without loss of generality that for some u ∈ X we have
un → u weakly in X and pointwise a.e. in R

N . (Remark that for any bounded

open set B ⊂ R
N we have for u ∈ X :

(
∫

B

|u|p∗ dx

)
1

p∗
≤ ‖u‖p∗ ≤ C1‖u‖

and
(

∫

B

|∇u|p dx

)
1

p

≤ ‖∇u‖p ≤ C′
1‖u‖

and then
‖u‖W 1,p(B) ≤ C‖u‖

holds for all u ∈ X . The compact imbedding W 1,p(B) →֒→֒ Lp(B) then implies
that unk

→ u in Lp(B) and hence pointwise a.e.). This implies that u ≥ 0 a.e.
in R

N . Using the Hölder inequality, for all 0 ≤ R ≤ ∞ and all n, we have
∣

∣

∣

∣

∫

|x|≥R

g(x)|un|p dx

∣

∣

∣

∣

≤
∫

|x|≥R

|g(x)||un|p dx

≤
(

∫

|x|≥R

|g(x)|
N
p dx

)
p

N
(

∫

|x|≥R

|un|p
∗
dx

)
N−p

N

≤ C2

(
∫

|x|≥R

|g(x)|
N
p dx

)
p

N

,

where C2 is a constant independent of R and n. The same holds also for u:
∣

∣

∣

∣

∫

|x|≥R

g(x)|u|p dx

∣

∣

∣

∣

≤ C3

(
∫

|x|≥R

|g(x)|
N
p dx

)
p

N

.
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Since g ∈ L
N
p , we have lim

R→∞

∫

|x|≥R

|g|
N
p dx = 0, which implies that, for any ε > 0,

there exists Rε > 0 such that

∣

∣

∣

∣

∫

|x|≥Rε

g(x)|u|p dx

∣

∣

∣

∣

≤ ε

and
∣

∣

∣

∣

∫

|x|≥Rε

g(x)|un|p dx

∣

∣

∣

∣

≤ ε

hold for all n.
On the other hand, using the Rellich-Kondrachov theorem (see [1]), and the

continuity of the Nemytskii operator we prove, for ε > 0 fixed that:

∫

|x|<Rε

g(x)|unk
|p dx →

∫

|x|<Rε

g(x)|u|p dx as n → ∞.

Indeed, let us consider the function F (x, t) := g(x)|t|p, then

|F (x, t)| = |g||t|p <
|g|

N
p
+δ

N
p + δ

+
|t|m
m
p

,

for all t ∈ R and a.e. x in Bε := {x ∈ R
N ; |x| < Rε}, where m := p

(

N
p + δ

)′
and

the dash denotes the exponent conjugate.
Hence the Nemytskii operatorNF associated with F is continuous from Lm(Bε)

in L1(Bε). Note that

N

p
<

N

p
+ δ implies

(

N

p
+ d

)′

<

(

N

p

)′

=
p∗

p

and hence m < p∗. Then from imbeddings

X →֒ W 1,p(Bε) →֒→֒ LM (Bε)

we conclude that NF (un)→ NF (u) in L1(Bε), i.e.

∫

|x|<Rε

g(x)|un|p dx →
∫

|x|<Rε

g(x)|u|p dx as n → ∞.
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Finally,

∣

∣

∣

∣

∫

g(x)(|un|p − |u|p) dx

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

|x|≥Rε

g(x)|un|p dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

|x|≥Rε

g(x)|u|p dx

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∫

Bε

g(x)(|un|p − |u|p) dx

∣

∣

∣

∣

≤ 3ε

for n large enough, which implies that

(3.3)

∫

g(x)|un|p dx →
∫

g(x)|u|p dx as n → ∞.

Since we have J(un) ≥ s0 for all n, then

∫

g(x)|un|p dx ≥ s0(‖un‖α + ‖un‖p∗).

Due to (3.2) we have,

∫

g(x)|un|p dx ≥ s0(δ
α
1 + δ

p∗
1 )

and (3.3) implies
∫

g(x)|up| dx ≥ s0(δ
α
1 + δ

p∗
1 ) > 0

and, therefore, u 6≡ 0 in R
N . From the uniform boundedness principle, we obtain

‖u‖α + ‖u‖p∗ ≤ lim inf(‖un‖α + ‖un‖p∗)

and so

s = lim supJ(un) = lim sup

(
∫

g(x)|un|p dx

‖un‖α + ‖un‖p∗

)

= lim sup

(

1

‖un‖α + ‖un‖p∗

)
∫

g(x)|u|p dx

≤
∫

g(x)|u|p dx

lim inf(‖un‖α + ‖un‖p∗)
≤

∫

g(x)|u|p dx

‖u‖α + ‖u‖p∗ = J(u)

and, consequently J(u) = s. The lemma is proved. �

Now, we prove that u is an eigenfunction corresponding to a positive eigenvalue
λ > 0. Since u 6≡ 0 in R

N then for any fixed v ∈ X we can find ε0 = ε0(v) > 0
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such that ‖u + εv‖ > 0 holds for all ε ∈ ] − ε0, ε0 [ . We consider the function
η : ]− ε0, ε0 [ → R defined as follows:

η(ε) = J(u+ εv).

The function F (ε) =
∫

a(x)|∇u + ε∇v|p dx = ‖u+ εv‖p is differentiable and

F ′(ε) = p

∫

a(x)|∇u + ε∇v|p−2(∇u+ ε∇v)∇v dx.

Since ‖u + εv‖ > 0 on ] − ε0, ε0 [ then the same is true for F (ε), i.e. F (ε) > 0

on ] − ε0, ε0 [ , and, therefore, the function G(ε) := ‖u + εv‖α = (F (ε))
α
p is

differentiable and
G′(ε) =

α

p
F ′(ε)(F (ε))

α
p
−1

.

At ε = 0 we have

G′(0) = α‖u‖α−p

∫

a(x)|∇u|p−2∇u∇v dx.

The same remains true for the function H(ε) = ‖u+ εv‖p∗ . Hence

H ′(0) = p∗‖u‖p∗−p

∫

a(x)|∇u|p−2∇u · ∇v dx.

Thus η is differentiable on ] − ε0, ε0 [ . Since 0 is a maximum of η, we have
η′(0) = 0, which implies that

∫

a(x)|∇u|p−2∇u∇v dx = λ

∫

g(x)|u|p−2v dx

holds for all v ∈ X , where

λ =
p(‖u‖α + ‖u‖p∗)

(p∗‖u‖p∗−p + α‖u‖α−p)
∫

g(x)|u|p dx
.

Proposition 3.2. Let u ∈ X be a weak solution for (1.1) such that u 6≡ 0, u ≥ 0
a.e. in R

N . Then u ∈ Lr for all p∗ ≤ r ≤ ∞.
Proof: We use Nash-Moser bootstrap iterations similarly as in [3]. For M > 0

define vM (x) = inf{u(x), M} and let choose v = v
kp+1
M (for some k > 0) as a test

function in (2.3). Then it is easy to see that v ∈ X ∩ L∞ and that

∫

a(x)|∇u|p−2∇u∇(vκp+1
M ) dx = λ

∫

g(x)|u|p−2uv
κp+1
M dx.
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On one hand, due to (2.2) we have

(3.4)

∫

a(x)|∇u|p−2∇u∇(vkp+1
M ) dx = (kp+ 1)

∫

a(x)|∇u|p−2∇u∇vMv
kp
M dx

≥ (kp+ 1)

∫

a(x)|∇vM |p v
kp
M dx =

kp+ 1

(k + 1)p

∫

a(x)|∇(vk+1
M )|p dx

≥ 1

C
p
1

kp+ 1

(k + 1)p

(
∫

v
(k+1)p∗

M dx

)
p

p∗
.

On the other hand,

(3.5)

∫

g(x)|u|p−2uv
kp+1
M dx =

∫

g(x)up−1v
kp+1
M dx

≤
∫

|g(x)|up−1v
kp+1
M dx ≤

∫

|g(x)|u(1+k)p dx

≤ ‖g‖(N
p
+δ)

(
∫

u(k+1)q dx

)
p

q

,

where q = p
(

N
p + δ

)′
. From (3.4) and (3.5) we obtain

1

C
p
1

kp+ 1

(k + 1)p

(
∫

v
(k+1)p∗

M dx

)
p

p∗
≤ λ‖g‖�N

p
+δ
�(

∫

u(k+1)q dx

)
p

q

.

Then there exists a constant C3 > 0, C3 = λC
p
1‖g‖�N

p
+δ
� such that

(
∫

v
(k+1)p∗

M dx

)
p

p∗
≤ C3

(k + 1)p

(kp+ 1)

(
∫

u(k+1)q dx

)
p

q

,

i.e.

(3.6) ‖vM‖(k+1)p∗ ≤ C
1

k+1

4

[

k + 1

(kp+ 1)
1

p

]
1

k+1

‖u‖(k+1)q,

where C4 = C
1

p

3 > 0. Since u ∈ X , it follows from (2.2) that u ∈ Lp∗ . Then we

can choose k = k1 in (3.6) such that (k1 + 1)q = p∗ i.e. k1 =
p∗
q − 1. Then we

have

‖vM‖(k1+1)p∗ ≤ C

1

k1+1

4

[

k1 + 1

(k1p+ 1)
1

p

]
1

k1+1

‖u‖p∗.
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But, lim
M→∞

vM (x) = u(x) and the Fatou lemma implies

‖u‖(k1+1)p∗ ≤ C
1

k1+1

4

[

k1 + 1

(k1p+ 1)
1

p

]
1

k1+1

‖u‖p∗ .

Then u ∈ L(k1+1)p
∗
, and we can choose k = k2 in (3.6) such that (k2 + 1)q =

(k1 + 1)p
∗ i.e. k2 =

(p∗)2

q2
− 1. Repeating the same argument we get

‖u‖(k2+1)p∗ ≤ C

1

k2+1

4

[

k2 + 1

(k2p+ 1)
1

p

]
1

k2+1

‖u‖(k1+1)p∗ .

By induction

‖u‖(kn+1)p∗ ≤ C
1

kn+1

4

[

kn + 1

(knp+ 1)
1

p

]
1

kn+1

‖u‖(kn−1+1)p∗

holds for all n ∈ N, where kn =
(

p∗
q

)n
− 1. Then

‖u‖(kn+1)p∗ ≤ C

nP
j=1

1

kj+1

4

n
∏

j=1





kj + 1

(kjp+ 1)
1

p





1

kj+1

‖u‖p∗ .

But lim
y→∞

[

y+1

(yp+1)
1
p

]
1√
y+1

= 1 and

[

y+1

(yp+1)
1
p

]
1√
y+1

> 1 for all y > 0. Then there

exists a constant C5 > 0 such that

1 <

[

kn + 1

(knp+ 1)
1

p

]
1√

kn+1

< C5

holds for all n ∈ N, and therefore,

‖u‖(kn+1)p∗ ≤ C

nP
j=1

1

kj+1

4 C

nP
j=1

1√
kj+1

5 ‖u‖p∗ ,

since 









1
kj+1

=
(

q
p∗

)j
, q

p∗ < 1,

1√
kj+1

=
(
√

q
p∗

)j
,
√

q
p∗ < 1.

Then we conclude that there exists a constant C6 > 0 such that

‖u‖(kn+1)p∗ ≤ C6‖u‖p∗

holds for all n ∈ N. Since kn → ∞ as n → ∞, we get u ∈ L∞ and by interpolation

u ∈ Lr for all r ∈
[

Np
N−p ,∞

]

. This completes the proof of Proposition 3.2. �
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Proposition 3.3. Let u ∈ X , u ≥ 0 and u 6≡ 0 be a weak solution of (1.1). Then
u > 0 in R

N and
lim

|x|→∞
u(x) = 0.

Proof: The positivity of u follows from the weak Harnack type inequality proved
in [10, Theorem 1.1]. More precisely, due to Proposition 3.2 we have u ∈ L∞,
and using Theorem 1.1 of [10] there exists a constant CR > 0 such that

(3.7) max
K(R)

u(x) ≤ CR min
K(R)

u(x),

where K(R) denotes the cube in R
N of side R and center 0 whose sides are

parallel to the coordinate axes. Let D ⊂ R
N be such that |D| 6= 0 and u ≡ 0

a.e. in D. Then there exists R0 > 0 such that |D ∩ K(R0)| 6= 0 (otherwise D =
⋃

R∈Q

(D∩K(R)) will be of measure zero). Thus 0 ≤ max
K(R)

u(x) ≤ CR min
K(R)

u(x) = 0

holds for all R > R0 which implies u ≡ 0 in K(R). Hence u = 0 a.e. in R
N ,

a contradiction. Thus u > 0 in R
N . Finally, let Br(x) denote the ball centered at

x ∈ R
N with radius r > 0. Then by Theorem 1 of [8], for some C = C(N, p) > 0

we obtain an estimate:

‖u‖L∞(B1(x)) ≤ C ‖u‖Lp∗(B2(x))

independently of x ∈ R
N . Hence the decay of u follows. �

Proposition 3.4. The value of λ > 0 (and u > 0) is independent of the choice
of α ∈ ]1, p [ at the beginning of the proof of Proposition 3.1. Namely, λ is

simple, isolated and if λ̃ is a positive eigenvalue of (1.1) and ũ is corresponding

eigenfunction then ũ changes sign in R
N .

Proof: The simplicity of λ follows from the proof of Lemma 3.1 in [7] adapted

for Ω = R
N . Remaining two facts (i.e. λ is isolated and unique positive eigen-

value having eigenfunctions which do not change sign) follow from the proof of
Lemma 2.3 in [4]. In particular, this implies that λ and u are independent of α.

�

The assertion of Theorem 2.1 follows now from Propositions 3.1–3.4. The
assertion of Corollary follows directly from the regularity result [9].
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